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1 Introduction

The first min-max certainty equivalence principle ever seems to be due to
Whittle [6], and concerns the standard discrete time linear quadratic prob-
lem. (Although it appeared in the investigation of a stochastic exponential
quadratic or “risk sensitive” problem.) Since then, the author introduced sys-
tematically this concept, for both discrete time and continuous time problems
in [2], and it was used in [1]. The continuous time case was further studied
in [5] and [4]. In [3], we proposed a more general theory, with a certainty
equivalence principle as one of its consequences, but in a less general setup.
Here, we extend the result of [3] to a set up comparable to that of [4], thus
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providing the most general such result to date for discrete time systems, with
a very simple proof.

2 The framework

2.1 The system

We are given a disturbed discrete time control system in IRn

xt+1 = ft(xt, ut, wt) . (1)

The time t is a non negative integer, the control input u, with value ut at
time t, ranges over U, and the disturbance input w over W. Moreover, initial
state x0 is also considered a disturbance ranging over a set X0 ⊂ IRn.

The control sequence {ut}t∈NN , or equivalently the time function t 7→ ut ∈
U is in U and similarly the disturbance sequence {wt}t∈NN belongs to W. They
will often be written u(·) and w(·).

The complete disturbance is

ω = (x0, w(·)) ∈ Ω = X0 ×W .

Let
wτ = {wt, 0 ≤ t ≤ τ} ∈ Wτ

be the restriction to [0, τ ] of the sequence w(·), and similarly for other time
sequences. Let also

ωτ = (x0, w
τ ) ∈ Ωτ .

2.2 The observation and admissible strategies

The controller does not have a complete knowledge of the past disturbance
nor of the state. An observation process has been defined that to each pair
(u(·), ω) makes correspond a sequence {Υt}t∈NN of subsets of Ω. The observa-
tion process is assumed to enjoy the following three properties :

Hypothesis A

A1 Consistency :
∀(u(·), ω), ∀t, ω ∈ Υt ,
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A2 Strict non anticipativeness :

ω ∈ Υt ⇔ ωt−1 ∈ Υt−1
t ,

A3 Perfect recall :
Υt+1 ⊂ Υt .

The set M of admissible strategies for the controller will be that of func-
tions µ of the form

u(·) = µ(Υ(·)) : ut = µt(Υt) . (2)

A typical instance is when an output

yt = ht(xt, wt)

is measured by the controller, who is allowed to use strictly causal controls of
the form ut = µt(y

t−1). From the output sequence yt−1 observed up to time
t− 1 the controller can infer the equivalence class Υt of disturbances which,
together with the past controls ut−1 used, generate that same output.

2.3 The performance index

A terminal set T ⊂ NN × IRn is given. The problem terminates at the first
time instant such that the state reaches T,

tf = min{t | (t, xt) ∈ T} . (3)

In the sequel, xf always stands for xtf .
It turns out to be convenient to introduce the section Tt ∈ IRn of T at

time t as
Tt = {x | (t, x) ∈ T}

so that the termination condition (t, xt) ∈ T can equivalently be written
xt ∈ Tt.

A performance index is given as 1

J(u(·), ω) = Mtf (xf) +
tf−1
∑

t=0

Lt(xt, ut, wt) +N(x0) , (4)

1the term N(x0) is unnecessary. It can be absorbed in L0. It turns out to be convenient
to keep it there in applications. See the linear quadratic case in [1] for instance.
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The controller’s objective is to minimize the worst possible case, thus to chose
a control strategy µ∗ such that

max
ω∈Ω

J(µ∗, ω) = min
µ∈M

max
ω∈Ω

J(µ, ω) . (5)

Instead of restricting x0 to X0, we may equivalently let N(x) = −∞ for
all x not in X0. This causes the maximizing ω to always have x0 ∈ X0.

2.4 An alternate performance index

All the sequel extends to a problem with no target set and performance index

J(u(·), ω) = min
tf

[Mtf (xf ) +
tf−1
∑

t=0

Lt(xt, ut, wt) +N(x0)] ,

Isaacs’equation (6) is then replaced by its obvious generalization

Vt(x) = min
{

Mt(x),min
u

max
w

[Vt+1(ft(x, u, w)) + Lt(x, u, w)]
}

and T by the set T̄ = {(t, x) | Vt(x) = Mt(x)}.
Such a formulation lets one solve the qualitative problem of whether one

can insure that the state reach a given target set defined by T (x) ≤ 0. Let
M = T , L = 0, ∀x ∈ X0, N(x) = 0 . The sign of the minimax value of the
game yields the answer.

We do not develop this in the sequel, the adaptation is straightforward.

2.5 Minima and maxima

We assume that a proper set of hypotheses hold to insure the existence of
the minima and maxima we use hereafter. One possibility is to assume that
ft and Lt are of class C1 for all t, as well as M and N , and that U, W, and
X0 are compact. But this does not account for the classical linear quadratic
case, where U, W, and X0 are whole vector spaces, existence of the extrema
being insured by the behavior at infinity of M , L, and N .
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3 The auxiliary problem

3.1 Basic formulation

We consider the full information dynamic game defined by (1), (3), and (4),
but without the N(x0) term which has no meaning in a full information
game, and state feedbacks as admissible strategies. Let Vt(x) be its upper
value. It satisfies Isaacs’ equation

Vt(x) = min
u∈U

max
w∈W

[Vt+1 (ft(x, u, w)) + Lt(x, u, w)] , (6)

with the boundary condition

∀(t, x) ∈ T, Vt(x) = Mt(x) . (7)

We notice that the game with the original cost J as in (4) and ω as
maximizing control has an upper value

A0 = max
x∈X0

[V0(x) +N(x)]. (8)

We now introduce an assumption concerning the full information game
(we shall say what to do if it is not satisfied)

Hypothesis B We assume that the minimum in u in (6) is, for each (t, x),
reached at a unique point u = φ∗

t (x).
We introduce a fictitious observation process : let

Γt = {ω ∈ Ω | ∀s ≤ t, xs /∈ Ts}

It is straightforward to check that for t < tf , this process satisfies hypothesis
A. And also, because both Υ(·) and Γ(·) satisfy hypothesis A, so does their
intersection. Introduce therefore the modified observation process

Ωt = Υt ∩ Γt ,

it satisfies hypothesis A for t ∈ [0, tf − 1].
The auxiliary problem is defined for each t as the following maximization

problem: let

Gt(u
t−1, ω) = Gt(u

t−1, ωt−1) =

[

Vt(xt) +
t−1
∑

s=0

Ls(xs, us, ws) +N(x0)

]

(9)
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At = max
ω∈Ωt

Gt(ut−1, ω) (10)

For each t, the minimizer knows the past controls ut−1 it has used, and the
above problem can therefore be solved, yielding a solution only depending,
beyond ut−1, on the available information Ωt. We call ω̂t a maximizing ω
above, and x̂t the current “worst state” xt it leads to.

Notice that the notation At is consistent with the notation A0 introduced
in (8).

3.2 Alternate formulation

We need a further notation : for ξ /∈ Tt, let

Ωt(ξ) = {ω ∈ Ωt | xt = ξ}

As all the other subsets of Ω we have introduced, it is a function of the past
controls ut−1. Contrary to Ωt, it may be empty even before termination.

We define the conditional cost to come function W from NN × IRn into
IR ∪ {−∞} as

Wt(x) = max
ω∈Ωt(x)

[

t−1
∑

s=0

Ls(xs, us, ws) +N(x0)

]

where it is understood that as usual, the max over an empty set is −∞.
Notice that we have

∀x ∈ IRn, W0(x) = N(x) . (11)

The problem (12) may be written as

At = max
x

max
ω∈Ωt(x)

[

Vt(xt) +
t−1
∑

s=0

Ls(xs, us, ws) +N(x0)

]

,

and using the definition of the conditional cost to come, as

At = max
x

[Vt(x) +Wt(x)] . (12)

And x̂t, as defined above, is any maximizing x in (12).
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4 The certainty equivalence principle

4.1 Main result

Introduce the notation

St(x, u) = max
w∈W

[Vt+1 (ft(x, u, w)) + Lt(x, u, w) +Wt(x)] . (13)

We introduce the main hypothesis :

Hypothesis C For u(·) generated by the strategy µ̂ of the theorem, the
function St has, for all ω ∈ Ω and all t a saddle-point x̂t, ût, so that

max
x

St(x, ût) = max
x

min
u

St(x, u) . (14)

(We shall see that x̂t as defined here necessarily coincides with the definition
in the auxiliary problem, so that this notation is consistent.)

We may now state the theorem :

Theorem 1 (Certainty Equivalence Principle) Under hypothesesA, B,
and C, let x̂t be a worst case state as defined by the auxiliary control prob-
lem, then ut = µ̂t(Ωt) := φ∗

t (x̂t) is uniquely defined for all t and is an optimal
controller in the sense of (5), leading to a value A0 as in (8).

Proof Unicity of φ∗(x̂t) easily follows from assumption B.
Let us investigate the behavior of At under the effect of the strategy µ̂ of

the theorem. Take the expression of At in (12) and use Isaacs’equation (6)
to replace Vt in terms of Vt+1. It comes

At = max
x

min
u∈U

max
w∈W

[Vt+1 (ft(x, u, w)) + Lt(x, u, w) +W (x)] ,

The maximum in x is by definition reached at x = x̂t and the minimum in u
at u = φ∗

t (x̂t) = µ̂t(Ωt). Using (13),

At = max
x

min
u∈U

St(x, u) = St(x̂t, µ̂t(Ωt)) . (15)

Now, we also have, using (10)

At+1 = max
ω∈Ωt+1

[

Vt+1(xt+1) + Lt(xt, ut, wt) +
t−1
∑

s=0

Ls(xs, us, ws) +N(x0)

]

.
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According to hypothesis A.3, we get

At+1 ≤ max
ω∈Ωt

[

Vt+1(xt+1) + Lt(xt, ut, wt) +
t−1
∑

s=0

Ls(xs, us, ws) +N(x0)

]

.

But according to hypothesis A.2, ω ∈ Ωt is equivalent to ωt−1 ∈ Ωt−1
t , and

thus wt free. We therefore get

At+1 ≤ max
ωt−1∈Ωt−1

t

max
w∈W

[

Vt+1(xt+1) + Lt(xt, ut, wt) +
t−1
∑

s=0

Ls(xs, us, ws) +N(x0)

]

Use (1) to substitute for xt+1, and again write

max
ωt−1∈Ωt−1

t

[· · ·] = max
x

max
ωt−1∈Ωt−1

t (x)
[· · ·]

to obtain

At+1 ≤ max
x

max
w∈W

[Vt+1 (ft(x, ut, w)) + Lt(x, ut, w) +W (x)] .

We are assessing the effect of the strategy ut = µ̂t(Ωt). We therefore obtain

At+1 ≤ max
x

St(x, µ̂t(Ωt)) . (16)

Compare (15) with (16) using hypothesis C, and specifically (14). It
results that At+1 ≤ At, and therefore, that

Atf−1 ≤ A0. (17)

Let ω be fixed in Ω, but arbitrary. Together with the strategy µ̂ they
generate an observation process Ω(·). By definition, hypothesis A.1 holds up
to time tf − 1, and according to the definition (10),

∀ω ∈ Ω, Gtf−1(u
tf−1, ω) ≤ Atf−1 .

and also
∀ω ∈ Ω, Gtf (µ̂, ω) ≤ max

ω|ω
tf−1

Ω
tf−1

tf−1

Gtf (µ̂, ω) .
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But observe that the proof above concerning At+1 begins by dropping any
constraint on wt. Thus it is also true that

max
ω|ω

tf−1
Ω

tf−1

tf−1

Gtf (µ̂, ω) ≤ Atf−1 .

Now, comparing (9) and (4), and using (7), it comes Gtf = J . This together
with the above inequality and (17) yield

∀ω ∈ Ω, J(µ̂, ω) ≤ A0 .

We have pointed out that A0 is the value of the full information game.
Hence no partial information strategy can do better, and µ̂ is optimal.

4.2 Sufficient conditions

We investigate some sufficient conditions that insure hypothesis C. The first
corollary is obvious:

Corollary 1 If for all ω ∈ Ω, the function St is , for all t convex s.c.i. in
u, concave s.c.s. in x, and diverges to ∞ for ‖u‖ → ∞ in U, and to −∞ for
‖x‖ → ∞, then the certainty equivalence principle holds.

Proof Simply apply the Von Neumann-Sion Theorem.

Corollary 2 If the set of first order necessary conditions concerning the ex-
trema in Isaacs’equation and the maximization problem in (12) has a unique
solution for all ω and all t, then the certainty equivalence principle holds.

Proof Under the hypothesis of the corollary, the maximum in w in Isaacs’
equation (6) is unique. Applying Danskin’s theorem, the partial derivative
of St in u is the same as that of the right hand side of (6), and using the
unicity of the minimum in u, that in x is the same as that of the right hand
side of (12). Thus the hypothesis of the theorem says that the first order
necessary conditions for the minimum in u and the maximum in x of St have
a unique solution. Using Danskin’s theorem again, it classically follows that
it has a saddle point. (These conditions are those needed to extend to non
linear problems the proof of [1])
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Corollary 3 If the minimization problem in Isaacs equation is always con-
vex, and the auxiliary problem concave for all t, (both, of course, having
solutions) then the certainty equivalence principle holds.

Proof Apply the theorem of Von Neumann-Sion to the function

(u, ω) 7→ Gt+1(u
t−1 · u, ω)

and notice that

max
ω

Gt+1(u
t−1 · u, ω) = max

x
St(x, u) .

(This condition is that given in [2])

5 Conclusions

We have extended to a more general case, specifically variable end time,
whether defined by a capture condition or taken as a minimization parameter,
the discrete time certainty equivalence principle of [3]. Taking advantage of
the fact that we focus on the case where the principle holds, we were able
to give a simpler proof, very much in the spirit of that of [4]. We conjecture
that condition C above is the most general that can be given. Notice that
if the unicity condition B is not met, one should chose among the certainty
equivalent controls the one that provides the saddle point in C. The rest of
the proof holds unchanged.
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