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Abstract

We review the current state of partial information fi-
nite time minimax control, stressing the parallel with
stochastic control.

1 Introduction

Minimax control, or worst case design, as a means
of dealing with uncertainty has gained a new popu-
larity with the recognition, in 1988, of the fact that
H∞-optimal control could be cast into that concept.
Although some work in that direction existed long be-
fore (see [8]), this viewpoint has vastly renewed the
topic. See [3] and related work.

Many have tried to extend this work to a nonlinear
setup. Most prominent among them perhaps is the
work of Isidori and coworkers, [11] [12], but also many
others, such as [4] [5]. We shall mainly refer to [15]
[16] [14] [13]. We also refer the reader to [18] and
references therein. This has contributed to a renewed
interest in nonlinear minimax control.

We revisit here recent work on finite time minimax
control, (hence avoiding stability issues) mainly by
ourselves (in particular [7]), James and coauthors, in
the light of the parallel developed by Quadrat and
coworkers (see [1] [2] [17]), between probabilities and
maximization, yielding a parallel between minimax
and stochastic control.

This parallel involves “Quadrat’s morphism” in-
duced by the (opposite) Cramer transform between
the classical (+,×) algebra and the (max,+) alge-
bra. It turns the convolution product into a sup-
convolution. In the use we make of it, it involves
replacing products by sums, and sums, or integrals
like expectations, by max. Thus, the counterpart
of an expression such as

∫

V (x)W (x) dx will be
maxx[V (x) +W (x)].

We do not have space here to review their theory
of decision processes. Let us only introduce the vo-
cabulary of cost measures : let Ω be a topological
space, A a σ-field of subsets, K : A → IR ∪ {−∞} is
called a cost measure if it satisfies the following ax-
ioms : K(Ω) = 0, K(∅) = −∞, and for any family of

(disjoint) elements An of A, K(∪An) = supnK(An).
The function c : Ω → IR ∪ {−∞} is called a cost
density of K if we have

∀A ∈ A, K(A) = sup
ω∈Ω

c(ω) .

2 Discrete time control

2.1 The problem

We consider a partially observed two input control
system

xt+1 = ft(xt, ut, wt) , (1)

yt = ht(xt, wt) , (2)

where xt ∈ IRn is the state at time t, ut ∈ U the
(minimizer’s) control, wt ∈ W the disturbance input,
and yt ∈ Y the measured output. We shall call U the
set of input sequences over the time horizon [0, T ]:
{ut}t∈[0,T ] usually written as u[0,T ] ∈ U, and likewise
for w[0,T ] ∈ W. The initial state x0 ∈ X0 is also
considered part of the disturbance. We introduce the
combined disturbance, ω = (x0, w[0,T ]), and the set
Ω = X0 ×W of such disturbances.

The solution of (1) (2) above shall be written as
xt = φt(u[0,T ], ω), yt = ηt(u[0,T ], ω).

Finally, we shall call ut a partial sequence
(u0, u1, . . . , ut) and U

t the set of such sequences, like-
wise for wt ∈ W

t and yt ∈ Y
t. Also, we write

ωt = (x0, w
t) ∈ Ωt.

The solution of (1) and (2) may alternatively be
written as xt = φt(u

t−1, ωt−1), yt = ηt(u
t−1, ωt). Let

also xt = φt(ut−1, ωt−1), yt = ηt(ut−1, ωt), refer to
the partial sequences solution of (1) and (2)

Admissible controllers will be output feedbacks of
the form ut = µt(u

t−1, yt−1), i.e. strictly causal. We
denote by M the class of such controllers.

A performance index is given. One may absorb an
integral cost into a purely terminal payoff of the form

J(x0, u[0,T ], w[0,T ]) =M(xT ) . (3)

We shall also, with no ambiguity, use the abusive no-
tation J(µ, ω). The aim of the control is to minimize



J , in some sense, “in spite of the unpredictable dis-
turbance”.
We want to compare here two ways of turning

this unprecise statement into a meaningful mathe-
matical problem. In the first one, stochastic control,
we modelize the unknown disturbance as a random
variable, more specifically here a random variable x0
with a probability density N(x) and an independant
white stochastic process w[0,T ] of known instanta-
neous probability distribution.
Let then

J̄(u[0,T ], w[0,T ]) =

∫

J(ξ, u[0,T ], w[0,T ])N(ξ) dξ , (4)

the criterion to be minimized over M is then

H(µ) = IEwJ̄(µ,w[0,T ]) . (5)

In the second case, we do not modelize the pertur-
bation otherwise than through the data of the set Ω,
and we wish to choose µ in such a way as to get the
best possible guaranteed payoff. Let then

J̄(u[0,T ], w[0,T ]) = max
ξ

[J(ξ, u[0,T ], w[0,T ]) +N(ξ)]

be the counterpart of (4), and the criterion to be min-
imzed over M be the counterpart of (5):

G(µ) = sup
w[0,T ]∈W

J̄(µ,w[0,T ]) . (6)

2.2 Dynamic programming

2.2.1 Stochastic dynamic programming

We quickly recall here for reference purpouses the
classical solution of the stochastic problem via dy-
namic programming. One has to introduce the con-
ditional state probability measure, and, assuming it is
absolutely continuous with respect to the Lebesgue
measure, its density W . Let, thus, Wt(x) dx be the
conditional probability measure of xt given y

t−1, and
W η

t (x) dx be the conditional state distribution given
yt−1 and given that yt = η.
Under suitable assumptions on the data (notice-

ably that ∂ht(x,w)/∂w be invertible) one can com-
pute Wt from past data through a recursion start-
ing with W0(x) = N(x), and that we summurize as
Wt+1 = Ft(Wt, ut, yt).
The only properties one need to carry out the cac-

ulations are that, for any function ψ(x),
∫

ψ(x)Wt+1(x) dx =

∫

IEwψ(ft(x, ut, w))W
yt

t (x) dx,

(7)
(a dual propagation operator) where the conditional
(or a posteriori) state probability density knowing
yt = η : W η

t , satsifies

IEy

∫

ψ(x)W y
t (x) dx =

∫

ψ(x)Wt(x) dx . (8)

Let W be the set of all possible such functions Wt.
Via a standard dynamic programming argument,

we can check that the Bellman return function U is
obtained by the recurrence relation: ∀W ∈ W ,

UT (W ) =

∫

M(x)W (x) dx , (9)

Ut(W ) = inf
u

IEyUt+1 (Ft(W,u, y)) . (10)

Moreover, assume that the minimum in u is attained
in (10) above at u = µ̂t(W ). Then

ut = µ̂t(Wt) (11)

defines an optimal feedback for the stochastic control
problem. The optimal cost is U0(N)

2.2.2 Minimax dynamic programming

Let us consider now the problem of minimizing G(µ).
We have to introduce the conditional state cost mea-
sure and its cost density W . It is defined as the maxi-
mum possible past cost knowing the past information,
as a function of current state. To be more precise, let
us introduce the following subsets of Ω. Given a pair
(ut, yt) ∈ U

t × Y
t, and a subset A of IRn, let

Ωt(A | ut, yt) = {ω ∈ Ω | yt = ηt(ut−1, ωt),

and φt+1(u
t, ωt) ∈ A}

For any x ∈ IRn, we shall write Ωt(x | ut, yt), or
simply Ωt(x) when no ambiguity results, instead of
Ωt({x} | ut, yt). And likewise for Ωt−1(x).

The conditional cost measure of A is defined as
supω∈Ωt−1(A)N(x0), and hence the conditional cost
density function is

Wt(x) = sup
ω∈Ωt−1(x)

N(x0) .

This function again satisfies a recursion relation of
the form W0(x) = N(x), Wt+1 = Ft(Wt, ut, yt). It
suffices to know that for any function ψ(x),

max
x

[Wt+1(x) + ψ(x)] =

max
(x,w)|ht(x,w)=y

[Wt(x) + ψ(ft(x, ut, w)]

and that hence

max
y

max
x

[Wt+1(x) + ψ(x)] =

max
x,w

[Wt(x) + ψ(ft(x, ut, w)] ,

the counterparts of (7) and (8) above.
As was probably first shown in [16], one can do

simple dynamic programming in terms of this func-
tion W . The value function U will now be obtained
through the following relation : ∀W ∈ W ,

UT (W ) = sup
x
(M(x) +W (x)) , (12)

Ut(W ) = inf
u

sup
y
Ut+1(Ft(W,u, y)) . (13)



Moreover, assume that the minimum in u is attained
in (13) above at u = µ̂(W ). Then it defines an opti-
mal feedback (11) for the minimax control problem.
The optimal cost is U0(N).
Of course, all our set up has been arranged so as to

stress the parallel between (9),(10) on the one hand,
and (12),(13) on the other hand.

2.3 Separation theorem

2.3.1 Stochastic separation theorem

We are here in the stochastic setup. The performance
criterion is H and W stands for the conditional state
probability density.
We introduce the full information Bellman return

function Vt defined by the classical dynamic program-
ming recursion :

∀x ∈ IRn, VT (x) =M(x) ,

∀x ∈ IRn, Vt(x) = inf
u

IEwVt+1(ft(x, u, w)) .

Then we can state the following result.

Proposition 1 Let

St(x, u) := IEwVt+1 (ft(x, u, w))Wt(x) .

If there exists a (decreasing) sequence of (positive)
numbers Rt with RT = 0 such that,

∀t ∈ [0, T − 1], ∀u[0,T ] ∈ U, ∀ω ∈ Ω,
∫

min
u
St(x, u) dx+Rt = min

u

∫

St(x, u) dx+Rt+1 ,

then the optimal control is obtained by minimizing the
conditional expectation of the full information Bell-
man return function, i.e. choosing a minimizing u in
the right hand side above.

Proof The proof relies on the following fact :

Lemma 1 Under the hypothesis of the proposition,
the function

Ut(W ) =

∫

Vt(x)W (x) dx +Rt , (14)

satisfies the dynamic programming equations (9)(10).

The hypothesis of the theorem sounds in a large ex-
tent like wishfull thinking. It holds, as easily checked,
in the linear quadratic case. (In that case, symmetry
properties result in the certainty equivalence theo-
rem.) There is little hope to find other instances. We
state it here to stress the parallel with the minimax
case.

2.3.2 Minimax separation theorem

This section is based upon [6] [7]. The same result is
to appear independantly in [13].

We are now in the minimax setup. The perfor-
mance criterion is G, and W stands for the condi-
tional state cost density.

We introduce the full information Isaacs Value
function Vt(x) (or here, upper value) which satisfies
the classical Isaacs equation:

∀x ∈ IRn, VT (x) =M(x) ,

∀x ∈ IRn, Vt(x) = inf
u

max
w

Vt+1(ft(x, u, w)) .

Proposition 2 Let

St(x, u) = max
w

[Vt+1 (ft(x, u, w)) +Wt(x)] .

If there exists a (decreasing) sequence of numbers Rt,
such that,

∀t ∈ [0, T − 1], ∀u[0,T ] ∈ U, ∀ω ∈ Ω,

max
x

min
u
St(x, u) +Rt = min

u
max

x
St(x, u) +Rt+1 ,

then the optimal control is obtained by minimizing
the conditional worst cost, future cost being measured
according to the full information Isaacs Value func-
tion, i.e. taking a minimizing u in the right hand side
above.

Proof The proof relies on the following fact :

Lemma 2 Under the hypothesis of the proposition,
the function

Ut(W ) = max
x

[Vt(x) +W (x)] +Rt

satisfies the dynamic programming equations
(12)(13).

The hypothesis of the proposition is not as unrealis-
tic as in the stochastic case. It is satisfied in the linear
quadratic case, but more generally, it can be satisfied
if S is convex-concave, for instance, with Rt = 0.
Moreover, in that case, the same u provides the min-
imum in both sides, yielding a certainty equivalence
theorem.

3 Continuous time control

3.1 The problem

We now have a continuous time system, of the form

ẋ = ft(x, u, w) , (15)

y = ht(x,w) . (16)



The notations will be the counterpart of the dis-
crete ones. In particular, ut, will stand for the
restriction to [0, t] of the continuous time function
u[0,T ] : t 7→ ut. We shall again let Ut designate the set
of such segments of function. Likewise for wt ∈ W

t,
ωt ∈ Ωt, and yt ∈ Y t. The state and output maps
now read xt = φt(u

t, ωt), yt = ηt(u
t, ωt), and simi-

larly for the complete or truncated trajectories.
Admissible controllers will be of the form ut =

µt(u
t, yt). This seems to be an implicit definition,

since ut is contained in ut. In fact, it is hardly more
so than any feedback control. In any extent, we let
M be the class of controllers of that form, such that
they generate a unique trajectory for any ω ∈ Ω.
As in the discrete time case, we can always bring

a classical integral plus terminal cost to the form (3).
The two problems we want to investigate are again
the minimization of H(µ) with a stochastic model for
ω and that of G(µ) with the sole set description of ω.

3.2 Hamilton Jacobi theory

3.2.1 Stochastic Hamilton Jacobi theory

In the continuous time case, the technicalities of dif-
fusion processes and Ito calculus make the stochastic
problem much more complex than its discrete coun-
terpart, or, for that matter, than its continuous min-
imax counterpart. As far as we know, the classical
litterature concentrates on simpler particular cases of
the system (15),(16). Typically, classical nonlinear
stochastic control deals with the system

dxt = bt(x, u) dt+ σt(x, u) dwt ,

dyt = ct(x) dt + dvt .

where vt and wt are standard independent vector
brownian motions, and the above equations are to
be taken in the sense of stochastic integrals.
Under suitable regularity and growth assumptions,

one can compute a conditional state probability dis-
tributionWt through a stochastic PDE (which can be
derived, for instance, from Zakai’s equation, see [10])
yielding W0 = N and, for any function ψ(x),

d

∫

ψ(ξ)Wt(ξ) dξ =

∫

(Lt(u)ψ)(ξ)Wt(ξ) dξ dt+

∫

ψ(ξ)Wt(ξ)[c
′
t(ξ)− c̄′t] dξ[dyt − c̄t dt] .

where

(Lt(u)ψ)(ξ) =
∂ψ

∂x
(ξ)bt(ξ, u) +

1

2
tr

(

σ′
t

∂2ψ

∂x2
(ξ)σt

)

,

and ct =
∫

ct(z)Wt(z) dz stands for the conditional
expectation of ct(xt).
A full information control problem may be written

in terms of that probability density as a state. We
refer to [10] for a complete treatment.

3.2.2 Minimax Hamilton Jacobi theory

The minimax problem is not as complex as the
stochastic one, at least to state formally, and as long
as one only seeks sufficient conditions. It was inde-
pendently developed in [6], and in [15] in a slightly
less general context, but with a much more complete
development in that it includes a first mathematical
analysis of the resultant Isaacs equation.

For a given pair (ut, yt) ∈ U
t × Y

t and a subset A
of IRn, let again

Ωt(A | ut, yt) = {ω ∈ Ω | yt = ηt(ut, ωt),

and φt(u
t, ωt) ∈ A}

be the conditional disturbance subset of A, and again
write Ωt(ξ) instead of Ωt({ξ} | ut, yt). The condi-
tional cost density function is now

Wt(x) = sup
ω∈Ωt(ξ)

N(x0) .

If it is C1, Wt satisfies a forward hamilton Jacobi
equation. Let

Wt(x | y) = {w ∈ W | ht(x,w) = y} ,

then this forward equation is, for ut and yt fixed:

∂Wt(x)

∂t
= sup

w∈Wt(x|yt)

[

−
∂W (x)

∂x
ft(x, ut, w)

]

(17)

which we write as

∂

∂t
Wt = Ft(Wt, ut, yt)

and, together with the initial condition W0 = N , it
may define Wt along any trajectory.

Then, the value function Ut(W ) is obtained
through the following Isaacs equation. UT is again
given by (12), and ∀W ∈ W ,

∂Ut(W )

∂t
+ inf

u∈U
sup
y∈Y

DWUt(W )Ft(W,u, y) = 0 . (18)

Moreover, assume that the minimum in u is attained
in (18) above at u = µ̂t(W ), then (11) defines an
optimal feedback for the minimax control problem.
The optimal cost is U0(N).

Notice again that the easy task is to show a suffi-
cient condition. If there exist C1 functions W and U
satisfying these equations, and if the feedback (11) is
admissible, then we have a solution of the problem. It
is worth noticing that the only existence result we are
aware of is in [14], and is in a particular case some-
what similar to the set up we have outlined for the
stochastic case.



3.3 Separation theorem

3.3.1 Stochastic separation theorem

We may take advantage of the linear character of the
equation (14) to write, at least formally, the contin-
uous time counterpart to the stochastic separation
principle of section 2.3.1. We need first introduce
the full information (state feedback) Bellman func-
tion Vt(x) which satisfies the stochastic Bellman equa-
tion VT =M , and ∀(t, x) ∈ [0, T ]× IRn,

∂Vt
∂t

(x) + inf
u
(Lt(u)Vt)(x) = 0 .

We can then state the following result.

Proposition 3 Let

St(x, u) = (Lt(u)Vt)(x)Wt(x) .

If there exists a real (positive) L1([0, T ]) function rt
such that,

∀t ∈ [0, T ], ∀u[0,T ] ∈ U, almost surely
∫

min
u
St(x, u) dx + rt = min

u

∫

St(x, u) dx ,

then an optimal control is obtained by choosing the
minimizing u, that we shall call µ̂t(Wt), in the right
hand side above.

Proof. The proof relies on the following fact

Lemma 3 Under the hypothesis of the proposition,
the stochastic process αt = Ut(Wt) is a submartingale
for any admissible control, and a martingale if ut =
µ̂t(Wt), where the function Ut is defined over the set
L1(IRn) by

Ut(W ) =

∫

IRn

Vt(ξ)W (ξ) dξ +Rt ,

and

Rt =

∫ T

t

rs ds . (19)

Thus under the feedback control µ̂t(Wt),
IEUT (WT ) = U0(W0), hence, recalling that VT = M
and W0 = N , IEM(xT ) = IEV0(x0) + R0. And for
any other admissible control, IEUT (WT ) ≥ U0(W0),
hence IEM(xT ) ≥ IEV0(x0) +R0.

The above result is formal in that we have not de-
tailed the regularity and growth hypotheses under
which these calculations are valid. But it can be made
rigorous, and provide a proof of the separation theo-
rem for the linear quadratic case for instance.

3.3.2 Minimax separation theorem

Introduce as in the discrete time case the full infor-
mation Isaacs Value function V . It satisfies the Isaacs
equation VT =M and, ∀t, ∀x ∈ IRn,

∂Vt(x)

∂t
= min

u∈U
max
w∈W

(

∂Vt(x)

∂x
ft(x, u, w)

)

.

The use of weak solutions, the viscosity solution, is
now well understood. However, for our purpouse
here, which is to stress the formal duality, we shall
assume that V and W are C1. Assume also that the
full information game admits a unique state feedback
solution ut = φ∗t (xt), argument of the min above.

As in [3], introduce also the auxiliary problem

max
x∈IRn

[Vt(x) +Wt(x)] .

and assuming it has a (nonunique) solution, let X̂t be
the set of maximizing x’s, or conditional worst states.

We have the following fact:

Proposition 4 Let

St(x, u) = max
w

[

∂Vt
∂x

(x)ft(x, u, w)

]

.

If there exists a real (positive) L1([0, T ]) function rt
such that

∀t ∈ [0, T ], ∀u[0,T ] ∈ U, ∀ω ∈ Ω,

min
x∈X̂t

min
u
St(x, u) + rt = min

u
max
x∈X̂t

St(x, u) ,

then an optimal control is obtained by minimizing the
conditional worst rate of increase of the full infor-
mation Value function among the conditional worst
states, i.e. taking the minimizing u in the right hand
side above.

Proof The proof relies on the following fact :

Lemma 4 Under the hypothesis of the proposition,
the function

Ut(W ) = max
x

[Vt(x) +Wt(x)] +Rt

with Rt defined as in (19) satisfies the dynamic pro-
gramming equations (12), and (18) replacing deriva-
tives with right derivatives in time.

The lemma hinges on Danskin’s theorem to get for
the right time derivative

(

∂Ut

∂t

)+

(W ) = max
x∈X̂t

∂Vt
∂t

(x)− rt

and for the directional derivative in a direction dW ∈
W :

DWUt(W ) · dW = max
x∈X̂t

dW (x) .



Then it is a simple matter to place this in (18), notice
that because all x ∈ X̂t maximize the auxiliary prob-
lem, then at these points −∂Wt/∂x = ∂Vt/∂x, and
that, as in the case of mathematical expectations, the
cascade maxy maxw∈W (x|y) collapses in maxw to get
the result.

Remarks The condition of the proposition depends
on Wt, hence on ωt, through Xt.
We have quoted the proposition that way to stress

a parallel with the other cases. (The parallel would
have been better if we had not converted −max(−·)
in min(·).) But its only reasonable use seems to be
the following corollary, the now well known minimax
certainty equivalence principle of [3],[9] :

Corollary 1 If ∀t ∈ [0, T ], ∀u[0,T ] ∈ U, ∀ω ∈ Ω,

X̂t is a singleton {x̂t}, then an optimal control is
obtained by replacing xt by x̂t in the optimal state
feedback of the full information problem, i.e. taking
ut = φ∗t (x̂t).

4 Conclusion

The parallel between stochastic and minimax control
appears thus as striking, even if some technicalities
make it less clear in the continuous time case than
in the discrete time case. Some more work probably
remains to be done to fully explain and exploit it.
But it is clear that “Quadrat’s morphism” is at the
root of the problem.
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programmation dynamique”, Compte Rendus de
l’Académie des Sciences, 311: pp 745–748, 1990.

[18] A.J. van der Schaft : “Nonlinear State SpaceH∞

Control Theory”, ECC 1993, Groningen, Neder-
lands


