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Abstract

This is yet another step in the continuing attempt to perfect the parallel between
stochastic control and min-max control using the concept of feared value as the parallel
to expected value. The (modest) contribution of this short paper is twofold: on the one
hand clarify the role of the integral part of the cost in that parallel, on the other hand
extend the parallel to the continuous time case as much as possible.

1 Introduction

This to be considered as another interim report in the continuing attempt to perfect the
parallel between stochastic control and minimax control, using the concept of cost measure
and feared value as the parallel to probability measures and expected value.

The concept of cost measure has been introduced by various authors working on the
concept of (max-plus) algebra, or idempotent algebra. A bibliography can be found in [3].
The concept of feared value can obviously be found in these papers, but it seems that we
were the first to emphasize it as the main tool to investigate minimax control, giving it the
name we use here, in [2]. In [3], we have succeeded in giving a completely parallel treatment
of stochastic and minimax control of discrete time systems with imperfect information, up
to the point where essentially the same separation principle, with the same proof, applies to
both. However, this good parallel was obtained at the expense of restricting the performance
index to a purely terminal one. Although we know that there is no lack of generality in doing
so, yet it would be nicer to extend the parallel to the case with a runing cost, or integral cost,
added to the terminal cost. This is what we do here.

In a second part, we try to see what can be extended to the continuous time case. The
parallel is there imperfect, and there are good reasons for that. Yet something can be done,
and this is what we investigate in the second part.

2 Discrete time

2.1 The system

Let a discrete time partially observed disturbed control system be given by

xt+1 = ft(xt, ut, wt) , (1)

yt = ht(xt, wt) , (2)
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where xt ∈ Rn is the state vector at time t, ut is the control vector at time t, to be chosen
within a set U ⊂ Rm, wt ∈ Rl is a disturbance vector at time t, may be constrained to belong
to a set W, and yt ∈ Y ⊂ Rp is the observed output at time t.

We shall write u ∈ U for the time sequence {ut}t∈[0,T−1] ∈ UT (The upper index T is
indeed a cartesian power, as it should, and contrary to the notations we introduce next and
use in the rest of the paper) and similarly for w ∈ W and y ∈ Y .

We shall need partial sequences defined as follows:

ut = (u0, u1, . . . , ut) ,

and similarly for all time sequences. (as a consequence, u = u[T−1].) We shall let ut ∈ Ut 1,
wt ∈ Wt, yt ∈ Yt.

As in our previous two papers on that topic, we let ω = (x0,w) denote the disturbations
a priori unknown to the controller, and let ω ∈ Ω = Rn ×WT+1. We also use ωt = (x0, w

t) ∈
Ωt = Rn ×Wt.

The problem shall always be to choose a control sequence to achieve a certain goal, based
on the knowledge of the noise corrupted output. And of course, the controller shall have to
be causal, but with perfect recall: no past information is forgotten at any time. We shall
even restrict it to be strictly causal. Thus an admissible strategy will be a sequence of maps
{µt : Ut−1 × Yt−1 → U}t∈[0,T−1] defining the control sequence through

ut = µt(u
t−1, yt−1) .

We shall let M denote the class of such admissible strategies.
To any admissible strategy and any ω ∈ Ω corresponds a unique trajectory x and a unique

control sequence u. So that, although this is an abuse of notations, we shall write such things
as φT (µ, ω) where what we mean is the final state on the trajectory generated by that µ and
ω.

2.2 The stochastic problem

In stochastic control, it is assumed that Ω is endowed with a (known) probability distribution.
Usually, we assume that x0 and w are independant, and moreover that w is a white process,
so that the probability on Ω is entirely specified by a probability density P0 over Rn governing
x0, and a set of probability densities Πt, t = 0, . . . , T over W governing the wt’s.

The mathematical expectation of any function ψ(ω) is thus

Eψ =

∫
Ω
ψ(x0, w0, w1, . . . , wT−1)P0(x0)Π0(w0)Π1(w1) · · ·ΠT−1(wT−1)dx0 dw0 dw1 . . . dwT−1 .

In [3], we considered a performance index

J(u, ω) =M(xT ) =M ◦ φT (u, ω) .

Here, we wish to find the minimax parallel of the case where an integral cost is added. Let
therefore

J(u, ω) =M(xT ) +

T−1∑
t=0

Lt(xt, ut, wt) . (3)

1It is here that our notations are inconsistent, since U t therefore stands for the cartesian power t+ 1 of U.
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The problem we shall consider is to minimize

G(µ) = EJ(µ, ω) .

However, we shall not repete the classical theory, as can be found in [3], with this aug-
mented performance index. It is well known that it just results in a term +Lt being added to
the right hand side of Bellman’s equation, be it in the state feedback theory, or in the partial
information theory.

We only write here these two Bellman’s equations, using the same notations as in [3]:
We first introduce the full information Bellman return function Vt defined by the classical

dynamic programming recursion :

∀x ∈ Rn, VT (x) = M(x) , (4)

∀t ∈ [0, T − 1] , ∀x ∈ Rn , Vt(x) = inf
u
EΓt
w [Vt+1(ft(x, u, w)) + Lt(x, u, w)] . (5)

The infimum of the performance index G(φ) is EP0
x V0(x) (where we recall that the probability

density P0 of x0 is a data). Furthermore, if the minimum is reached for all (t, x) in (5), then
the argument φ∗

t (x) of the minimum is an optimal state feedback strategy.
In the partial information case, the Bellman return function U is a function of the condi-

tional cost probability density Pt ∈ Pt, itself obtained through a non linear recursive filter of
the form

Pt+1 = Ft(Pt, ut, yt) (6)

initialized at P0. Together with Πt, it generates through (2) an “a priori” probability density
∆t on the output to come yt. Then the sequence {Ut} is obtained by the recurrence relation

∀P ∈ PT , UT (P ) = EP
xM(x) , (7)

∀t ∈ [0, T − 1] , ∀P ∈ Pt , Ut(P ) = inf
u
E∆t
y Ut+1(Ft(P, u, y)) + EP,Πt

x,w Lt(x, u, w) . (8)

We can state the following theorem:

Theorem 1 If there exists a sequence of functions {Ut} from Pt into R satisfying equations
(7)(8), then the optimal cost is U0(P0).

Moreover, assume that the minimum in u is attained in (8) above at u = µ̂t(P ). Then (6)
and

ut = µ̂t(Pt) (9)

define an optimal controller for the stochastic control problem.

2.3 The minimax problem

We now turn our attention to the minimax case. Now, Ω is assumed to be endowed with a cost
measure governing the decision variable ω. We still assume that x0 and w are independant,
and that w is a white sequence, so that the cost measure is entirely specified by a cost density
Q0 over Rn governing x0, and a sequence of cost densities {Γt} over W governing the wt’s.
And the mathematical fear of any function ψ(ω) is defined as

Fψ = max
ω

[ψ(ω) +Q(x0) +

T−1∑
t=0

Γt(wt)]
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Remember also that cost densities are always normalized with their maximum at zero.
We shall assume that all functions we use are upper semi continuous, and that the maxima
are well defined. (For instance, the cost densities might have a compact support.)

We know that in the parallel we exploit, the algebra (+,×) is to be replaced by the algebra
(max,+). Therefore, the natural equivalent to the performance index (3) is now

J(u, ω) = max{M(xT ) , max
t
Lt(xt, ut, wt)} . (10)

Of course, exactly as in the previous case, there is no real need to distinguish between the
notations M and LT . It is however convenient to keep this parallel with the continuous time
case.

As a consequence, the problem we consider is to minimize over M

H(µ) = FJ(µ, ω) . (11)

2.3.1 Perfect information

Let us first consider the simpler problem where the controller (choosing u) has access to
the exact state, and therefore may control in state feedback. We have an (extended) Isaacs
equation:

∀x ∈ Rn , VT (x) = M(x) , (12)

∀t ∈ [0, T − 1] , ∀x ∈ Rn , Vt(x) = inf
u
FΓt
w max{Vt+1(ft(x, u, w)), Lt(x, u, w)} . (13)

We may state the following theorem

Theorem 2 If the backwards recursion (12),(13) generates a bounded Value function V , then,
the infimum of the problem (11) is given by FV0(x0) (recall that the initial state cost density
Q0 is given). Moreover, if the minimum in u is reached at φ∗(t, x) in (13), then this is an
optimal state feedback strategy.

We shall sketch the proof which is straightforward. It is worthwhile, however, to point
out the following fact. We are interested in

Fx0FwJ(u, ω) = max
x0

max
w0...wT−1

[
J(u, ω) +

T−1∑
k=0

Γk(wk) +Q0(x0)
]
.

For the sake of simplicity, let us write LT (x, u, w) for M(x). The above expression involves
the quantity FwJ which can be expanded into

FwJ = max
w0...wT−1

max
t

[
Lt(xt, ut, wt) +

T−1∑
k=0

Γk(wk)
]

Now, this is equal to the same expression where we limit the summation sign to t instead of
T − 1:

Proposition 1

FwJ = max
w0...wT−1

max
t

[
Lt(xt, ut, wt) +

t∑
k=0

Γk(wk)
]
.
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As a matter of fact, the Γk’s are always non positive. Therefore,

max
t

[
Lt(xt, ut, wt) +

t∑
k=0

Γk(wk)
]
≥ max

t

[
Lt(xt, ut, wt) +

T−1∑
k=0

Γk(wk)
]

(14)

But assume that for a sequence w and a time t̂,

Lt̂(xt̂, ut̂, wt̂) +

t̂∑
k=0

Γk(wk) > max
t

[
Lt(xt, ut, wt) +

T−1∑
k=0

Γk(wk)
]

(15)

Pick the same sub-sequence {wk} up to k = t̂, and for k > t̂ pick wk such that Γk(wk) = 0.
The state trajectory up to t̂ is unchanged. Moreover, for that sequence,

Lt̂(xt̂, ut̂, wt̂) +
T−1∑
k=0

Γk(wk) = Lt̂(xt̂, ut̂, wt̂) +
t̂∑

k=0

Γk(wk)

so that, necessarily

max
t

[
Lt(xt, ut, wt) +

T−1∑
k=0

Γk(wk)
]
≥ Lt̂(xt̂, ut̂, wt̂) +

t̂∑
k=0

Γk(wk)

contradicting the assumption (15). Therefore, we have

∀t, Lt(xt, ut, wt) +
t∑

k=0

Γk(wk) ≤ max
t

[
Lt(xt, ut, wt) +

T−1∑
k=0

Γk(wk)
]
,

which together with (14) yields the proposition.
Let us sketch the proof of the theorem. Let u be a fixed control sequence, and assume

that at each instant of time, wt coincides with the maximizing one in the Fw operation of
(13). According to (13), we have along the trajectory x thus generated

V0(x0) ≤ max{V1(x1) , L0(x0, u0, w0)}+ Γ0(w0)

= max{V1(x1) + Γ0(w0) , L0(x0, u0, w0) + Γ0(w0)} .

Use the same relation written between t = 1 and t + 1 = 2 to substitute for V1 in the rhs
above. It comes

V0(x0) ≤ max{V2(x2) + Γ1(w1) + Γ0(w0) ,

L1(x1, u1, w1) + Γ1(w1) + Γ0(w0) , L0(x0, u0, w0) + Γ0(w0)} ,

and so on recursively. (We have freely moved an added term to a max inside the max operator,
and collapsed max{max{. . .}, . . .} into a single max operation, thus using the properties of
linearity and associativity of the (max,+) algebra.) In the end, we end up with

V0(x0) ≤ max
t

[
Lt(xt, ut, wt) +

t∑
k=0

Γk(wk)
]
,
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with LT (x, u, w) =M(x) using (12). Use the proposition to conclude that a fortiori

V0(x0) ≤ FwJ(x0,u,w) . (16)

But if ut is chosen minimizing the r.h.s of (13), the ≤ signs above are all replaced by =
signs, showing that that strategy yields V0(x0) = J(x0,u,w) for the sequence w generated
by the above procedure.

There remains to assume that u keeps using that state feedback strategy and chosing an
arbitrary sequence w to have the opposite inequality signs in the above calculations, that
reduce to equal signs if w choses the maximizing one, to conclude that indeed

V0(x0) = FwJ(x0, φ
∗,w) ,

which, together with (16), concludes the proof upon taking the mathematical fear with respect
to x0 of both sides.

2.3.2 Imperfect information

We now turn to the case where the minimizer only knows the output (2). The solution
follows that proposed in [3] with the same modification as above. That is, we introduce the
conditional state cost density Qt ∈ Q in identically the same fashion as in [3]. It can be
computed recursively through an equation of the form

Qt+1 = Gt(Qt, ut, yt) . (17)

This state cost density, together with the cost density Γt of wt, induces through (2) a cost
density Λt on yt.

Then we introduce a dynamic programming recursion for a cost function Ut(Qt):

∀Q ∈ Q , UT (Q) = FQ
xM(x) , (18)

∀t ∈ [0, T − 1], ∀Q ∈ Q , Ut(Q) = inf
u
max

{
FΛt
y Ut+1(Gt(Q, u, y)) , FQ,Γt

x,w Lt(x, u, w)
}
.(19)

The theorem is as expected:

Theorem 3 If the recursion (18),(19) defines a sequence of functions {Ut} from Q to R,
then the optimal partial information cost is U0(Q0). Moreover, if the min is attained in (19)
for every (t, P ) ∈ [0, T − 1]× P, this together with (17) initialized at Q0, defines an optimal
control strategy for problem (10),(11).

The proof relies as in [3] on the fact that, writing Qt+1[y] for Gt(Qt, u, y), one has for any
function ψ

FΛt
y FQt+1[y]

x ψ(x) = FQt,Γt
x,w ψ(ft(x, u, w)) . (20)

Fix a control sequence u, and assume any control sequence w. It generates a sequence
{Qt}. Equation (19) written at time T − 1 yields

UT−1(QT−1) ≤ max
{
FΛT−1
y UT (QT ) , F

QT−1,ΓT−1
x,w LT−1(x, uT−1, w)

}
.

Use (18) to substitute in the first term of the r.h.s. above, and make use of (20). It reads

FΛT−1
y UT (QT ) = FΛT−1

y FQT
x M(x) = FQT−1,ΓT−1

x,w M(fT−1(x, uT−1, w)) .
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By (max,+) linearity, the two symbols FQT−1,ΓT−1
x,w collapse into a single one with the max

inside, and it comes

UT−1(QT−1) ≤ FQT−1,ΓT−1
x,w max{M(xT ) , LT−1(x, uT−1, w)} .

Notice that
FQT−1,ΓT−1
x,w = FQT−1

x FΓT−1
w

so that the right hand side above is again a mathematical fear with respect to x for the cost
density QT−1 = GT−2(QT−2, uT−2, yT−2). So that upon using (19) at time T − 2, (20) will
apply again:

UT−2(QT−2) ≤ FQT−2,ΓT−2
x,v max

{
FQT−1
w max{M(xT ), LT−1(xT−1, uT−1, w)} ,

LT−2(x, uT−2, v)
}
.

One should be carefull that in the formula above, the mathematical fear operations involve
variables x, v, and w, while xT−1 stands for fT−2(x, uT−2, v) and xT for fT−1(xT−1, uT−1, w).
Using also the fact that FvFwψ(v) = Fvψ(v), the last inequality can be written as

UT−2(QT−2) ≤ FQT−2
x FΓT−2,ΓT−1

v,w max
{
M(xT ) , LT−1(xT−1, uT−1, w) , LT−2(xT−2, uT−1, v)

}
.

Proceeding in that fashion down to time 0, it finally comes;

U0(Q0) ≤ FQ0
x0

Fw max
t

{Lt(xt, ut, wt)} = FωJ(u, ω) .

(We have again used the convention LT (x, u, w) =M(x).)
The end of the proof proceeds as previously: check that using the strategy advocated by

the theorem, the inequality signs are all replaced by equality signs, so that indeed, U0(Q0)
is the minimum value. If the infimum is finite but not attained in (19), choose an ε-efficient
strategy, i.e. a strategy that guarantees that we are at most at ε/T of the infimum at each
instant of time. This yields a cost no more than U0(Q0)− ε.

2.3.3 Separation theorem

In this section, we assume for simplicity that Lt does not depend on u. Then the separation
theorem of [3], still holds unchanged, there is no point in stating it again. The proof extends
almost trivially, again thanks to the (max,+) linearity of the mathematical fear operation.
(See the continuous time section for more details).

3 Continuous time

While [2] has a section on continuous time, we chose to forego that problem in [3] because we
were not able to get a nice parallel with the stochastic case. We show here how close we can
get.

The treatment will be in a large extent formal, as questions pertaining to the regularity
of the functions involved are much more delicate here than in the discrete time case, but will
nevertheless be as carelessly ignored as in the discrete time case. We shall make any regularity
assumption we need to make our calculations, as our aim is to exhibit the equations one might
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hope to prove. Finding milder regularity assumptions on the one hand, and a reasonable set of
conditions under which they may be shown to hold on the second hand, is a major undertaking
yet to be begun.

The set of admissible state feedbacks may be chosen in the implicit way we explained in
[1] and admissible closed loop strategies in a similar way.

3.1 The problem

The dynamical system considered is now continuous-time, so that (1) is replaced by

ẋ = ft(x, u, w) , (21)

for the partial information problem, the observation scheme remains as in the discrete time
case (2), the notations u, w stand for the whole time functions over [0, T ].

We shall consider (almost) the same performance index as in the discrete time case:

J(u, ω) = max{M(xT ) , sup
t∈[0,T ]

Lt(xt, ut, wt)} . (22)

The time variable t runs over the continuous time interval [0, T ]. This creates a difficulty
because the control and disturbance variables might be discontinuous at that time. One way
around that difficulty would be to consider the essential supremum. We choose a different
approach. We may consider that the time at which the performance index Lt is evaluated to
define J is part of the choice of the “opponent”, i.e. the disturbance. This is consistent with
the fact that we seek the minumaxω,t Lt. In that case, the maximizer may choose to make
a disontinuity in w at its chosen final time t∗ in order to get a larger income. Thus it will
insure itself a payoff

J = sup
w
Lt∗(xt∗ , ut∗ , w) .

We shall later on somewhat alter that in the precise definition of the “feared” payoff.
To avoid a difficulty with a discontinuity of u, and as the minimizer is not aware of the t∗

the disturbance will choose, we may assume that the control function u is constrained to be
contiunuous from the left (while the disturbance w will be continuous from the right).

We wish now to consider the problem of minimizing

H(µ) = FωJ(µ, ω) .

We must be carefull in the precise definition of the mathematical fear here. It turns out to
be natural to decide that there is an “impulsive cost” Γt(wt) to the disturbance, associated
with the choice of the time instant t∗ when the payoff is juged, and to the choice of the
discontinuity allwed to it at that time. This will be done through the following device: let
FJ be defined as

FωJ(u, ω) = max
ω

[
max{M(xT ), sup

t
[Lt(xt, ut, wt) + Γt(wt)]}+

∫ T

0
Γs(ws) ds

]
. (23)

Alternatively, if we prefer to stick with the definition that

Fwψ(w) = max
w

[
ψ(w) +

∫ T

0
Γs(ws) ds

]
,
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we may decide that the impulsive cost is in the “runing cost”, so that the payoff to be
maximinimized is

L̄t(xt, ut) := FΓt
w Lt(xt, ut, w).

Thus the payoff (23) may also be written as

H(µ) = Fω max{M(xT ) , sup
t∈[0,T ]

L̄t(xt, ut)} , (24)

with the above definition of L̄.
Finally, as in the discrete time case, we may notice that we also have

FωJ(u, ω) = max
ω

max
{
M(xT ) +

∫ T

0
Γs(ws) ds , sup

t

[
L̄t(xt, ut) +

∫ t

0
Γs(ws) ds

]}
.

3.2 The complete information problem

Let us first investigate the complete information problem, where we seek a state feedback
strategy ut = φt(xt). We introduce the related Isaacs equation:

∀x ∈ Rn , VT (x) =M(x) , (25)

∀t ∈ [0, T ] , ∀x ∈ Rn ,

inf
u
FΓt
w max

{
∂Vt(x)

∂t
+
∂Vt(x)

∂x
ft(x, u, w) , Lt(x, u, w)− Vt(x)

}
= 0 .

(26)

We may state the following result:

Theorem 4 If there exists a C1 function (t, x) 7→ Vt(x) satisfying the partial differential
equation (25),(26), then the optimal cost in the full information problem is FV0(x0), and if
the infimum in u in (26) is atained by an admissible state feedback, say φ∗

t (x), it is optimal.

Let us proove that result. We shall write

dVt(x)

dt
:=

∂Vt(x)

∂t
+
∂Vt(x)

∂x
ft(x, u, w) .

Notice first that since F and max commute, the second term in the max of (26) is just
L̄t(x, u)− Vt(x).

Pick an arbitrary control function u, and a fixed x0. Assume moreover that u(t) does
not belong to the minimizing u’s over a time interval [0, τ ]. There are such disturbances that
insure that either dVt/dt + Γt(w) or Lt − Vt is positive. Hence, either L̄0(x0, u0) > V0(x0),
and then a fortiori J > V0(x0), or L̄0(x0, u0) ≤ V0(x0), but then dV/dt+ Γt is positive. And
it will remain nonnegative at least untill L̄t = Vt, or t = T whichever happens first. Let

t̂ = inf{t | L̄t = Vt} ,

assumed first to be less than T . Then, because dV/dt+Γt was positive in a right neighborhood
of 0 and nonnegative untill t̂, we have that

Vt̂(xt̂) +

∫ t̂

0
Γs ds > V0(x0) ,
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and since
Vt̂(xt̂) = L̄t̂(xt̂, ut̂) ,

a fortiori, J+
∫
Γs ds > V0(x0). And if there is no such t̂ < T , then VT (xT )+

∫ T
0 Γt dt > V0(x0),

which, in view of (25) again proves that J +
∫
Γs ds > V0(x0). Hence, if u is not chosen as

minimizing in (26), the augmented payoff obtained for some disturbances is larger than V0(x0).
Taking the mathematical fear also w.r.t. x0 yields a fortiori FJ > FV0(x0).

Assume now that there exists an admissible state feedback strategy φ∗
t (x) that provides

the minu in (26). Then for any disturbance w, both terms in the max of (26) are nonpositive.
Thus, on the one hand

dVt(x)

dt
+ Γt(wt) ≤ 0 ,

so that

∀t ∈ [0, T ] , Vt(xt) +

∫ t

0
Γs(ws) ds ≤ V0(x0)

and in particular in view of (25)

M(xT ) +

∫ T

0
Γs(ws) ds ≤ V0(x0)

and on the other hand,
∀t ∈ [0, T ] , L̄t(xt, ut) ≤ Vt(xt) ,

so that using the previous result

∀t ∈ [0, T ] , L̄t(xt, ut) +

∫ t

0
Γs(ws) ds ≤ V0(x0) .

Therefore, it follows that, even taking the worst disturbance,

FwJ(x0, φ
∗,w) ≤ V0(x0) .

Now, for the worst disturbance at each instant of time either dV/dt = 0 or Lt = Vt, both
remaining non positive. If these two functions are measurable in t, this defines time intervals
over which one of these two situations prevails: either Lt = Vt and Vt +

∫
Γs ds is nonin-

creasing, therefore so is Lt +
∫
Γs ds, or Vt +

∫
Γs ds is constant, while Lt is no more than Vt.

Integrating and using (25) in case Lt remains allways less than Vt yields the fact that then
FwJ(x0, φ

∗,w) = V0(x0), hence FJ(φ∗, ω) = FV0(x0).
Before we close this section, we make a final remark. In section 2.3.1, the equation (13)

can also be written as

inf
u
Fw max{Vt+1(xt+1)− Vt(xt) , Lt(xt, u, w)− Vt(xt)} = 0 ,

or, for that matter, for any “step size” h > 0

inf
u
Fw max

{1

h
[Vt+1(xt+1)− Vt(xt)] , Lt(xt, u, w)− Vt(xt)

}
= 0 ,

so that equation (26), which can be written as

inf
u
Fw max

{dVt(xt)
dt

, Lt(xt, u, w)− Vt(xt)
}
= 0 ,
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should come as no surprise.
The parallel is less perfect with the stochastic case, however, where the performance index

(22) should be replaced by the classical

M(xT ) +

∫ T

0
Lt(xt, ut, wt) dt ,

yielding the classical Bellman equation

inf
u
E
[dVt(xt)

dt
+ Lt(xt, u, w)

]
= 0 .

3.3 Imperfect information

As in the discrete time case, we introduce a conditional state cost density Qt(ξ) and its
dynamics. But this time we need go in some detail concerning the later.

Equations (21) and (2) define maps

xt = φt(u
t, ωt) , and yt = ηt(u

t, ωt) .

We shall also use the time functions restricted to [0,t):

xt = φt(ut, ωt) , and yt = ηt(ut, ωt) .

For any ξ in Rn, we define the sets of conditional compatible disturbances

Ωt[ξ | ut, yt] = {ω ∈ Ω | ηt(ut, ωt) = yt andφt(u
t, ωt) = ξ} .

The conditional worst pas cost is

Wt(ξ) = sup
ω∈Ωt[ξ|ut,yt]

[∫ t

0
Γs(ws) ds+Q0(x0)

]
.

We assume that Wt(·) remains a C1 concave function with a finite maximum, and let

Rt := max
ξ∈Rn

Wt(ξ) and X̂t = {x ∈ Rn |Wt(x) = Rt}

to define finally the conditional state cost density as

Qt(x) =Wt(x)−Rt .

Notice that W0 = Q0, and R0 = 0, so that our notations are consistent.
Define also the sets

Vt(x | y) = {w ∈ W | ht(x,w) = y}

With our assumption that Wt remains a C1 function, it obeys a forward bellman equation:

∂Wt(x)

∂t
= max

w∈Vt(x|y)

[
−∂Wt

∂x
ft(x, ut, w) + Γt(w)

]
.

We may also notice that according to Danskin’s theorem (see[4]), we have

Ṙt = max
x̂∈X̂t

∂Wt

∂t
(x̂)

11



By the definition of X̂, ∂Wt(x̂)/∂x = 0, so that

Ṙt = max
x̂∈X̂t

max
w∈Vt(x̂|y)

Γt(w) (27)

The r.h.s. above is a function of y. It is nonpositive, and obviously has a zero maximum
in y (just pick y = ht(x̂, w̄) with Γt(w̄) = 0). We interpret it as a cost density on y induced
in a particular way by the cost density Qt on x. In that respect, notice that if Q is a cost
density, so is pQ for any positive number p. We would normally write

ΛpQ(y) = max
x

max
w∈V(x|y)

[pQ(x) + Γ(w)]

the cost density on y induced by pQ. According to classical penalization theory, it is easy to
see that the cost density (27) is the limit of the above as p→ ∞. As a consequence, we shall
write it

Λ∞t (y) = max
x̂∈X̂t

max
w∈Vt(x̂|y)

Γt(w)

leaving the Q implicit in the notation. We shall denote F∞
y or F∞Q

y the corresponding math-
ematical fear operator.

It is concievably feasible to follow in real time the evolution of Qt as a function of the
available information according to the nonlinear PDE

∂Qt(x)

∂t
= max

w∈Vt(x|yt)

[
−∂Wt

∂x
ft(x, ut, w) + Γt(w)

]
− Λ∞t (yt) .

Denote
dQt

dt
=

{
x 7→ ∂Qt(x)

∂t

}
we shall write the above PDE as

dQ

dt
= Gt(Q, ut, yt) . (28)

(It is a not-so-simple matter at this time to convince oneself that the arguments in G above
are indeed those on which this derivative depends.)

We are now in a position to state the dynamic programming equation, bearing on a Value
function Ut(Q) from the set Q of cost densities over Rn into R. We assume that Ut(Q) has
both a partial derivative in t and a continuous Frechet derivative in Q in the topology of
pointwise convergence over Q, denoted DQU .

∀Q ∈ Q, UT (Q) = FQM(x) , (29)

∀t ∈ [0, T ] , ∀Q ∈ Q ,

inf
u
max

{
F∞Q
y

[
∂Ut(Q)

∂t
+DQUt(Q)Gt(Q, u, y)

]
, FQ,Γt

x,w Lt(x, u, w)− Ut(Q)
}
= 0 .

(30)

Theorem 5 If for all admissible controls the functions Wt(·) remain C1, and if there exists a
regular enough function (t,Q) 7→ Ut(Q) satisfying (29),(30) above, then the optimal value of
the imperfect information game is U0(Q0). If moreover, the minimum in u is attained in (19)
at µ∗t (Q) and if this, together with (28) initialized at Q0, constitutes an admissible strategy,
then it is optimal.
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Assume that µ∗ exists and is admissible. (It is indeed causal, admissibility pertains to
the existence of solutions to (21) and (28)). Assume we pick ut = µ∗t (Qt) for all t, where of
course Qt is given by (28). Pick a disturbance {wt}, and consider the trajectories {ut}, {xt},
{yt}, and {Qt} generated. We have, on the one hand,

dUt(Qt)

dt
+ Λ∞t (yt) ≤ 0 ,

or, recalling that Λ∞t (yt) = Ṙt, and integrating

∀t ∈ [0, T ] , Ut(Qt) +Rt ≤ U0(Q0) . (31)

In particular, for t = T , and taking (29) into account,

max
x

[M(x) +QT (x)] +RT ≤ U0(Q0) .

Now, recall that, by definition,

Qt(x) +Rt =Wt(x) = max
ω

[∫ t

0
Γs(ws) ds+Q0(x0) | φt(u, ω) = x , ηt(u, ω) = yt

]
.

Therefore, whatever the actual xT , we conclude that

M(xT ) +

∫ T

0
Γs(ws) ds+Q0(x0) ≤ U0(Q0) . (32)

On the second hand, we have

∀t ∈ [0, T ] , FQt,Γt
x,w Lt(x, ut, w) ≤ Ut(Qt) .

Together with (31), this yields

∀t ∈ [0, T ] , L̄t(xt, ut) +Qt(xt) +Rt ≤ U0(Q0) .

Hence, and for every ω ∈ Ω,

sup
t∈[0,T ]

{
L̄t(xt, ut) +

∫ t

0
Γs(ws) ds+Q0(x0)

}
≤ U0(Q0) .

As previously, this is easily seen to be equivalent to

∀ω ∈ Ω , sup
t
L̄t(xt, ut) +

∫ T

0
Γs(ws) ds+Q0(x0) ≤ U0(Q0) . (33)

Now, (32) and (33) together show that, upon playing according to µ∗, the controller insures
that

FJ(µ∗, ω) ≤ U0(Q0) .

Fix now an u and an ω such that for an open interval of time (0, τ), ut does not belong
to the argmax in (30) with Qt for Q. Then either

L̄0(x0, u0) +Q0(x0) > U0(Q0) ,
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and this is enough to ascertain that

FJ(u, ω) > U0(Q0) ,

or L̄0(x0, u0) +Q0(x0) ≤ U0(Q0) but then, for a positive time interval,

dUt(Qt)

dt
+ Ṙt > 0 .

In that case, either d(Ut+Rt)/dt ≥ 0 until t = T , and therefore UT (QT )+RT > U0(Q0), or it

lasts only until a time t̂ when FQt̂
x L̄t̂(x, ut̂) = Ut̂(Qt̂). Let x̄ provide the maxx in FQt̂

x L̄t̂. Notice
that Qt̂(x) is finite only for those x that are compatible with the past information. Therefore,

there exists an ω̄ that yields the same yt̂ and hence the same Qt̂ as the one considered here,

and such that φt̂(u
t̂, ω̄) = x̄. For that ω̄ we have

L̄t̂(xt̂, ut̂) +Q(xt̂) +Rt̂ > U0(Q0) .

Given the definition of Wt̂ = Qt̂ + Rt̂, may be for yet another ω̃ compatible with the same
past information and xt̂ = x̄,

L̄t̂(xt̂, ut̂) +

∫ t̂

0
Γs(w̃s) ds+Q0(x̃0) > U0(Q0) .

In every cases,
FJ(u, ω) > U0(Q0) ,

Hence the result is proved.

3.4 Certainty equivalence

We assume in this section that Lt is independant of u, a rather classical case in such problems.
(This is the case, for instance, for “surveillance problems” where Lt = d(x, Ct) with d the
distance, and Ct a (moving) target in Rn.)

Then, essentially the same certainty equivalence theorem as in [2] holds.
Assume that for every (u, ω) ∈ U × Ω and for evry t ∈ [0, T ], the maximum in

max
x

[Vt(x) +Qt(x)]

is attained at a unique point x̂t in Rn. Then the control

ut = φ∗
t (x̂t) ,

with φ∗
t as in theorem 4, is optimal, and insures a payoff FQ0V0.

As in [2], the proof goes by checking that

Ut(Q) := FQVt

solves the equations (29),(30). It is shown in [2] that

∂Ut(Q)

∂t
=
∂Vt(x̂t)

∂t
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and for a function G(·) from Rn into R,

DQUt(Qt)G = G(x̂t) .

Notice also that
∂Wt(x)

∂t
=
∂Qt(x)

∂t
,

and that thus, recalling the definition of x̂t,

−∂Wt(x̂t)

∂x
=
∂Vt(x̂t)

∂x
.

Checking (30) amounts to looking at

max
{
max
y

[∂Vt(x̂t)
∂t

+max
w|y

(∂Vt(x̂t)
∂x

ft(x̂t, u, w) + Γt(w)− Ṙt(y)
)
+ Λ∞t (y)

]
,

max
x

[L̄t(x) +Qt(x)]−max
x

[Vt(x) +Qt(x)]
}
.

which simplifies into

max
{
max
w

[∂Vt(x̂t)
∂t

+
∂Vt(x̂t)

∂x
ft(x̂t, u, w) + Γt(w)

]
,max

x
[L̄t(x) +Qt(x)]− [Vt(x̂t) +Qt(x̂t)]

}
.

By definition, ut = φ∗
t (x̂t) provides the minimum in the first term of the max operator.

The only new point in the proof has to do with the second element in the max operation of
(30). Just notice that for every x ∈ Rn, L̄t(x) ≤ Vt(x), so that also

L̄t(x) +Qt(x) ≤ Vt(x) +Qt(x) ≤ Vt(x̂t) +Qt(x̂t) .

If L̄t and Vt coincide at x̂t, then

max
x

{L̄t(x) +Qt(x)} = Vt(x̂t) +Qt(x̂t) ,

or alternatively
FQtL̄t = FQtVt

while otherwise, the l.h.s. above is always less than or equal to the r.h.s.
This shows that indeed, as in (26), φ∗

t (x̂t) insures that one of the two terms in the max is
zero, while both are always nonpositive.

References

[1] P. Bernhard: “Differential games, Isaacs’equation”, in M.Singh ed.: Encyclopaedia of
Systems and Control, pp 1010–1017, Pergamon, 1987

[2] P. Bernhard “Expected Value, Feared Value and partial Information optimal Control”, in
G.J.Olsder ed.: New trends in Dynamic Games and Applications, Annals of the Interna-
tional Society of Dynamic Games 3, pp 3–24, Birkhauser, Boston, USA, 1995

[3] P. Bernhard “A Separation Theorem for Expected Value and Feared Value Dicrete Time
Control” COCV, Vol. 1, pp. 191-206, SMAI, http://www.emath.fr/COCV, 1996

[4] P. Bernhard and A. Rapaport: On a Theorem of Danskin with an Application to a
Theorem of Von Neumann-Sion, Non Linear Analysis, Theory, Methods and Applications,
24, pp 1163–1181, Pergamon, 1995

15


