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Abstract

We show how a morphism between the ordinary algebra (+, x) and the
(max, +) algebra offer a completely paprallel treatment of stochastic and
minimax control of disturbed nonlinear systems with partial information.

1 Introduction

Minimax control, or worst case design, as a means of dealing with uncertainty is
an old idea. It has gained a new popularity with the recognition, in 1988, of the
fact that H..-optimal control could be cast into that concept. Although some
work in that direction existed long before (see [8]), this viewpoint has vastly
renewed the topic. See [3] and related work.

Many have tried to extend this work to a nonlinear setup. Most prominent
among them perhaps is the work of Isidori, [15] citeisiast92 but many others
have followed suit : [23] [4] [5] and more recently [18] [19]. This has contributed
to a renewed interest in nonlinear minimax control.

We insist that the viewpoint taken here is squarely that of minimax control,
and not nonlinear Hq,-optimal control. Several reasons for that claim. Fot
one thing, we only consider finite time problems, and therefore do not consider
stability issues which are usually central in H..-optimal control. We dont stress
quadratic loss functions. But more importantly, we claim that the minimax
problem is only an intermediary step in H., theory, used to insure existence of
a fixed point to the feedback equations z = Pxw, w = APz (Pk is the controlled
plant, AP the model uncertainty). In that respect, the nonlinear equivalent is
not the minimax problem usually considered, but rather the contraction problem
independently tackeled by [14].

If we decide that minimax is an alternative to stochastic treatment of dis-
turbances (input uncertainties, rather than plant uncertainties), it makes sense
to try to establish a parallel. In this direction, we have the striking morphism
developed by Quadrat and coworkers, see [21] [2] [1]. We shall review here re-
cent work, mainly by ourselves, Baras, and James, in the light of this parallel,
or Quadrat’s morphism. This paper is in a large extent based upon [7].



2 Quadrat’s morphism

In a series of papers [21] [2] [1], giving credit to other authors for early devel-
opements, Quadrat and coauthors have fully taken advantage of the morphism
introduced between the ordinary algebra (+, x) and the (min,+), or alterna-
tively the (max+), algebra to develop a decision calculus parallel to probability
calculus. It has been pointed out by Quadrat and coauthors that a possible way
of understanding that morphism was through Cramer’s transform. We shall not,
however, develop that way of thinking here, but merely rely on the algebraic
similarity between the two calculus.
Let us briefly review some concepts, based on [1].

2.1 Cost measure

The parallel to a probability measure is a cost measure. Let €2 be a topological
space, A a o-field of subsets, K : A — IR U {—o0} is called a cost measure if it
satisfies the following axioms :

e K(0)=—o0
e K(2)=0
o for any family of (disjoint) elements A,, of A,

K(UA,) =sup K(A,).

(It is straightforward to see that the word “disjoint” can be omitted from
this axiom).

One may notice the parallel with a probability measure. In the first two axioms,
the O of probability measures, the neutral element of the addition, is replaced by
the neutral element of the max operator : —oo, and the 1, the neutral element
of the product, is replaced by the neutral element of the sum, 0. In the third
axiom, the sum of the measures of the disjoint sets is replaced by the max.
The function G : Q — IR U {—oc} is called a cost density of K if we have

VAe A, K(A) =supGw).
weN

One has the following theorem (Akian)

Theorem 1 Fvery cost measure defined on the open sets of a Polish space )
admits a unique mazimal extension to 22, this extension has a density, which
18 a concave u.s.c. function.



2.2 Feared values

The wording Feared values is introduced here to stress the parallel with expected
values.

When a stochastic disturbance is introduced into a problem model, in order
to derive a controller design for instance, it comes with a given probability dis-
tribution. We shall always assume here that these distributions have densities.
Let therefore w € W be a stochastic variable. If its probability disribution is
II(-). Let ¢ be a function of w with values in IR We define its expected value as

E, Y := /1/)(10)1_[(11)) dw

and we omit the subscript w to IE when no ambiguity results. Similarly, let a
disturbance w be given together with a cost distribution I'(-). The feared value
of a function 9 from W into R is defined as

F ¢ = max{y(w) + I'(w)]

which is the formula dual to that of the expected value in Quadrat’s morphism.
The ”Fear” operator enjoys the linearity properties one would exect in the
(max, +) algebra :

IF(max{¢,¢}) = max{IF¢, IFy}
and if A is a constant,
FA+v¢)=A+TFy.
A sequence of stochastic variables {w:}, t =0...T — 1 also denoted Wo, 1]

are said to be independant if their joint probability density is the product of
their individual probability densities II;:

T-1
H(w[07T]) = H Ht(wt)
t=0

leading to the following formula, where J is a function of the whole sequence

T
IEJ(’LU[O,T]) = / J(’LU[O,T]) H Ht (’U_)t) d’w[oﬂ"] .
t=0

In a similar fashion, a sequence of independant decision variables w7 with cost
densities I'; will have a joint cost density I' equal to the sum of their individual
cost densities:

T-1
T(wpo.r) = > Ti(wy)
t=0

leading to the dual formula
T
IFJ (wyo,7y) = max [J(wpo,7) + Y Ti(wy)].

“lo.7] t=0



Conditioning Let a pair of decision variables (v, w) ranging over sets V x W
have a joint cost density r(v, w). We may define the marginal law for v as

p(v) = max r(v, w)
we
for which it is true that the feared value of the characteristic function 1 4(v) of
aset A CV is given by
F1,4 =maxp(v)
'UEV

preserving the duality with the probabilistic formulas

and
IE]lA:/p(v)dv.
\%

Similarily, we have the dual of Bayes formula, defining the conditional cost
measure q(w|v) as

q(wlv) = r(v,w) — p(v)
Let IF}, denote the corresponding feared value, we have the “embeded algebra”
formula:

IF, [IF, ¢ (v, w)] = Fy(v,w) .

We shall often need a less simple form of conditioning such as (with transparent
notations)
Fly(w) [ w € A] = max[y(w) + T'(w)].

weA

which should clearly be seen as the basic conditioning operation.

3 The discrete time control problem

3.1 The problem

We consider a partially observed two input control system

Tit41 = ft(xuuuwt)a (1)
ye = he(xg,wy), (2)

where x; € IR" is the state at time ¢, us € U the (minimizer’s) control, w; € W
the disturbance input, and y; € Y the measured output. We shall call U the
set of input sequences over the time horizon [0,T]: {ut},c( ) usually written
as up,r] € U, and likewise for wyo ) € W. The initial state o € Xo is also
considered part of the disturbance. We shall call w = (29, wjo,]) the combined
disturbance, and 2 = Xy x W the set of disturbances.



The solution of (1) (2) above shall be written as

Ty = ¢t (U[O,T] ) w) )
Y = Ut(U[O,T],W) .

Finally, we shall call u! a partial sequence (ug,u1,...,u;) and U’ the set
of such sequences !, likewise for w® € W* and y* € Y. Also, we write w! =
(zo,w") € QL.

The solution of (1) and (2) may alternatively be written as

Ty = ¢t (utila wtil) ) (3)
Y = (ut_la wt) : (4)
We shall also write
wt — (bt(utfl’ tfl)’ (5)
o= o), (6)

to refer to the partial sequences solution of (1) and (2)

Admissible controllers will be strictly causal output feedbacks of the form
up = pe(u'=1, y'=1). We denote by M the class of such controllers.

A performance index is given. In general, it may be of the form

T-1

J (w0, upo, 1y, wio,17) = M (1) + Z Li(xe, ug, wy) .
t=0

However, we know that, to the expense of increasing the state dimension by one
if necessary, we can always bring it back to a purely terminal payoff of the form

J (20, up, 11, wpo,11) = M (27) = M 0 dpr(Uf0, 77, W) - (7)

The data of a strategy u € M and of a disturbance w € €2 generates through
(1)(2) a unique pair of sequences (uy, 77, wjo, 1) € U x W. Thus, with no
ambiguity, we may also use the abusive notation J(u,w). The aim of the control
is to minimize J, in some sense, “in spite of the unpredictable disturbances”.

We want to compare here two ways of turning this unprecise statement into
a meaningful mathematical problem.

In the first approach, stochastic control, we modelize the unknown distur-
bance as a random variable, more specifically here a random variable xy with
a probability density N(x) and an independant white stochastic process wyo, 1)
of known instantaneous probability distribution II;. (We notice that nothing

Inotice the slight inconsistency in notations, in that our U? is the cartesian (t + 1) power
of U. Other choices of notations have their drawbacks too.



in the sequel prevents II; from depending on x; and u;.) The criterion to be
minimzed is then

H(p) :==EuJ (1, w) . (8)

This can be expanded into

H(p) = /M(wT) <H Ht(wt)> N (&) dwio,) d§

In the second approach, we are given the cost density IV of xg, and the cost
densities T'y of the w;’s. (Again, I’y might depend on z; and w;.) The criterion
to be minimized is then

G(M) = IFWJ(,U’vw) ’ (9)
which can be expanded into
T-1
G() = max[M (1) + Y Te(we) + N(zo)]
t=0

Remark If all cost measures of the disturbances are taken constant, (e.g. 0),
then G(u) is, if it exists, the guaranteed value given only the sets over which
the perturbations range. Therefore, minimizing it is insuring the best possible
guaranteed value.

3.2 Dynamic programming
3.2.1 Stochastic dynamic programming

We quickly recall here for reference purpouses the classical solution of the
stochastic problem via dynamic programming. One has to introduce the condi-
tional state probability measure, and, assuming it is absolutely continuous with
respect to the Lebesgue measure, its density W. Let, thus, Wi(x)dz be the
conditional probability measure of x; given y’~!, or a priori state probability
distribution at time ¢, and W;'(x) dz be the conditional state distribution given
y'~! and given that y; = 1), or a posteriori state probability distribution at time
t.

Clearly, W; is a function only of past measurements. As a matter of fact,
we can give the filter that lets one compute it. Starting from

Wo(z) = N(z) (10)

at each step, W' can be obtained by Bayes rule. A standard condition for
this step to be well posed is that, for all (¢,z,w), the map w +— h(x,w) be
locally onto, and more specifically that the partial derivative Oh:(x, w)/dw be
invertible. It suffices here to notice that, because the information is increasing,



(the information algebras are nested), we have, for any test function ¢(-) €
LY(R"),

E, /w(ac)Wty(ac) dx = /’L/J(.T)Wt(l') dx . (11)

Then Wy, is obtained by propagating W/* through the dynamics. It suffices
for our purpouse to define this propagation by the dual operator: for any test
function 1,

/Q/J(x)WHl(ac) der = /Eww(ft(x,ut,w))Wty" (x)dx. (12)

The above expression shows the dependance of the sequence {W;} on the control
ufo,7) and the observation sequence yjo, 7). Let this define the function F; as

Wipr = Fy(We, ue, ye) - (13)

Let W be the set of all possible such functions W;.
Via a standard dynamic programming argument, we can check that the
Bellman return function U is obtained by the recurrence relation

YW eW, Urp(W)

/M(ac)W(x) dx , (14)
YW S W, Ut(W) = II;f IEyUt+1 (Ft(W, U,y)) . (15)

Moreover, assume that the minimum in v is attained in (15) above at u = fi (W).
Then (13) and

up = (W) (16)

define an optimal controller for the stochastic control problem. The optimal
cost is Up(N).

3.2.2 Minimax dynamic programming

Let us consider now the problem of minimizing G(x). We have to introduce
the conditional state cost measure and its cost density W (according to the
concepts introduced in section 2.1 following [1]). It is defined as the maximum
possible past cost knowing the past information, as a function of current state.
To be more precise, let us introduce the following subsets of 2. Given a pair
(ut,y') € Ut x Y, and a subset A of R", let

QA |u'y) ={weQly =9 "), and g1 (u’,0’) € A} (17)

For any x € IR", we shall write Q;(x | u?, y?), or simply Q;(z) when no ambiguity
results, for Q;({z} | ut,y*). And likewise for Q;_1(z).



The conditional cost measure of A is sup,cq, ,(4)[V(z0) + '(wp,77)], and
hence the conditional cost density function is

T-1
Wi(z) = sup [Z Ly(we) + N(xo)] :

weQ—1(x) t=0

Initialize this sequence with

It is a simple matter to write recursive equations of the form
Wi = Ft(Wtaut; yt)-
In fact, F} is defined by the following. Let for ease of notations

Zt(z | uay) = {(5,1}) € IR" x W | ft(gvuav) =, h’t(gauvv) = y}v

then we have
Wi (z) = sup  [Wi(§) +Te(v)]. (18)
(&)L (xlus,yr)
It is worthwhile to notice that, for any function (), (such that the max
exists)

InZaX[Wt+1($) +(x)] =Fy, max  [Wi(x) + P (fe(x, us, wy))]

z|hy (z,we )=y

and that hence

ma (W () + ()] = max W, (Wi (2) + (ol u, w)]
the counterparts of (12) and (11) above.

As was probably first shown in [20], (also presented in a talk in Santa Barbara
in july 1993), one can do simple dynamic programming in terms of this function
W. The value function U will now be obtained through the following relation

YW ew, Upr(W) = sup(M(z)+ W(x)), (19)
YW ew, UW) = igf sup Up 1 (Fr(W,u,y)) . (20)

Moreover, assume that the minimum in u is attained in (20) above at u = ().
Then it defines an optimal feedback (16), with W, now defined by (18), for the
minimax control problem. The optimal cost is Uy(N).

Of course, all our set up has been arranged so as to stress the parallel between
(14),(15) on the one hand, and (19),(20) on the other hand.



3.3 Separation theorem
3.3.1 Stochastic separation theorem

We are here in the stochastic setup. The performance criterion is H and W
stands for the conditional state probability density.

We introduce the full information Bellman return function V; defined by the
classical dynamic programming recursion :

Ve e R", Vp(x)=M(x),
Ve e R", Vi(z)= iﬂfIEthtH(ft(xvuawt)) :
Then we can state the following result.
Proposition 1 Let
Si(z,u) == By, Vit (fe(z,u,wp)) We(z) .

If there exists a (decreasing) sequence of (positive) numbers Ry with Rp = 0
such that,

vt € [0,T — 1], Vujo, 1) € U,Vw € Q,

/min Si(z,u) dr + Ry = min / Si(z,u)de + Ryqq,

then the optimal control is obtained by minimizing the conditional expectation
of the full information Bellman return function, i.e. choosing a minimizing u
in the right hand side above.

Proof The proof relies on the following fact :

Lemma 1 Under the hypothesis of the proposition, the function
(W) = /V}(m)W(x) do + R, (21)

satisfies the dynamic programming equations (14)(15).

Let us check the lemma. Assume that
VWtJrl S W, Ut+1(Wt+1) = /‘/tJrl(x)WtJrl(x) dx + Rt+1
and apply (15), using (12)

U(We) = 1y [ T Vi (oo, ) WP ) di + Ri



and, according to (11) this yields
UWe) = min [ T Vi (oo 0, 00)) Wila) do + Resa.
Using the hypothesis of the proposition and Bellman’s equation for V;, it comes
U(Wy) = /V}(m)Wt(x) dx + Ry ,

and the recursion relation holds.

The hypothesis of the theorem sounds in a large extent like wishfull thinking.
It holds, as easily checked, in the linear quadratic case. (In that case, symmetry
properties result in the certainty equivalence theorem.) There is little hope to
find other instances. We state it here to stress the parallel with the minimax
case.

3.3.2 Minimax separation theorem

This section is based upon [6] [7]. The same result is to appear independantly
in [17].

We are now in the minimax setup. The performance criterion is G, and W
stands for the conditional state cost density.

We introduce the full information Isaacs Value function V;(x) which satisfies
the classical Isaacs equation:

VeeR", Vp(z)=M(x),
Ve e R", Vi(x) =infIFy,, Vipr (fe(z, u,wy)) .

Notice that we do not need that the Isaacs condition, i.e. the existence of a
saddle point in the right hand side above, hold. If it does not, V is an upper
value, which is what is needed in the context of minimax control.

It is convenient here to introduce a binary operation denoted & which can
be either the ordinary addition or its dual in our morphism: the max operation.

Proposition 2 Let

S, 4) = P Vi1 (ful w,0)) + Wi()].
If there exists a (decreasing) sequence of numbers Ry, such that,
vt € [0,T — 1], Vujo, 1) € U,Vw € Q,

max min S (2, u) @ Ry = minmax Sy(x,u) G Ry1,

then the optimal control is obtained by minimizing the conditional worst cost, fu-
ture cost being measured according to the full information Isaacs Value function,
i.e. taking a minimizing u in the right hand side above.

10



Proof The proof relies on the following fact :

Lemma 2 Under the hypothesis of the proposition, the function
U,(W) = m;xx[Vt(x) + W(z)] ® Ry

satisfies the dynamic programming equations (19)(20).
Let us check the lemma. Assume that

Wit1 €W, Uppi(Wir) = mjx[vtﬂ(z) + Wi1(2)] © Risa

and apply (20), using (18)

Ui (W) = min max | max[Viy1(z) + max (Wi (&) + T4 (v))] ® Reg1 | -
v v (&) €L (x]uy)

The max operations may be merged into

() = i (x{Vis ((€1,0) + T4(0) + WH(€)]© Resa )

Then, using the hypothesis of the proposition and Isaacs equation for V, it
comes

Un(W) = max[Vi(z) + Wi (2)] © Ry,

thus establishing the recursion relation.

The hypothesis of the proposition is not as unrealistic as in the stochastic
case. It is satisfied in the linear quadratic case, but more generally, it can be
satisfied if S is convex-concave, for instance, with & the ordinary addition and
R; = 0 (or ® the max operation and R; = —o0). Moreover, in that case, the
same u provides the minimum in both sides, yielding a certainty equivalence
theorem.

3.4 An abstract formulation

It is known that in the stochastic control problem, some results, including deriva-
tion of the separation theorem, are more easily obtained using a more abstract
formulation of the observation process, in terms of a family of o-fields ); gen-
erated in the disturbance space. The axioms are that

e the brownian motion w; is adapted to the family )i,

e the family )} is increasing.

11



The same approach can be pursued in the minimax case. Instead of an ex-
plicit observation through an output (2), one may define the observation process
in the following way. To each pair (u,r,w) the observation process associates
a sequence {2 }¢cjo,7) of subsets of Q2. The axioms are that, for any (ujp,1y,w),
the corresponding family 2, satisfies the following properties.

e The process is consistant, i.e. Vt, w € .

e The process is strictly non anticipative, i.e. w € Q; < w'™1 € Qﬁfl where
Q! stands for the set of restrictions to [0, — 1] of the elements of ;.

e The process is with complete recall: ¥(up 1),w), t<t' = Q D Q.

In the case considered above, we have
Q= QR" [ u',y")

but the abstract formulation suffices, and allows one, for instance, to extend the
minimax certainty equivalence principle to a variable end time problem. See [7]
for a detailed derivation.

One may think of the subsets €2; as playing the role of the measurable sets
of the o-field ).

4 The continuous time control problem

4.1 The problem

We now have a continuous time system, of the form

z = fi(z,u,w), (22)
= h(z,w). (23)

The notations will be the counterpart of the discrete ones. In particular,
u', will stand for the restriction to [0,¢] of the continuous time function w7y :
t — uz;. We shall again let U? designate the set of such segments of function.
Likewise for w® € W', w! € Q' and y* € Y. Notice however that (3) and (4)
must be replaced by

= ¢(ul,wh), (24)
ye = ne(ut,wh). (25)

and similarily for (5) and (6).

Admissible controllers will be of the form u; = p;(u?,y?). This seems to be
an implicit definition, since w; is contained in u!. In fact, it is hardly more so
than any feedback control. In any extent, we let M be the class of controllers
of that form, such that they generate a unique trajectory for any w € €.

12



As in the discrete case, we may always bring a classical integral plus terminal
cost to the form (7). The two problems we want to investigate are again the
minimization of H(u) given by 8 with a stochastic model for w and that of G(u)
given by 9 with a cost density for w (or its sole set membership description if
we take this cost density constant).

4.2 Hamilton Jacobi theory
4.2.1 Stochastic Hamilton Jacobi theory

In the continuous time case, the technicalities of diffusion processes and Ito cal-
culus make the stochastic problem much more complex than its discrete coun-
terpart, or, for that matter, than its continuous minimax counterpart. As far as
we know, the classical litterature concentrates on simpler, technically tractable,
particular cases of the system (22),(23). Typically, classical nonlinear stochastic
control deals with the system

dry = bi(z,u)dt + op(z,u) dwy , (26)
dys = c(x)dt+ doy. (27)
where v; and w; are standard independent vector brownian motions, and the

above equations are to be taken in the sense of stochastic integrals. We shall
need the notation oo’ = a where the prime stands for transposed, i.e.

Qi = E OikOjk -
k

Under suitable regularity and growth assumptions, one may compute a con-
ditional state probability distribution W; through the stochastic PDE (which
can be derived, for instance, from Zakai’s equation, see [12]), the dual form of
which may be writen Wy = N and, for any function ¢(-) € C?(IR"),

a / HEOWL(E) de =
( Jwwnewe de) dt + ( [uemiorio - dg) (dys — v di)

where
(L)) = GoEh(e )+ 5 Y GOl (9

and ¢ stands for the conditional expectation of ¢;(x):

G = /ct(z)Wt(z) dz .

13



A full information control problem can be written in terms of that probability
density as a state. We refer to [12] for a complete treatment. The formal
development is too intimately intermingled with the technical aspects to lend
itself to a simple exposition of the kind given here. In particular, a nonlinear
Hamilton Jacobi theory would imply Ito calculus with an infinite dimensional
state, which we have rather avoid to write.

4.2.2 Minimax Hamilton Jacobi theory

The minimax problem is not as complex as the stochastic one, at least to state
formally, and as long as one only seeks sufficient conditions. It was indepen-
dently developed in [6], and in [19] in a slightly less general context, but with
a much more complete development in that it includes a first mathematical
analysis of the resultant Isaacs equation.

We introduce the counterpart of (17) : for a given pair (u,y*) € U x Y*
and a subset A of IR", let

Qu(A | ul,y) = {w € 2|y = n'(u', "), and ¢ (u',w') € A}

be the conditional disturbance subset of A, and again write () instead of
Qu({&} | ul, y?). The conditional cost density function is now

Wi(z) = sup (N(xo) + /T Ty (wy) dt) .
weQ(x) 0
If it is C', W, satisfies a forward hamilton Jacobi equation. Let
Wiz |y) = {w e W] hu(z,w) =y},
then this forward equation is, for u! and y* fixed:
OWy(z) [ oW (z)
o weW, (zlyo) ox

fi(x,ug, w) + Ft(w)} (29)

which we write as

0 oW (z
&Wt =Iry, [%ft(xvut,uﬁ] =1 Fy (Wi, ug, yt)
and, together with the initial condition Wy = N, it may define W, along any
trajectory.

Assume W is endowed with a topology for which U is absolutely continuous
in W, and admits a Gateaux derivative Dy U. Then, the value function U (W)
is obtained through the following Isaacs equation. Ur is again given by (19),
and AU(W
oUW) + inf sup Dy U (W)F;(W,u,y) =0. (30)

YW e W,
ot uelU yeY

14



Moreover, assume that the minimum in u is attained in (30) above at u = fi: (W),
then (16) defines an optimal feedback for the minimax control problem. The
optimal cost is Up(V).

Notice again that the easy task is to show a sufficient condition: if there
exist C* functions W and U satisfying these equations, and if the feedback (16)
is admissible, then we have a solution of the problem. It is worth noticing that
the only existence result we are aware of is in [18], and is in a particular case
somewhat similar to the set up we have outlined for the stochastic case.

A further remark is that, in a case, say, where N = 0 and I" = 0, the function
W only, and exactly, characterizes the reachable set given the past information.
Let X;(u,y?) be that set, then we have

0 if x e Xy,
Wt(x):{ —oo ifxé¢X.

This is of course highly nondifferentiable. An apparent serious drawback for
this theory, since this is an important case.

There are two ways that may help resolve this problem. The first one is
developed in [6]. It consists in using the Fenchel transform W* of W, defined
as

W (p) = min(p. z) ~ W()]. (31)

We show that, under some additional assumptions, W* satisfies a dual forward
Hamilton Jacobi equation:

oW}
% +  sup  [-pfe(&,up,w) +Ty(w)] =0.
weW,(&ly:)

where
OW¢ (p)

Et:Tp'

Now, U can be taken as a function of W*. If W is a concave function, i.e. if X;
is convex in the case (31) above, the dual approach yields the exact minimax
control. If W is not concave, the strategy thus computed yields a guaranteed
cost Up(N™).

Another possible way around the non differentiability of W is given by the
following remark. One can replace W in the theory by a parametrization of W.
Let P be a topological space, called the parameter space, 7 : P — W be a one
to one map. Assume that to any pair (u’,y’) we can asociate a time function
p satisfying a differential equation

D = ft(ptautvyt)

such that 7(p;) be the conditional cost density W; of the process. Then it is
clear that the Value function can be expressed in terms of p instead of U, and

15



we recover the necessary differentiability to write the equivalent of (30), which
becomes

aUt( ) + inf SupD Ut( )]'—t(pvuay) =0.

Vp e P,
ot uEUer

In the case (31), p parametrizes as well X¢(u’,y") as its characteristic fuction
W. This is what we do in [22], where it is clear that W (or X;) lies on a three

dimensional manifold of W (or 2X), so that we may take IR® for P.

The L;(u) operator We notice here a strange parallel. Assume that the
dynamics are as in (26), or more precisely, since w is not a white noise anymore
but a (deterministic) decision variable

fe(x,u,w) = b(z,u) + oz, u)w.

Notice that the natural dual to the Gaussian law is the cost measure I'(w) =
—1/2[jw||®. Then, a counterpart of (28) is, for a function 1 (z(t))

dip %
F || -5 0+ 3 GO .

At this stage, we do not know wheher the similarity with (28) is anything else
than a curiosity. Notice that the above operator is not linear. (Here we refer to
(max, +) linearity.)

4.3 Separation theorem
4.3.1 Stochastic separation theorem

We may take advantage of the linear character of the equation (21) to write,
at least formally, the continuous time counterpart to the stochastic separation
principle of section 3.3.1. We need first introduce the full information (state
feedback) Bellman function V;(z) which satisfies the stochastic Bellman equation
(see [13])

V=M

Vi
5 ( )—l—lnf(Lt( Wi)(z) =0.

We can then state the following result.

Y(t,2) € [0,T] x R™,

Proposition 3 Let

Si(,u) = (Le(w)Vi) (@) Wi () -
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If there exists a real (positive) L*([0,T]) function ry such that,
vt € [0,T],Yup 1) € U, almost surely

/minSt(x,u) dx + ry :min/St(ac,u)dx,

then an optimal control is obtained by choosing the minimizing u, that we shall
call fiy(Wy), in the right hand side above.

Proof. The proof relies on the following fact

Lemma 3 Under the hypothesis of the proposition, the stochastic process oy =
Ui (Wy) is a submartingale for any admissible control, and a martingale if up =
fit(Wy), where the function Uy is defined over the set L'(IR™) by

UAW) = [ VW (€ de + R

and

T
Rt:/ rsds. (32)
t

Let us check the lemma. Consider the diffusion process oy = Us(W;) where
the system, and thus the filter, is driven by a control process u;. It satisfies the
stochastic differential equation

doy = / [L(ue)Vi — inf Ly(u)Vi] (€) Wi (&) d dt — 7y i

+ / Vi(EW©)E4(€) — &) deldy, — e d].

Assume that wu; is admissible, i.e. measurable over the o-field ), generated by
the observation process y;, and take the conditional expectation. One obtains,
at least formally

EYda; = / [Li(ue)Ve — inf Ly (u) V] (§) Wi (€) d€ dt — ¢ dt.

It follows that if u; = fi(W}), which is indeed admissible, the hypothesis of the
proposition yields IEda; = 0, and for any other admissible control IEda; > 0.

Thus under the feedback control ji,(W3), IEUr(Wr) = Ug(Wy), hence, re-
calling that Vo = M and Wy = N, IEM (z7) = IEVy(29)+ Ro. And for any other
admissible control, IEUr(Wr) > Uyg(Wy), hence IEM (x1) > IEVh(x0) + Ro.

The above proof is formal in that we have not detailed the regularity and
growth hypotheses under which these calculations are valid. But it can be made
rigorous, and provide a proof of the separation theorem for the linear quadratic
case for instance.
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4.3.2 Minimax separation theorem

Introduce as in the discrete time case the full information Isaacs’Value function
V. It satisfies the Isaacs equation

VeeR", Vp(z) = M(z),
Vi (x . oVi(x
Vt, Vo € R", 5§ ) = ﬁlﬁmw‘ (%j}(m,u,wt)) )

The use of weak solutions, the viscosity solution, is now well understood. How-
ever, for our purpouse here, which is to stress the formal duality according to
Quadrat’s morphism, we shall assume that V and W are C'. We shall also
assume that the full information game admits a unique state feedback solution
us = @5 (x¢), argument of the min above.

As in [3], introduce also the auziliary problem

ma [Vi(z) + Wi(r)]

e

and assuming it has a (nonunique) solution, let X, be the set of maximizing z’s,
or conditional worst states.
We have the following fact:

Proposition 4 Let

vy

St(xvu) = let %

() fe(w, u, wy)

If there exists a real (positive) L*([0,T]) function ry such that

vt € [0,T],Vup,r) € U,Vw € Q,  min min S¢(x, u) + r; = min max Si(z,u),
reX; Y U reX,

then an optimal control is obtained by minimizing the conditional worst rate
of increase of the full information Value function among the conditional worst
states, i.e. taking the minimizing u in the right hand side above.

Proof The proof relies on the following fact :

Lemma 4 Under the hypothesis of the proposition, the function

Up(W) = max[Vi(z) + Wi ()] + Ry

with Ry defined as in (32) satisfies the dynamic programming equations (19),
and (30) replacing derivatives with right derivatives in time.
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The lemma hinges on Danskin’s theorem [11] to get for the right time deriva-

tive N
(%) (W) = max %(ac) -1y

and for the directional derivative in a direction dW € W:

Dy U (W) - dW = max dW(z).

reXy

Then it is a simple matter to place this in (30), notice that because all z € X,
maximize the auxiliary problem, then at these points —0W;/dxz = dV;/0z, and
that, as in the case of mathematical expectations, the cascade of the two max
operators max, max,cw (z|y) collapses in max,, to get the result.

Remarks The condition of the proposition looks a bit odd. A first remark is
that Wy, hence w, seems not to enter it. This is of course not the case, because
Xt depends on W;.

The second remark is that we have quoted the proposition that way to stress
a parallel with the other cases. (The parallel would have been better if we had
not converted —max(—e) in min(e).) But its only reasonable use seems to
be the following corollary, the now well known minimax certainty equivalence
principle of [3],[9] :

Corollary 1 If Vt € [0,T], Yup,1) € U, Yw € Q, X, is a singleton {2}, then
an optimal control is obtained by replacing x; by Ty in the optimal state feedback
of the full information problem, i.e. taking us = ¢ (3¢).

4.4 An abstract formulation

The abstract formulations of the obsrvation process have indeed be originally
introduced for the continuous time problems. The parallel here is exactly the
same as in the discrete time case, the only difference for the minimax problem
being that nonanticipativeness of the process is now written as

weew e

This approach to proving the certainty equivalence theorem was first proposed
in [9]. It allows one to extend the theorem to variable end time problems.

5 Conclusion

The parallel between stochastic and minimax control appears thus as striking,
even if some technicalities make it less clear in the continuous time case than in
the discrete time case. Some more work probably remains to be done to fully
explain and exploit it. But it is clear that “Quadrat’s morphism” is at the root
of the problem.
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