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Abstract

We review the current state of partial information minimax control,
stressing the parallel with stochastic control.

1 Introduction

Minimax control, or worst case design, as a means of dealing with uncer-
tainty is an old idea. It has gained a new popularity with the recognition,
in 1988, of the fact that H∞-optimal control could be cast into that con-
cept. Although some work in that direction existed long before (see [8]),
this viewpoint has vastly renewed the topic. See [3] and related work.

Many have tried to extend this work to a nonlinear setup. Most promi-
nent among them perhaps is the work of Isidori, but many others have
followed suit : [13],[14],[21], [4], [5] and more recently [16],[17]. This has
contributed to a renewed interest in nonlinear minimax control.

We insist that the viewpoint taken here is squarely that of minimax
control, and not nonlinear H∞-optimal control. Several reasons for that
claim. Fot one thing, we only consider finite time problems, and therefore
do not consider stability issues which are usually central in H∞-optimal
control. We dont stress quadratic loss functions. But more importantly, we
claim that the minimax problem is only an intermediary step in H∞ theory,
used to insure existence of a fixed point to the feedback equations z = PKw,
w = ∆Pz (PK is the controlled plant, ∆P the model uncertainty). In
that respect, the nonlinear equivalent is not the minimax problem usually
considered, but rather the contraction problem independently tackeled by
[12].
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If we decide that minimax is an alternative to stochastic treatment of
disturbances (input uncertainties, rather than plant uncertainties), it makes
sense to try to establish a parallel. In this direction, we have the striking
morphism developed by Quadrat and coworkers, see [19] [2] [1]. We shall
review here recent work, mainly by ourselves, Baras, and James, in the light
of this parallel, or Quadrat’s morphism. This paper is in a large extent
based upon [7].

2 Quadrat’s morphism

In a series of papers [19] [2] [1], giving credit to other authors for early
developements, Quadrat and coauthors have fully taken advantage of the
morphism introduced between the ordinary algebra (+,×) and the (min,+),
or alternatively the (max+), algebra to develop a decision calculus parallel
to probability calculus. Let us briefly review some concepts, based on [1].

2.1 Cost measure

The parallel to a probability measure is a cost measure. Let Ω be a topo-
logical space, A an algebra of subsets, K : A → IR ∪ {−∞} is called a cost
measure if it satisfies the following axioms :

• K(Ω) = 0

• K(∅) = −∞

• for any family of (disjoint) elements An of A, K(∪An) = supnK(An).
(It is straightforward to see that the word “disjoint” can be omitted
from this axiom).

The function c : Ω → IR ∪ {−∞} is called a cost density of K if we have

∀A ∈ A, K(A) = sup
ω∈Ω

K(ω) .

One has the following theorem (Akian)

Theorem 1 Every cost measure defined on the open sets of a Polish space
Ω admits a unique maximal extension to 2Ω, this extension has a density,
which is a concave u.s.c. function.
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2.2 Cramer transform

The parallel between the ordinary and the (max,+) algebra is often based
upon large deviation theory in probabilities. It is then based upon the fact
that the function

lim
a→∞

loga(a
x)

turns sum into max and product into sum by the identities

lim
a→∞

loga(a
x + ay) = max(x, y) , loga(a

xay) = x+ y .

The above morphism is fully exploited by the Cramer transform C from
the set of positive measures to that of proper, l.s.c. convex functions defined
in terms of the classical Fenchel transform F and Laplace transform L by
C = F ◦ ln ◦L. Since we insist on using the (max,+) algebra instead of
the (min,+) algebra, we shall rather make reference to the opposite of the
Cramer transform.

Let f and g be transformed by the opposite Cramer transform into φ and
ψ, then, their convolution f ⋆ g is taken into the sup-convolution φ∇ψ(p) =
supq(φ(q) + ψ(p − q)) of φ and ψ. Let also ḡ(t) = g(−t), it is transformed
into ψ̄(x) = ψ(−x). Thus f ∗ ḡ is transformed into φ∇ψ̄.

This last remark introduces a (purely formal) parallel between the L2

scalar product
∫

f(x)g(x) dx = (f ∗ ḡ)(0)

and what is called the (max,+) scalar product

sup
x
(φ(x) + ψ(x)) = (φ∇ψ̄)(0)

which is, for that reason, often denoted as a scalar product (φ,ψ) by Baras
and James and others.

The opposite Cramer transform also turns the product by a constant k
into a sum as −C(kf) = ln k + φ (unfortunately this does not carry over
to product of functions), and introduces a direct relationship between m =
∫

f(x) dx and supx φ(x) = ln(m). Hence, if f is the density of a probability
measure, m = 1, and thus supx φ(x) = 0 making φ the density of a cost
measure.
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3 The discrete time control problem

3.1 The problem

We consider a partially observed two input control system

xt+1 = ft(xt, ut, wt) , (1)

yt = ht(xt, wt) , (2)

where xt ∈ IRn is the state at time t, ut ∈ U the (minimizer’s) control,
wt ∈ W the disturbance input, and yt ∈ Y the measured output. We shall
call U the set of input sequences over the time horizon [0, T ]: {ut}t∈[0,T ]

usually written as u[0,T ] ∈ U, and likewise for w[0,T ] ∈ W. The initial
state x0 ∈ X0 is also considered part of the disturbance. We shall call
ω = (x0, w[0,T ]) the combined disturbance, and Ω = X0 × W the set of
disturbances.

The solution of (1) (2) above shall be written as

xt = φt(u[0,T ], ω)

yt = ηt(u[0,T ], ω)

Finally, we shall call ut a partial sequence (u0, u1, . . . , ut) and U
t the

set of such sequences 1, likewise for wt ∈ W
t and yt ∈ Y

t. Also, we write
ωt = (x0, w

t) ∈ Ωt.
The solution of (1) and (2) may alternatively be written as

xt = φt(u
t−1, ωt−1) , (3)

yt = ηt(u
t−1, ωt) . (4)

We shall also write

xt = φt(ut−1, ωt−1) , (5)

yt = ηt(ut−1, ωt) , (6)

to refer to the partial sequences solution of (1) and (2)
Admissible controllers will be of the form ut = µt(u

t−1, yt−1), i.e. strictly
causal. We denote by M the class of such controllers.

1notice the slight inconsistence in notations, in that our U
t

is the cartesian (t + 1)
power of U. Other choices of notations have their drawbacks too.
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A performance index is given. In general, it may be of the form

J(x0, u[0,T ], w[0,T ]) =M(xT ) +
T−1
∑

t=0

Lt(xt, ut, wt)

However, we know that, to the expense of increasing the state dimension by
one if necessary, we can always bring it back to a purely terminal payoff of
the form

J(x0, u[0,T ], w[0,T ]) =M(xT ) . (7)

The data of a strategy µ ∈ M and of a disturbance ω ∈ Ω generates through
(1)(2) a unique pair of sequences (u[0,T ], w[0,T ]) ∈ U × W. Thus, with
no ambiguity, we may also use the abusive notation J(µ, ω). The aim of
the control is to minimize J , in some sense, “in spite of the unpredictable
disturbance”.

We want to compare here two ways of turning this unprecise statement
into a meaningful mathematical problem. In the first one, stochastic control,
we modelize the unknown disturbance as a random variable, more specif-
ically here a random variable x0 with a probability density N(x) and an
independant white stochastic process w[0,T ] of known instantaneous proba-
bility distribution. The criterion to be minimized over M is then

H(µ) = IEωJ(µ, ω) . (8)

In the second case, we do not modelize the perturbation otherwise than
through the data of the set Ω, and we wish to choose µ in such a way as to
get the best possible guaranteed payoff, i.e. minimizing

G(µ) = sup
ω∈Ω

J(µ, ω) .

Remark 1 We get a better parallel if we replace J in G above by

J̄(µ, ω) = J(µ, ω) +N(x0) . (9)

and consequently, G by

Ḡ(µ) = sup
ω∈Ω

J̄(µ, ω) . (10)

Of course, N can as well be absorbed in L0, however, this formulation pre-
serves the symmetry with the continuous time case, and is natural to display
explicitly the “cost” associated to the choice of x0 by Nature. In the word-
ing of [1], this associates a initial state cost density exactly dual to the
initial state probability density of stochastic control. Notice however that
the ensuing performance index is no longer purely terminal.
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3.2 Dynamic programming

3.2.1 Stochastic dynamic programming

We quickly recall here for reference purpouses the classical solution of the
stochastic problem via dynamic programming. One has to introduce the
conditional state probability measure, and, assuming it is absolutely con-
tinuous with respect to the Lebesgue measure, its density W . Let, thus,
Wt(x) dx be the conditional probability measure of xt given y

t−1, or a priori
state probability distribution at time t, and W η

t (x) dx be the conditional
state distribution given yt−1 and given that yt = η, or a posteriori state
probability distribution at time t.

Clearly, Wt is a function only of past measurements. As a matter of fact,
we can give the filter that lets one compute it. Starting from

W0(x) = N(x) (11)

at each step, W η
t can be obtained by Bayes rule. A standard condition for

this step to be well posed is that, for all (t, x, w), the map w 7→ ht(x,w) be lo-
cally onto, and more specifically that the partial derivative ∂ht(x,w)/∂w be
invertible. It suffices here to notice that, because the information is increas-
ing, (the information algebras are nested), we have, for any test function
ψ,

IEy

∫

ψ(x)W y
t (x) dx =

∫

ψ(x)Wt(x) dx . (12)

ThenWt+1 is obtained by propagatingW yt
t through the dynamics. It suffices

for our purpouse to define this propagation by the dual operator:
∫

ψ(x)Wt+1(x) dx =

∫

IEwψ(ft(x, ut, w))W
yt
t (x) dx (13)

The above expression shows the dependance of the sequence {Wt} on the
control u[0,T ] and the observation sequence y[0,T ]. Let this define the function
Ft as

Wt+1 = Ft(Wt, ut, yt)

Let W be the set of all possible such functions W .
Via a standard dynamic programming argument, we can check that the

Bellman return function U is obtained by the recurrence relation

∀W ∈ W, UT (W ) =

∫

M(x)W (x) dx (14)

∀W ∈ W, Ut(W ) = inf
u

IEyUt+1 (Ft(W,u, y)) (15)
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Moreover, assume that the minimum in u is attained in (15) above at u =
µ̂t(W ). Then

ut = µ̂t(Wt) (16)

defines an optimal feedback for the stochastic control problem. The optimal
cost is U0(N)

3.2.2 Minimax dynamic programming

Let us consider now the problem of minimizing Ḡ(µ). We have to introduce
the conditional state cost measure and its cost density W (according to
the concepts introduced in section 2.1 following [1]), . It is defined as the
maximum possible past cost knowing the past information, as a function of
current state. To be more precise, let us introduce the following subsets of
Ω. Given a pair (ut, yt) ∈ U

t × Y
t, and a subset A of IRn, let

Ωt(A | ut, yt) = {ω ∈ Ω | yt = ηt(ut−1, ωt), and φt+1(u
t, ωt) ∈ A} (17)

For any x ∈ IRn, we shall write Ωt(x | ut, yt), or simply Ωt(x) when no
ambiguity results, for Ωt({x} | ut, yt). And likewise for Ωt−1(x).

The conditional cost measure of A is supω∈Ωt−1(A)N(x0), and hence the
conditional cost density function is

Wt(x) = sup
ω∈Ωt−1(x)

N(x0) .

Initialize this sequence with

W0(x) = N(x) .

It is a simple matter to write recursive equations of the form Wt+1 =
Ft(Wt, ut, yt). In fact, Ft is defined by the following. Let for ease of no-
tations

Zt(x, u, y) = {(ξ, v) ∈ IRn ×W | ft(ξ, u, v) = x, ht(ξ, u, v) = y} ,

then we have
Wt+1(x) = sup

(ξ,v)∈Zt(x,ut,yt)

Wt(ξ) . (18)

As was probably first shown in [18], (also presented in a talk in Santa
Barbara in july 1993), one can do simple dynamic programming in terms of
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this function W . The value function U will now be obtained through the
following relation

∀W ∈ W, UT (W ) = sup
x
(M(x) +W (x)) (19)

∀W ∈ W, Ut(W ) = inf
u

sup
y
Ut+1 (Ft(W,u, y)) (20)

Moreover, assume that the minimum in u is attained in (20) above at u =
µ̂(W ). Then it defines an optimal feedback (16) for the minimax control
problem. The optimal cost is U0(N).

Of course, all our set up has been arranged so as to stress the parallel
between (14),(15) on the one hand, and (19),(20) on the other hand.

3.3 Separation theorem

3.3.1 Stochastic separation theorem

We are here in the stochastic setup. The performance criterion is H and W
stands for the conditional state probability density.

We introduce the full information Bellman return function Vt defined by
the classical dynamic programming recursion :

∀x ∈ IRn, VT (x) =M(x) ,

∀x ∈ IRn, Vt(x) = inf
u
IEwVt+1(ft(x, u,w)) .

Then we can state the following result.

Proposition 1 Let

St(x, u) := IEwVt+1 (ft(x, u,w))Wt(x)

If there exists a (decreasing) sequence of (positive) numbers Rt with RT = 0
such that,

∀t ∈ [0, T − 1],∀u[0,T ] ∈ U,∀ω ∈ Ω,
∫

min
u
St(x, u) dx +Rt = min

u

∫

St(x, u) dx+Rt+1

then, the optimal control is obtained by minimizing the conditional expecta-
tion of the full information Bellman return function, i.e. choosing a mini-
mizing u in the right hand side above.
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Proof The proof relies on the following fact :

Lemma 1 Under the hypothesis made, we have

Ut(W ) =

∫

Vt(x)W (x) dx+Rt . (21)

Let us check the lemma. Assume that

∀Wt+1 ∈ W, Ut+1(Wt+1) =

∫

Vt+1(x)Wt+1(x) dx+Rt+1

and apply (15), using (13)

Ut(Wt) = min
u

IEy

∫

IEwVt+1(ft(x, u,w))W
y
t (x) dx+Rt+1

and, according to (12) this yields

Ut(Wt) = min
u

∫

IEwVt+1(ft(x, u,w))Wt(x) dx +Rt+1

Using the hypothesis of the proposition and Bellman’s equation for Vt, it
comes

Ut(Wt) =

∫

Vt(x)Wt(x) dx +Rt

and the recursion relation holds.
The hypothesis of the theorem sounds in a large extent like wishfull

thinking. It holds, as easily checked, in the linear quadratic case. (In
that case, symmetry properties result in the certainty equivalence theorem.)
There is little hope to find other instances. We state it here to stress the
parallel with the minimax case.

3.3.2 Minimax separation theorem

This section is based upon [6][7]. The same result is to appear independantly
in [15].

We are now in the minimax setup. The performance criterion is G, and
W stands for the conditional state cost density.

We introduce the full information Isaacs Value function Vt(x) which
satisfies the classical Isaacs equation:

∀x ∈ IRn, VT (x) =M(x) ,
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∀x ∈ IRn, Vt(x) = inf
u

max
w

Vt+1(ft(x, u,w)) .

Notice that we do not need that the Isaacs condition, i.e. the existence of a
saddle point in the right hand side above, hold. If it does not, V is an upper
value, which is what is needed in the context of minimax control.

It is convenient here to introduce a binary operation denoted ⊕ which
can be either the ordinary addition or its dual in our morphism: the max
operation.

Proposition 2 Let

St(x, u) = max
w

[Vt+1 (ft(x, u,w)) +Wt(x)]

If there exists a (decreasing) sequence of numbers Rt, such that,
∀t ∈ [0, T − 1], ∀u[0,T ] ∈ U, ∀ω ∈ Ω,

max
x

min
u
St(x, u)⊕Rt = min

u
max
x

St(x, u)⊕Rt+1

then the optimal control is obtained by minimizing the conditional worst cost,
future cost being measured according to the full information Isaacs Value
function, i.e. taking a minimizing u in the right hand side above.

Proof The proof relies on the following fact :

Lemma 2 Under the hypothesis made, we have

Ut(W ) = max
x

[Vt(x) +W (x)]⊕Rt .

Let us check the lemma. Assume that

∀Wt+1 ∈ W , Ut+1(Wt+1) = max
x

[Vt+1(x) +Wt+1(x)] ⊕Rt+1

and apply (20), using (18)

Ut(W ) = min
u

max
y

(

max
x

[Vt+1(x) + max
(ξ,v)∈Zt(x,u,y)

Wt(ξ)]⊕Rt+1

)

.

The max operations may be merged into

Ut(W ) = min
u

(

max
ξ,v

[Vt+1(ft(ξ, u, v)) +Wt(ξ)]⊕Rt+1

)

.

10



Then, using the hypothesis of the proposition and Isaacs equation for V , it
comes

Ut(W ) = max
x

[Vt(x) +Wt(x)]⊕Rt ,

thus establishing the recursion relation.
The hypothesis of the proposition is not as unrealistic as in the stochastic

case. It is satisfied in the linear quadratic case, but more generally, it can be
satisfied if S is convex-concave, for instance, with ⊕ the ordinary addition
and Rt = 0 (or ⊕ the max operation and Rt = −∞. Moreover, in that
case, the same u provides the minimum in both sides, yielding a certainty
equivalence theorem.

3.4 An abstract formulation

It is known that in the stochastic control problem, some results, including
derivation of the separation theorem, are more easily obtained using a more
abstract formulation of the observation process, in terms of a family of σ-
fields Ft generated in the disturbance space. The axioms are that this family
is

• adapted to the underlying brownian motion wt,

• increasing

The same approach can be pursued in the minimax case. Instead of an
explicit observation through an output (2), one may define the observation
process in the following way. To each pair (u[0,T ], ω) the observation process
associates a sequence {Ωt}t∈[0,T ] of subsets of Ω. The axioms are :

• The process is consistant, i.e.

∀t, ω ∈ Ωt .

• The process is strictly non anticipative, i.e.

ω ∈ Ωt ⇔ ωt−1 ∈ Ωt−1
t

where Ωt−1
t stands for the set of restrictions to [0, t−1] of the elements

of Ωt.

• The process is with complete recall, i.e.

∀(u[0,T ], ω), t < t′ ⇒ Ωt ⊃ Ωt′ .
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In the case considered above, we have

Ωt = Ω(IRn | ut, yt)

but the abstract formulation suffices, and allows one, for instance, to extend
the minimax certainty equivalence principle to a variable end time problem.
See [7] for a detailed derivation.

One may think of the subsets Ωt as playing the role of the measurable
sets of the σ-field Ft.

4 The continuous time controm problem

4.1 The problem

We now have a continuous time system, of the form

ẋ = ft(x, u,w) , (22)

y = h(x,w) . (23)

The notations will be the counterpart of the discrete ones. In particular,
ut, will stand for the restriction to [0, t] of the continuous time function
u[0,T ] : t 7→ ut. We shall again let U

t designate the set of such segments of
function. Likewise for wt ∈ W

t, ωt ∈ Ωt, and yt ∈ Y t. Notice however that
(3) and (4) must be replaced by

xt = φt(u
t, ωt) , (24)

yt = ηt(u
t, ωt) . (25)

and similarily for (5) and (6).
Admissible controllers will be of the form ut = µt(u

t, yt). This seems
to be an implicit definition, since ut is contained in ut. In fact, it is hardly
more so than any feedback control. In any extent, we let M be the class of
controllers of that form, such that they generate a unique trajectory for any
ω ∈ Ω.

As in the discrete case, we may always bring a classical integral plus
terminal cost to the form (7), or (9) for the minimax problem. The two
problems we want to investigate are again the minimization of H(µ) with a
stochastic model for ω and that of Ḡ(µ) with the sole set description of ω.
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4.2 Hamilton Jacobi theory

4.2.1 Stochastic Hamilton Jacobi theory

In the continuous time case, the technicalities of diffusion processes and Ito
calculus make the stochastic problem much more complex than its discrete
counterpart, or, for that matter, than its continuous minimax counterpart.
As far as we know, the classical litterature concentrates on simpler, techni-
cally tractable, particular cases of the system (22),(23). Typically, classical
nonlinear filtering deals with the system

dx = ft(x, u) dt + gt(x) dw ,

dy = ht(x) dt+ dv .

Then, under some regularity conditions, an unnormalized version of the
conditional state probability density can be computed through a stochastic
PDE (Zakai’s equation), and a Hamilton Jacobi theory may be written in
terms of that probability density as a state. We refer to [11] for a complete
treatment. The formal development is too intimately intermingled with the
technical aspects to lend itself to a simple exposition of the kind given here.

4.2.2 Minimax Hamilton Jacobi theory

The minimax problem is not as complex as the stochastic one, at least to
state formally, and as long as one only seeks sufficient conditions. It was
independently developed in [6], and in [17] in a slightly less general context,
but with a much more complete development in that it includes a first
mathematical analysis of the resultant Isaacs equation.

We introduce the counterpart of (17) : for a given pair (ut, yt) ∈ U
t×Y

t

and a subset A of IRn, let

Ωt(A | ut, yt) = {ω ∈ Ω | yt = ηt(ut, ωt), and φt(u
t, ωt) ∈ A}

be the conditional disturbance subset of A, and again write Ωt(ξ) for Ωt({ξ} |
ut, yt). The conditional cost density function is now

Wt(x) = sup
ω∈Ωt(ξ)

N(x0) .

If it is C1, Wt satisfies a forward hamilton Jacobi equation. Let

Wt(x | y) = {w ∈ W | ht(x,w) = y} ,

13



then this forward equation is, for ut and yt fixed:

∂Wt(x)

∂t
= sup

w∈Wt(x|yt)

[

−
∂W (x)

∂x
ft(x, ut, w)

]

(26)

which we write as
∂

∂t
Wt = Ft(Wt, ut, yt)

and, together with the initial condition W0 = N , it may define Wt along
any trajectory.

Then, the value function Ut(W ) is obtained through the following Isaacs
equation. UT is again given by (19), and

∀W ∈ W,
∂Ut(W )

∂t
+ inf

u∈U
sup
y∈Y

DWUt(W )Ft(W,u, y) = 0 (27)

Moreover, assume that the minimum in u is attained in (27) above at
u = µ̂t(W ), then (16) defines an optimal feedback for the minimax con-
trol problem. The optimal cost is U0(N).

Notice again that the easy task is to show a sufficient condition. If there
exist C1 functions W and U satisfying these equations, and if the feedback
(16) is admissible, then we have a solution of the problem. It is worth
noticing that the only existence result we are aware of is in [16], and is in
a particular case somewhat similar to the set up we have outlined for the
stochastic case.

A further remark is that, in a case, say, where N = 0, the function W
only, and exactly, characterizes the reachable set given the past information.
Let Xt(u

t, yt) be that set, then we have

Wt(x) =

{

0 if x ∈ Xt ,
−∞ if x /∈ Xt .

This is of course highly nondifferentiable. An apparent serious drawback for
this theory, since this is an important case.

There are two ways that may help resolve this problem. The first one
is developed in [6]. It consists in using the Fenchel transform W ∗ of W ,
defined as

W ∗(p) = min
x

[(p, x) −W (x)] . (28)
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We show that, under some additional assumptions, W ∗ satisfies a dual for-
ward Hamilton Jacobi equation:

∂W ∗
t (p)

∂t
+ sup

w∈Wt(ξt|yt)

[−pft(ξt, ut, w)] = 0

where

ξt =
∂W ∗

t (p)

∂p
.

Now, U can be taken as a function of W ∗. If W is a concave function, i.e.
if Xt is convex in the case (28) above, the dual approach yields the exact
minimax control. If W is not concave, the strategy thus computed yields a
guaranteed cost U0(N

∗).
Another possible way around the non differentiability of W is given by

the following remark. One can replaceW in the theory by a parametrization
of W . Let P be a topological space, called the parameter space, π : P → W
be a one to one map. Assume that to any pair (ut, yt) we can asociate a
time function pt satisfying a differential equation

ṗt = Ft(pt, ut, yt)

such that π(pt) be the conditional cost density Wt of the process. Then it
is clear that the Value function can be expressed in terms of p instead of
U , and we recover the necessary differentiability to write the equivalent of
(27), which becomes

∀p ∈ P,
∂Ut(p)

∂t
+ inf

u∈U
sup
y∈Y

DpUt(p)Ft(p, u, y) = 0 .

In the case (28), p parametrizes as well Xt(u
t, yt) as its characteristic fuction

W . This is what we do in [20], where it is clear that W (or Xt) lies on a

three dimensional manifold of W (or 2X), so that we may take IR3 for P.

4.3 Separation theorem

4.3.1 Stochastic separation theorem

The continuous time equivalent of the discrete time stochastic separation
theorem above can be stated in a comparable manner, made more involved
by the Ito calculus —although the linear character of (21) helps in that
matter. However, again the technical dificulties all but prevent one to state
it in a concise way. And the conditions required look even stranger than in
the discrete time case. We do not attempt this feat here.
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4.3.2 Minimax separation theorem

As a matter of fact, this theory yields a certainty equivalence theorem rather
than a separation principle, as we shall see. It was first reported in [3].

Introduce as in the discrete time case the full information Value function
V . It satisfies the Isaacs equation

∀x ∈ IRn, VT (x) = M(x)

∀t,∀x ∈ IRn,
∂Vt(x)

∂t
= min

u∈U
max
w∈W

(

∂Vt(x)

∂x
ft(x, u,w)

)

The use of weak solutions, the viscosity solution, is now well understood.
However, for our purpouse here, which is to stress the formal duality accord-
ing to Quadrat’s morphism, we shall assume that V andW are C1. We shall
also assume that the full information game admits a unique state feedback
solution ut = φ∗t (xt), argument of the min above.

As in [3], introduce also the auxiliary problem

max
x∈IRn

[Vt(x) +Wt(x)] .

We have the following fact:

Proposition 3 If the auxiliary problem admits for all (u[0,T ], ω) and for all
t a unique solution x̂t (depending, of course, on (ut, yt) through Wt), then an
optimal control is obtained by replacing xt by x̂t in the optimal state feedback
of the full information problem, i.e. taking ut = φ∗t (x̂t).

Proof The proof relies on the following lemma

Lemma 3 Under the hypothesis of the proposition, we have

Ut(W ) = max
x

[Vt(x) +W (x)]

Checking the lemma is easy. It hinges on Danskin’s theorem, which insures
that the above formula for U results in

∂Ut(W )

∂t
=
∂Vt(x̂t)

∂t

and also, for any dW ∈ W,

DWUt(W ) dW = dW (x̂t) .

16



Once this is recognised, it is a simple matter to place these formulas in (27)
which becomes, using (26),

∂Vt(x̂t)

∂t
+ inf

u∈U
sup
y∈Y

sup
w∈Wt(x|y)

[

−
∂Wt(x̂t)

∂x
ft(x̂t, u, w)

]

= 0 .

The two suprema merge in a sup over w ∈ W. And because x̂t solves the
auxiliary problem over IRn,

−
∂Wt(x̂t)

∂x
=
∂Vt(x̂t)

∂x

so that the above equation is just Isaacs equation for V , and thus satisfied.
The same remark yields the fact that the minimizing u in (27) is just φ∗(x̂t).

4.4 An abstract formulation

The abstract formulations of the obsrvation process have indeed be originally
introduced for the continuous time problems. The parallel here is exactly
the same as in the discrete time case, the only difference for the minimax
problem being that nonanticipativeness of the process is now written as

ω ∈ Ωt ⇔ ωt ∈ Ωt
t .

This approach to proving the certainty equivalence theorem was first pro-
posed in [9]. It allows one to extend the theorem to variable end time
problems.

4.5 Filter design

In the continuous time problem, we can stress a further parallel between the
stochastic problem and the minimax one.

In the linear case, one of the most famous results of classical stochastic
system theory is the fact that the conditional expected value x̂t of the state
can be computed in real time via the celebrated Kalman filter.

It was shown independantly in [21] and in [10] that in the case where
the output disturbance is an additive, i.e., (23) is replaced by

yt = ht(xt) + vt

and if x̂t above is well defined and the certainty equivalence theorem holds,
one can give a filter to compute x̂. The situation is much less favourable
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than in the linear Kalman filter case, because the gains cannot, at this time,
be computed independantly of the general, infinite dimensional, theory. But
yet, its form is worthwhile noticing.

Having absorbed the integral term in the criterion somewhat confuses
the issues here. In particular it obliges us to reintroduce v in the dynamics.
We therefore write them as

ẋt = ft(xt, ut, vt, wt) .

Then, it can be shown that, upon playing the optimal, certainty equivalent
control (16), we have

˙̂xt = f(x̂t, µ̂t(Wt), v̂t, ŵt) +
[

∂2Vt
∂x2

+
∂2Wt

∂x2

]−1 (
dht
dx

)t (∂ft
∂v

)t (∂Wt

∂x

)t

[x̂t, µ̂t(Wt), y − ht(x̂t), ŵt]

Here, the upper index t stands for “transposed”, v̂t and ŵt stand for the
worst state feedback disturbances (maximizing in the full information Isaacs
equation), and the last square bracket in the r.h.s. stands for the arguments
of the whole r.h.s. It is a simple matter to check that in the linear quadratic
case, one recovers the classical H∞ filter.

5 Conclusion

The parallel between stochastic and minimax control appears thus as strik-
ing, even if some technicalities make it less clear in the continuous time case
than in the discrete time case. Some more work remains to be done probably
to fully explain and exploit it. But it is clear that “Quadrat’s morphism” is
at the root of the problem.
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