Tsduw, 1973

Of THE EVALUATION OF WORST CASE DESIGN
WITH AN APPLICATION TO
THE QUADRATIC SYNTHESIS TECHNIQUE

Pilerre BERNHARD
Mattre de Recherches
Centre d'Automatique
de 1'Ecole Nationale Supériecure des Mines
FONTAINEBLEAU PRANCE

ABSTRACT

4 general philosophy for evaluating worst case
design is proposed. It is applied to the linear
quadratic problem, which requires some assumptions
on the energy available to Nature. The sensivity
of the results to that arbitrary parameter is
obtained, thus providing a complete tool for the
evaluation of the two design teehmique : stochastic
optimal control, vs worst case control,

INTRODUCTION

Worst case design has early been identified as the
potentially moat interesting application of
dyramical games theory, E'aﬂy work in that
direction may be found in and %/ | and in other
papers. However, the developpement of these ideas
has alvays been plagued by an apparent paradowe.

It is meaningful to dimenaion a system according to
the results of a worst case design study only if the
Qorresponding, game theoretie, control law i3
implemented, which is usually apparently meaningless
mainly in view of the poor performance indicated by
that theory.

Ve propose, here, what we believe to be the only
constiatent approach to an evaluation of worst-case
control, with an application to the so called
quadratic synthesis techmique. This application is
compiicated by the appearance of a singular game .
This difficulty is resclved through the use of an
iecperimetric type constraint, on the available
adverse energy. The sensitivity of the results to
this arbitrary parameter is obtained in the course
of the solution.

EVALUATION PHILOSGPHY
The control philosopies

Let the controlled system be described by the
equation

2= F(z, u v, t), z {ty, } =z,
tetcR g the time,t,
ceR™ s the state,
ugUVeR™, is the control,
veVe R™ {5 a perturbation.

18 tnittal time,

4 real functiomnal of the trajectory, J (x, , t, §
ulv), v )is given, whereyy. and y¢.) represent
the control and perturbation histories, chosen among
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gtven families of admiaible functions.

The "elassical' approach to the minimization of J

in the presence of the unknown perturbation v is to
make some statistical assumptions om v, and then to
minimize the expectation EfJ} . It leads to a
control lawu =4° (%) and to a value ¥° = Ef

J (U (<Ja v () }} The approach of "worst case
design, on the contrary, seeks toc make no asswmption
on v. The <dea is to find a control law u*(x)
ensuring .

Iyt w?(,000) sV e b )= I(m .t su*(a),0%(0) ),

with, of course, as low a V*®*as possible. Therefore
u* should be chosen according to

min  mazx
uls) vf.)

Tl b sul-J,wi) ) = v *(x,‘,to).
Assuming that Nature is blind, and must, therefore,
chose {to comtrol law apriori gilm.gto replace this
by the more favourable value V*':

5 suf ), o~ = y¥r
n(rga(:.)!:f(,?::)J(mo,to,u( Lyui(=) )= v .(xo,to)sV (mo,toi

To avoid going into that discuseion, which is not
our topic here, we shall assume that J has a saddle
potnt in uf.},vf) so that V%= v |

The second control law has a very desirable feature
of "security” since we know an absoiute upper bound
to the cost J ineurred, with no risk of beeing
fooled by a gross error in estimating the
perturbation's statisties. Of course, one has

V* » V°, and posstbly much larger. However,
discarding worst case comtrol on these grounds makes
no sense whatsoever, since completely different
assumptions were made on v in. computips Veand V"
making their eomparison meaningless.

The evaluation

It is not the role of the control theoretist to
decide how mich seeurity is worth, against
expectation of returns. He should only provide the
designer with a complete tocl on which to base a
deeision. This tool should state what is the gain on
one hand, and what iz the "price" paid for it on the

"Superior mumbers vefer to similarly—mumbered reference at the end of this paper. i




other hand

Tha gain i{n security can be measured by comparing
V®against v .

+ - J ..0 . x
14 (xo’to)_vr?fz'j: (xo,to,u( Jyvie )V (@4t ),

where the maximization is to be performed over the
same set of adnissible periurbations as in the
computation of v* making the eompariscn meaningg‘ul.
V¥ represents the '"risk" taken in implementing u”,

Similarily, the price pgid for the security can be
measured by comparing against vl

1
v (.:co_,to): E{J(:no, tiu *o ) i) )})Vof:ro,to)

where the expectaction is to be taken wiih the same
hypothesis on the a pricnt probabilitiecs of v as in
the computation of V again making the comparison
meaningful. In particular, it is V¥ which mist be
used in economic caleulations about the '
implementation of u*, and not the overly pessimistio
value v,

(ne could suggest to make the evaluation in terms of
a risk coefficie?tlﬁzfv*— v/ V™nd a "loss"
coefficient A =(yi= /P, While these are only one
posstbility, as regard the emact quantities to be
taken into account (ome could also conaider the
ratio of the larger value, ete...,), the Important
elatm. ia that only these comparisons, ¥*tvs v¥

and v3 are meaningful. In particular, although
one will have, in general :

P ev® evt,

the comparicon between the first two and the last
two figures is most often of no signification.

QUADRATIC SYNTHESIS

The lingar quadratic problem

Even the classieal {e theoretically solved only in
the so called linear quadratic-gaussian case,
deseribed By the equations :

=Rt )wg Bithu + D(t)v, Efo(t)v’ (vl =C, (805 (t-0).
- T
= &' e+ [l (0)Q08)n(t)n (DR 4
4

Here, the accent means transposition.d, (), E(t)
are given symmetric matrices, with B (¢)> 0 Vt.
We assume, here, that the state is available to
the controller (Thus avoiding a major problem in
worst case design)

We shall therefore limit cur investigation to this
family of problems. It te known to be of both
practical and theoretical interest. The solution
of the optimal stochastic comtrol problem (the
classical approach) is given by the following set
of equations :

W(z)= ~ RG'Ee, P (2t ! Pt )+t ),

where P(t) and p(t) are given by (see P.FAURKE (2))

P (T}

]
o
-

P+ PF + P'P-PerR 4GP+ 0= 0

p(T)

1
i

prerfec, p']=o0

However, one carmot solve the game problem

min  max I (x_,E ul-}, v {-))

ut)  o(y o e
because 1t is singular in v. By using arbitrariily
large perturbaticns, Nature cqn make the cost
arbitrarily large tco. We shall therefore be obliged
to make some further assumptions on ¥ to rule out
this possibility.

The energy constrained problem

Among the various assumpiions that could be made to
restrict the use of too large v's by Natura, the
most natural and convenient, in the present
framework, is to define the emergy used as

2
& :ﬁ'(t)srt)v(tj dt,  S(t)s0 ¥t
t.

and to impose a limit on how much energy the
perturbation can force into the system : &< &, _
Clearly, the "optimal" solution for v will yield
& &, eince energy used is "free" although
constratned.

By adding a new state variable Z g obeying the
equation

Ty =V SV, x,m(to) = -E..,, T, (Fl=0,

one can easily check that the solution of the
constratned game e the same as the solution of
the unconstrained game with augmented cogt

T
d= &' (T) Awx (T) +_£(:c'éir+u'1?u—). v'Sp} dt

wheredis a constant parameter to be adjusted so
that & & . This solution is given by the following
set of equations (see (3/)

w=-8-4%4G'"T2, v :g $4p1 T,
= 13
Vit =l Tt e+ A8,
[T o rP+r'm- RGR -G T 3105 40"+ g= 0, M(T)= 4

Evaluation of &, to adjust ), may be performed
directly, by use of the expression for v , but this
obliges to compute the trajectory z(t) at each
iteration, or indirectly through the use of the
Formula,

g = x’o ﬂ(to) x,

Where M(t) can be corputed together with T(t)
through the equation

M (F=GR =Ygy +{.Ds ~prm + (PG

+'§DS"D'TT)’M Sosslomr =0 v () =0
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We have, this way, obtained a sensible treatment
of the problem at hand in a worst case sense.
Further discussion of the restriction tmpoged on
U, its meaning and the sensivity of the results
to B:,l, will be given in another raragraph.

Evaluation of vl and v*

The same techniques as used pz_fz'eviously allow us
to compute the expected cost V' under control u*
and the "rigk" coat V' under control u°.

VJ ig

(éi;ir’ectly obtatned through the formula
(see )

V1= x’o L(toixo + l(to)

where L{t) and 1(t) are given by
LHL(F_GR G+ (4G G ) TagtcR =16 ypee= 0 [ (7)=a

1+ tn(TDC 0" )= 0 1(T)=0

V' s obtained as the solution of a elaseieal linear
quadractic mazimization problem dealing with the
igoperimetric constraint as in the game problem.

z = (P-GR-¥G'E) x+ Do,
maz J:x’(T)Ax(THf&c'(Q+ER"1G'PJ.L‘-/|U’SUJ dt,
&,

wher'e/o 18 @ Scalar constant to be chosen sc that
m + This problem is solved by classical formulas

32

F _ A4 -Anr +_.r
7 SRS,V =z’ Kt )z + p 8,

R (F~GRAG'E) "RaK (F-GR 121D} f—{ KDS4p'x

+ Q+PGR-YG'P=0, (7}=4,

and again,gmay be computed either directly or
through a formuila

zzx’ Nt ) =x
[} o 2

where N(t) may be computed together with k(t)
through the equation

N+ (F-GR G (T + {'_fps ID ) N F-GR G 'rr+f-fos 151
A

+PKDS Motk = o

N(T)= )

similar to that for M. The computation of K may

be numerically diffioult. A beitng positive while we
seek to maximise J, for some values of‘,o,ﬁ(t) will
cease to be positive and the Riccati equation will
diverge. However this would yield infinite energies
hence a srall  enough value of pextsts that sends
the eonjugate point back in the past farther than
t, » and leads to the solution of cur problem,

Discussion, sensitivity

351

We want to discuss further the restriction
imposed on v. First, notice that we rematn
consistent in thut the same assumption is used in
the computation of V¥* and V1,

The ehoice of § may be rather arbitrary. However,

in many cases, a quadratie form of v has the
property of being the physical energy of the
perturbation. Then, whe have a good basis on

which to found our ehodce, and also g feeling

of what energy is allowable. In that case, the
choice of S is less arbitrary than that of ¢

in many instances. In other cases it_ifill offen be
Found that a geod choiee for S ds O °. This leads
to a dimensionless emergy , which be similar to

a likelthood coefficient of the realization v(t)
with the previously assumed statisties. Although

a likelihood coefficient te known to have wo meaning
for a continuousphite noisa, & will be found to be
exqetly that in the diseretized form of the problem,
hence in any digital treatment of Zt. Our restriction
amounts, then, to forbidding exceedingly unlikely
realization of v(t) (or vather of a sequence of
finite incremente of tne generating brownian motion
b(t) such that db(t)=v(tict.This can compensate for
the physical nonsense there often i3 in assuming
gausstan distributions with arbitrary large potenttal
realizations. In that case again, the choiee of & is
Mot more arbitrary than that of C,,.

We must also discuss the choice of the Zeveliehosen,
vhich aluays appear as an arbitrary parameter, Of
course, the problem can be treated with parious
values of& which is aluays dome in practice since

we have to iterate until we find the right values
of dandp . It is therefore advisable to retain qll
intermediary results in the iteration. But more
interesting is the faet that) and pthemselves are

the very sensitivities of the results to the
arbitrary pammeteré'm.

v vt

L. k8.,

as 15 eastly scen from the fact that ) andd/;ar*e
the adjoint variables associated to the added state
variable.

A
Unfortunately, 3Y /3{123 not as easily obtained.
More eloborate caleulations can be made leading
to WA and to & fdthe last being helpful in the
iteration. (Although mumerical examples treated so
far indicate no need for it).

CONCLUSION

Ve have seen how to evaluate tuo control philosophies
in terms of expected cost and pisk. This applies to
the linear quadratic problem, and translates there
into a set of differential equations readily
integrable, although some iterations are needed.

This application requires that an energy level be
Flaed rather arbitrarily. However, the same
eomputational technique yields sensitivity of the
results to the level chogen.



It seems that this evaluation of risk, and
compartson with worst case design should be made
in many applications of (stochastie) optimal
control where large excursions away Ffrom the
vominal ecan cause catastrophic failure.

4 numerical example is being worked out. Resulte
are not yet all gqvailable, but will be in the
near future,
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