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ABSTRACT

We consider non-linear dynamical games where one player has full (causal) information
on the state, the opponent’s measurements and control, while the other one only has
partial, possibly noise corrupted, state information. We give a dynamic programming-like
algorithm in an extended space which, when successful, yields a saddle point, usually in
mixed strategies. We use this to provide an equilibrium in safe strategies for the case where
both players are restricted to imperfect state information.
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Introduction

It has long been recognised that the second guessing problem, which makes partial
information two player dynamical games essentially untractable [1], [2], can be worked
around in two extreme cases: either when one player has full information [3],[4],[5], or
when one player has no information [5]. Other simple cases that avoid the second guessing
altogether are when both players know the opponent’s control [6], or when the information
algebra does not depend on the controls [7].

Here we use the first of these situations in a nonlinear context to solve a discrete game
with mixed strategies. Although we do not elaborate on this, it should be noticed that
this approach is closely related to that of Rhodes and Luenberger in [5].

1. Rabbit and Hunter

1.1 The general setup

The whole game described is in discrete time, and happens within a finite time interval
{0, 1, . . . , T}. A rabbit jumps left and right along a wall. Its abscissa with respect to a
specified origin will be called y, and the size of his jump u. Both are discrete, and take their
values in finite sets Y = {1, 2, . . . , N} and Uad(y) ⊂ Z respectively, with y + Uad(y) ⊂ Y ,
for all y in Y . Hence Rabbit’s dynamics are discribed by the following equations:

yt+1 = yt + ut, yt ∈ Y = {1, 2, . . . , N},(1)

ut ∈ Uad(yt).

A hunter stands at a distance, and has a given number ν of shots available.Let vt
be its decision at time t, with vt = 0 meaning that he does not shoot, (a possibility not
needed if ν ≥ T ), vt = η ∈ Y meaning that he shoots, aiming at the point of abscissa
η along the wall. We shall assume perfect precision: Hunter knows y exactly and shoots
where he wants. But the generalization of section 2 below would allow us to raise in part
these restrictions.

Of course, Hunter would like to kill Rabbit, and he has to do so not later than time
T , while Rabbit would like to survive until time T . (And then, presumably, until the next
hunting party comes by).

Two very different situations arise depending on how long it takes for the bullet to fly
from Hunter to Rabbit.

1.2 The simple case.

The simple case is when the bullet time of flight is one step of time. Then the game
can be written as a simple, complete information game. Let

(2) xt+1 = vt.
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Capture is defined by

(3) xt − yt = 0,

and the game ends either at capture time or when t = T , whichever happens first.

Actually, the game also ends whenever Hunter has exhausted his amunitions, but
Rabbit might not be aware of it. If there is only one shot available, or more than T,
(xt, yt) is a state for this game. Otherwise, we introduce an extra state variable to count
the shots:

zt+1 = zt + 1Y (vt),

where 1Y (v) = 1 if v ∈ Y , and 0 otherwise (i.e. if v = 0) and the game ends when zt = ν.

As a simple example, assume that ν = 1. It is clear that this game has no pure
strategy saddle point. As a matter of fact, if Rabbit had an optimal pure strategy, Hunter
could compute it as well, and shoot precisely at the position this strategy makes Rabbit
jump to, making it a sure win for Hunter, a contradiction.

Introduce therefore the following mixed strategies.

Let p ∈ ΣU and q ∈ ΣV be Rabbit’s and Hunter’s choices respectively, with

pi = Probability(u = i), qj = Probability(v = j),

ΣU and ΣV being the relevant simplices.

The solution of this game in mixed strategies via dynamic programming is straightfor-
ward. Let V (y, t) be the probability that Rabbit be killed before time T if it is in location
y at time t. Both V and optimal strategies can be computed according to

V (y, t) = min
p∈ΣU

max
q∈ΣV

∑
ij

piVijqj ,

Vij =


1 if j = y + i,
0 if j 6= y + i and j 6= 0,
V (y + i, t+ 1) otherwise,

and V (y, T ) = 0.

1.3 The partial information case.

Assume now that the bullet’s time of flight is two time steps. Of course, Rabbit does
not know whether Hunter has shot, nor a fortiori, where he aimed at. The situation is
now far more complicated, because at each instant of time, Rabbit must account for the
possibility that a bullet be flying at that time, and the point Hunter is likely to have aimed
at is itself a function of where Rabbit itself was at the previous time step. The problem
gets only more complicated if the time of flight is more than two time steps.
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Assume a time of flight of l steps. The game formulation now is (1) together with

x1
t+1 = vt,

xkt+1 = xk−1
t , k = 2, . . . , l.

Capture is now defined by
xlt − yt = 0.

But the most important new feature is that Rabbit’s strategy may only be based on the
knowledge of past y’s (and u’s), while Hunter’s strategy is based on past x’s, y’s and v’s.
We may in addition notice that knowing the past y’s, Hunter knows the u’s actually played
by Rabbit. Hence, we are looking for mixed strategies of the form

(4)
pt = φt(Yt,Ut−1),

qt = ψt(Xt,Yt,Ut−1,Vt−1),

where Xt = {x0, x1, . . . , xt}, and likewise for Yt with y’s, Ut and Vt with u’s and v’s
respectively. (It would also be possible to make the game a “noisy” duel, meaning that
Rabbit knows zt.)

It is simpler at this point to look at the more general problem of which this is a
particular case. In addition we shall introduce noise in both dynamics and observations
although it is not present here, only because this is hardly more complicated, and takes
into account noisy “navigation” for Rabbit, as well as inprecise aiming of Hunter. The
unperturbed case follows by simply assuming zero variance for the noises, and therefore
ignoring the corresponding expectation symbols in the sequel. Nothing degenerates in this
process, because we are in discrete time.

2. The general case.

2.1 The set up.

Let a dynamical game in discrete, finite time and state be described by the dynamics

t ∈ {0, 1, . . . , T},
xt+1 = ft(xt, ut, vt, wt), xt ∈ X,(5)

ut ∈ Uad ⊂ U, vt ∈ Vad ⊂ V.

Here, {wt} is a random process, zero mean, white and of known statistics, ranging over a
space W .

We shall use mixed strategies. Let therefore ΣU and ΣV be the relevant simplices,
and

pt ∈ ΣU , pt(i) = Pr(ut = i),

qt ∈ ΣV , qt(j) = Pr(vt = j).
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We furthermore introduce an information vector

(6) yt = ht(xt, zt), yt ∈ Y.

Again, {zt} is a random process, zero mean, white and of known statistics, assumed in-
dependent from {wt} for the sake of simplicity, ranging over a space Z. As previously, yt
will represent information available to player one, while player two has access to xt, yt,
ut−1 and vt−1. We shall also assume that both players share the same knowledge of x0,
for instance know it exactly.

Finally, let us specify the payoff. A capture set C is given in (X ×N) that contains
(X × t) for all t ≥ T . (i.e. the game terminates before or at time T ). The payoff is defined
by

(7) J = K(x(t1), t1) +

t1−1∑
t=0

Lt(xt, ut, vt),

where t1 is final time, depending on {uk} and {vk}.

Player one, R, wants to minimize (the expectation of) this payoff, while player two,
H, wants to maximize it. They chose pt and qt respectively, using the information available
to each, i.e. according to (4). Hence the players’ choices are their closed loop strategies φ
and ψ. We are looking for a solution concept for the expectation EJ(φ, ψ).

2.2 A dynamic programming solution.

We first introduce a probability law Qt(·) over X that will stand for the “idea” R has
of the state. It is not a conditional expectation, since this concept is not defined unless
R has some information on the probability laws qk used by H, which we do not assume.
However, with our standing assumption that R knows x0 exactly, we have an obvious Q0

as a Dirac at x0.

Now assume for awhile that R knows Qt and a strategy ψt[x,Q] giving his opponent’s
choice of qt for each (x,Q). Then he can determine Qt+1 as a conditional expectation.
With ut fixed, let

(8) Q̄t+1(ξ) =
∑
x

∑
v

Ewδ
(
ξ − ft(x, ut, v, w)

)
ψt[x,Qt](v)Qt(x).

(δ is the discrete Dirac measure, i.e. 1 if its argument is 0, and 0 otherwise). This is just
the probability Qt(·) carried over by the flow f , which we use as the apriori probability
for x at time t+ 1. Then use the extra information yt+1 according to Bayes’rule:

(9) Qt+1(ξ) =
Ezδ

(
yt+1 − ht+1(ξ, z)

)
Q̄t+1(ξ)∑

x Ezδ
(
yt+1 − ht+1(x, z)

)
Q̄t+1(x)

.
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This defines a relation

(10) Qt+1 = Gt(Qt, yt+1, ut, ψt),

provided that ψt be a function of x and Q. Substituting for yt+1 using (6) into G, this
also induces a relation

(11) Qt+1 = gt(Qt, xt, ut, ψt, wt, zt+1),

but we must keep in mind that it depends on xt, wt and zt only through yt+1 which is
known to R.

We wish to enphasize once more that we do not mean, in the end, to assume that R
knows the strategy actually used by H. Therefore, as it stands, this Qt is not available to
R. We shall only use it in a special way which is available to R.

We are now ready to state the main result of this paper.

Theorem. Assume one can find a real function Vt(x,Q), and two strategies φ̂t[Q] and

ψ̂t[x,Q] such that:

(12) ∀(x, t) ∈ C, Vt(x,Q) = K(x, t),

(13) Vt(x,Q) =

max
q∈ΣV

∑
v

q(v)
∑
u

φ̂t[Q](u)
[
EVt+1

(
ft(x, u, v, w), gt(Q, x, u, ψ̂t, w, z)

)
+ Lt(x, u, v)

]
,

(14) ψ̂t[x,Q] ∈ Argmax(above),

(15)
∑
x

Vt(x,Q)Q(x) =

min
p∈ΣU

∑
u

p(u)
∑
x

Q(x)
∑
v

ψ̂t[x,Q](v)

[
EVt+1

(
ft(x, u, v, w), gt(Q, x, u, ψ̂t, w, z)

)
+ Lt(x, u, v)

]
,

(16) φ̂t[Q] ∈ Argmin(above),

then, the following pair of strategies is a saddle point: let {Q̂t} be the sequence obtained

by placing ψ̂t[x,Q] in (10), and chose

φ∗t (Yt,Ut−1) = φ̂t[Q̂t],(17)

ψ∗t (Xt,Yt,Ut−1,Vt−1) = ψ̂t[xt, Q̂t].(18)
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In addition, the saddle point value is V0 (x0, δ(x0)).

Proof. Assume first that both players play their strategies (17) and (18). Then equation
(13) may also be read

Vt(x,Q) = E
(
Vt+1(xt+1, Qt+1) + Lt(xt, ut, vt)

∣∣xt = x,Qt = Q
)
,

where the expectation symbol extends to w and z with their natural probability laws,
and to u and v with the probability laws φ̂ and ψ̂. Consider the markov process {xt, Qt}
generated by (5), (4), and (11) where φ and ψ have been replaced by φ̂ and ψ̂. By the
classical argument of stochastic dynamic programming, (because the information algebra
is increasing), it results that

V0

(
x0, δ(x0)

)
= E

(
Vt1(xt1 , Q̂t1) +

t1−1∑
t=0

Lt(xt, ut, vt)

)
,

and using (12) and (7),

(19) J(φ∗, ψ∗) = V0

(
x0, δ(x0)

)
.

Assume now that R plays according to φ∗, (i.e. using ψ̂ to compute Q), but that H
uses an arbitrary stochastic process {qt(ω)} of mixed strategies, adapted to the algebra

of past events. Because we have left ψ̂t, and not q, as an argument of gt in the r.h.s. of
(13), this r.h.s., without the “max” operator is the expectation of V (xt+1, Qt+1) given that
xt = x and Qt = Q when R uses φ∗ and for an arbitrary q as qt. We therefore have, with
the probability laws φ̂t[Qt] and qt(ω) for u and v,

Vt(x,Q) ≥ E
(
Vt+1(xt+1, Qt+1) + Lt(xt, ut, vt)

∣∣xt = x,Qt = Q
)
.

Again, considering the process {xt, Qt} generated by φ∗, {qt}, and using the increasing
algebra property, this results in

(20) V0

(
x0, δ(x0)

)
≥ E

(
Vt1(xt1 , Q̂t1) +

t1−1∑
t=0

Lt(xt, ut, vt)

)
= J(φ∗, {qt}).

Notice that it is so although R has used the wrong q to compute Q which therefore is not
a conditional probability law for x, a property we did not use.

Assume finally that R plays an arbitrary stochastic process {pt(ω)}, adapted to the
algebra generated by Yt and Ut−1, while the maximizer uses ψ∗. Now, Q̂t is indeed the
conditional probability law of xt given Yt and Ut−1. Therefore, we can write

(21) V̄t(Q̂t) =
∑
x

Vt(x, Q̂t)Q̂t(x) = E
(
Vt(xt, Q̂t)

∣∣Yt,Ut−1

)
.
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By the optimality principle as applied to dynamical games, (see [11]), the problem faced by
R at each instant of time depends on the past only through xt. Therefore Qt is a sufficient
statistics, and (15)(16) imply that, with the probability laws pt(ω), ψ̂t[xt, Qt] for u and v,

(22) E
(
Vt(xt, Q)

∣∣Yt,Ut−1

)
≤ E

(
Vt+1(xt+1, Q̂t+1) + Lt(xt, ut, vt)

∣∣Yt,Ut−1, Q̂t = Q
)
.

The rest of the proof is almost classical, and similar to the previous one. Let us nevertheless
give it in more detail since it is slightly more subtle, because the expectation sign appears
on both sides of the inequality. Let us consider again the markov process {xt, Q̂t} generated

by {pt}, {ψ̂t}, and consider

E
(
Vt+1(xt+1, Q̂t+1) + Lt(xt, ut, vt) + Lt−1(xt−1, ut−1, vt−1)

∣∣Yt−1,Ut−2

)
.

(Notice that Q̂t is measurable on Yt, Ut−1). Because the information algebra is increasing,
we have, droping the arguments in V and L:

E
(
Vt+1 + Lt + Lt−1

∣∣Yt−1,Ut−2

)
= E

(
E
(
Vt+1 + Lt + Lt−1

∣∣Yt,Ut−1

) ∣∣∣Yt−1,Ut−2

)
.

Use the linearity to expand the r.h.s. above:

E
(
Vt+1 + Lt + Lt−1

∣∣Yt−1,Ut−2

)
=

E
(

E
(
Vt+1 + Lt

∣∣Yt,Ut−1

)
+ E

(
Lt−1

∣∣Yt,Ut−1

) ∣∣∣Yt−1,Ut−2

)
.

Since inequality (22) holds for each Q, it holds for the conditional expectation. We have
thus, regrouping sums of expectations,

E
(
Vt+1 + Lt + Lt+1

∣∣Yt−1,Ut−2

)
≥ E

(
E
(
Vt + Lt−1

∣∣Yt,Ut−1

) ∣∣∣Yt−1,Ut−2

)
.

Use again the property of nested algebras in the other direction, and finally inequality (22)
one step of time earlier to obtain

E
(
Vt+1 + Lt + Lt−1

∣∣Yt−1,Ut−2

)
≥ E

(
Vt−1

∣∣Yt−1,Ut−2

)
.

By induction, and using the fact that Q̂0 = δ(x0), we end up with

(23) J({pt}, ψ∗) ≥ V0

(
x0, δ(x0)

)
.

Finally, (19), (20) and (23) together prove the theorem.

Comments. 1. We apparently did not use the equality in (15), but only the fact that φ̂
provides the min of the r.h.s. As a matter of fact, the equality is a consequence of that in
(13).
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2. Assume the solution of (13) to (16) is not unique, and let (φ̂1, ψ̂1) and (φ̂2, ψ̂2) be two

different solutions. Then φ∗1 and ψ∗1 are constructed with Q̂1 obtained by placing ψ̂1 in
(10), while φ∗2 and ψ∗2 are obtained likewise with Q̂2. What happens if R plays φ∗1 while H
plays ψ∗2? Then Q̂1 used by R to construct his strategy is the wrong one. But not more
so than against any other control. And since both (φ∗1, ψ

∗
1) and (φ∗2, ψ

∗
2) are saddle points,

so are (φ∗1, ψ
∗
2) and (φ∗2, ψ

∗
1), with the same value. Thus nonunicity does not preclude use

of this theory.

3. We assumed that both players know exactly x0, so that Q0 = δ(x0). If R only had an
apriori probability distribution Q0, we could carry out the same theory, but we would end
up with a Nash point. As a matter of fact, although there is only one performance index,
since the players optimize expectations conditioned by different apriori information, it is
in effect a non zero sum game. Then we recover all the classical difficulties associated with
the Cournot-Nash equilibrium, and the above comment does not hold any more.

4. The max in (13) is equivalent to that obtained by multiplying both sides by Q(x) and
summing over x. (Since q is allowed to depend on x, the maximum of this positively
weighted sum is obtained by maximizing each term). Let therefore r be the vector of
RN×V of all the values of q(x) for x = 1, . . . , N . Let, for a fixed Q,

Aij(x, r) = Ewz
[
Vt
(
f(x, i, j, w), g(Q, x, i, r, w, z)

)
+ Lt(x, i, j)

]
,

and
B(r) =

[
A(1, r) A(2, r) . . . A(N, r)

]
.

For a given r̄, the bilinear form
p′B(r̄)r

(where ’ means transposed), has a saddle point (p̂(r̄), q̂(r̄)) over the relevant sets for p (the
simplex of RU ) and r (the product of N simplices of RV ). Given B(r̄), this saddle point
can be computed by a linear progam in an almost classical way. See [12] for more details.
Equations (13) to (16) can be interpreted as: for each Q, find r∗ such that r̂(r∗) = r∗.
This is therefore a fixed point problem. Because B is generally not continuous in r, we
were not able to prove the existence of this fixed point.

5. As a consequence of the above remark, the present theory is not an existence result,
but only a sufficiency condition. Notice however that Lévine [9] has proved the existence
of a value to such a game. If it were possible to prove that this value is measurable on
(x,Q), this would provide the existence result, since then (13) to (16) become necessary
conditions.

6. We have programmed this algorithm for the Rabbit and Hunter game, with l = 2 and
ν ≥ T . Great care must be taken in doing so, among others in the discretization and
approximation process for probability laws, in the linear programming, in the fixed point
algorithm, etc. Due to the great size of the state space, we could only check the overall
algorithm for very small values of N and T . We did get existence of the fixed point for
several of the cases checked. (See [12] for more details). But more numerical experience is
still needed.
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2.3 Safe strategies in the all imperfect information case

We can now use an idea of Kumar and van Schuppen [4] to propose an equilibrium
concept in the case where both players have different, imperfect information on the state,
and no knowledge of the opponent’s control. Assume therefore that R has again an infor-
mation of the form (6), and H has a symmetric information, say

ηt = kt(xt, ζt)

where ζt is a white sequence of known statistics.

The concept of “safe” strategies calls for both players to behave in a worst case
hypothesis. Thus, R’s problem would be

min
φ

max
{qt}

E(J |Y)

where {qt} ranges over all possible stochastic processes of mixed strategies forH. Of course,
H’s problem would be the symmetric one. Letting the process {qt(ω)} be arbitrary in the
max above is equivalent to assuming that H has all the information he wishes to make his
choice of control, i.e. precisely the information structure assumed in the previous section.
Therefore, the solution of this problem is that given above for R, and the symmetric one
for H. And as pointed out in [4], by playing that way, both players have a lower bound on
how well they will do.
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Dauphine (1984).
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