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Abstract

We sketch a dynamic programming type of theory for both contin-

uous time and discrete time non linear partial information min-max

control, using the “cost to come” function as the informational state.

We use this theory to derive conditions under which a certainty equiva-

lence principle holds. The condition derived is less powerful than what

was known from direct investigation in the continuous time case, but

more powerful in the discrete time case.

1 Introduction

We investigate the most classical partial information min max control prob-
lem. The set up is as in classical stochastic control, but without probabilistic
hypotheses on the disturbances. Instead of minimizing the expected value of
a cost criterion, we minimize its supremum with respect to the disturbances.

According to Caratheodory [8], the “cost to come” function has been
introduced in the calculus of variations by Hamilton. Carathedory calls it
“Hamilton’s principal function”. The conditional cost to come has been
used in [3] as an auxiliary tool to solve in a recursive fashion the “auxiliary
problem”. It lead to the second (filtering) Riccati equation. Its central role
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in min-max control has been first stressed, as far as we know, by Didinsky,
and used extensively in [9]. John Barras [2] has shown, using tools of large
deviation theory in the spirit of [12], that it should be considered as the
informational state. The idea of the present derivation is to apply Quadrat’s
morphism [12],[1] p 442, i.e. to mimic stochastic control, simply replacing
mathematical expectations by max operations.

In the continuous time case, problems of differentiability naturally lead
to an attempt at using the Fenchel dual of the cost to come, in the spirit of
[10], as a possibly more regular informational state, leading to a suboptimal
controller if the cost to come is not concave.

2 General framework

2.1 The problem

2.1.1 The dynamics

The general problem considered is as follows. A disturbed control system is
given as

ẋ = ft(x, u, w), x(0) = x0 , (1)

or, in the discrete time case,

xt+1 = ft(x, u, w), x(0) = x0 . (2)

Here, t ∈ [0, T ] is the time, continuous or discrete, T a fixed horizon. x ∈ IRn

is the state, u ∈ U ⊂ IRm is the control. The control function is u(·) ∈ U.
Likewise, w ∈ W ⊂ IRl is a disturbance, the disturbance function is w(·) ∈
W.

As the initial state x0 will also be part of the disturbance, we shall need
the notation

ω = (x0, w(·)) ∈ Ω = IRn ×W.

In the continuous time case, we shall furthermore restrict U and W to mea-
surable functions, and the function f will be assumed to be of class C1 and
to satisfy a standard growth hypothesis to insure existence of a unique state
trajectory for all (u(·), ω) ∈ U× Ω.
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2.1.2 The information and the strategies

The state x is not directly measured by the controller, but only an output
variable y ∈ IRp :

y = ht(x, w) .

We let Yt = ht(IR
n,W) denote the range of ht.

As we shall need causal dependencies, we shall use the notation

yt = {y(τ) | τ ≤ t} ,
and likewise for all other time functions. Also, we shall use

ωt = (x0, w
t) ∈ Ωt

In contrast, a subscript will always denote the instantaneous value of a time
function, and Ωt will be a subset of Ω.

In the continuous time case, the control will be allowed to depend in a causal
fashion on y(·), and the set of admissible controllers, or strategies, µ ∈ M is
that of all causal controllers such that the system obtained by placing

u(t) = µt(y) = µt(y
t) (3)

in the dynamics generates for all ω ∈ Ω a unique admissible control function
u(·) ∈ U, and thus a unique trajectory.

In the discrete time case, we shall rather let the admissible controllers, again
denoted as µ ∈ M, be strictly causal :

u(t) = ut = µt(y
t−1). (4)

(An apparently convenient way to avoid the difference between (3) and (4)
would be to put a strict inequality sign in the definition of yt. However, we
believe that this would introduce misleading notations, and we prefer the
current convention.)

2.1.3 Criterion and optimality

A criterion or payoff function is given in the classical form, i.e., in the con-

tinuous time case as

J(u(·), ω) =M(x(T )) +
∫ T

0
Lt(x, u, w) dt+N(x0) ,
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and in the discrete time case as

J(u(·), ω) =M(x(T )) +
T−1
∑

t=0

Lt(x, u, w) +N(x0) .

As stated above, we are interested in finding a strategy µ∗ ∈ M leading
to

max
ω∈Ω

J(µ∗, ω) = min
µ∈M

max
ω∈Ω

J(µ, ω) . (5)

We shall make use of the usual definition of the hamiltonian of the prob-
lem:

Ht(x, λ, u, w) = Lt(x, u, w) + (λ, ft(x, u, w)) .

In (5) and in the sequel, we write min and max as if they were always
reached. We only claim a theory of sufficient conditions. So this is permissi-
ble. Specific assumptions could be made to insure the existence of some or
all of these extrema.

In the continuous time case the real issue is the regularity of the three value
functions U , V , and W below. And we do not tackle this issue.

In the discrete time case things are simpler. One might assume continuity
of the functions defining the problem and compactness of the set of initial
states X0 = {x ∈ IRn | N(x) > −∞}. But this would not account for the
linear quadratic case. One might use convexity concavity hypotheses, but
this would not account for most nonlinear examples. So we chose to stick
with this incomplete formulation.

In none of the two cases do we pretend to give a finished theory, as the
title of the paper implies.

We shall write

min
u
, max

w
, max

x
, for min

u∈U
, max

w∈W
, max

x∈IRn

respectively.

2.2 Conditional cost to come

As stated above, we shall use the “conditional cost to come” function that
we now define.
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Let uτ and yτ be fixed. Introduce the subset Ωτ of disturbances that are
compatible with these data

Ωτ [u
τ , yτ ] = {ω ∈ Ω | ∀t ≤ τ, ht(xt, wt) = yt} . (6)

Here, of course, x(·) is the state trajectory generated by u(·) and ω. In
this set of conditional disturbances, we define the subset Ωτ (ξ) of those that
furthermore drive the state to ξ, in the continuous time case at time τ :

Ωτ [u
τ , yτ ](ξ) = {ω ∈ Ωτ [u

τ , yτ ] | x(τ) = ξ} , (7)

and in the discrete time case, at time τ + 1:

Ωτ [u
τ , yτ ](ξ) = {ω ∈ Ωτ [u

τ , yτ ] | x(τ + 1) = ξ} . (8)

We shall oftentimes omit the arguments in square brackets above, as there
is no ambiguity in doing so. But it should always be remembered that Ωt

and Ωt(x), for instance, depend on ut and yt, and thus also the cost to come
function defined with them.

The conditional cost to come function W [uτ , yτ ] is now naturally defined.

In the continuous time case :

Wτ (ξ) = max
ω∈Ωτ (ξ)

[
∫ τ

0
Lt(x, u, w) dt+N(x0)

]

.

It should be understood that

∀ξ | Ωt(ξ) = ∅, Wt(ξ) = −∞.

We shall make use of the following hypothesis:

Hypothesis H1 There exists, for all t, ut, yt, a well defined cost to go
function Wt(·) defined over IRn into IR ∪ {−∞}. In the continuous time case,
we further assume that it is differentiable with respect to t.

We may have the following further hypothesis:

Hypothesis H1a The function W is of class C1.
If W is of class C1, it satisfies the forward dynamic programming equa-

tion: (remember that ut and yt are fixed)

∀x, W0(x) = N(x) , (9)
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∀(t, x), ∂Wt(x)

∂t
= max

w|ht(x,w)=yt
Ht(x,−

∂Wt(x)

∂x
, ut, w) = Ft[Wt, ut, yt](x) .

(10)
Let w = ψ̃t(Wt, x, ut, yt) be a maximizing w above.

In the discrete time case, we have similarly

Wτ (ξ) = max
ω∈Ωτ−1(ξ)

[

t−1
∑

t=0

Lt(x, u, w) +N(x0)

]

,

(again, the maximum over an empty set must be taken as −∞.) We use
the same hypothesis H1, and the discrete forward dynamic programming
equation. We introduce to write it in a readable fashion the following set
(again, ut and yt are fixed)

Zt(x, u, y) = {(ξ, v) ∈ IRn ×W | ft(ξ, u, v) = x, ht(x, v) = y} ,
and it reads

Wt+1(x) = max
(ξ,v)∈Zt(x,ut,yt)

[Wt(ξ) + Lt(ξ, ut, v)] = Ft[Wt, ut, yt] (11)

together with (9). Let (ξ, v) = ζt(Wt, x, ut, yt) designate a maximizing pair
above.

2.3 Cost to go

We shall refer to state feedbacks u = φt(x) and discriminating feedbacks
w = ψt(x, u). We assume that a consistent framework as been defined (see
for instance [4] or [5]) with admissible sets of such feedbacks, within which
we have the following property:

Hypothesis H2 The full information game has a unique upper saddle-point
(φ∗, ψ∗) leading to an upper value denoted Vt(x), of class C

1
in the continuous

time case.
Under hypothesis H2, V satisfies Isaacs equation :

∀x, VT (x) =M(x) (12)

and, in the continuous time case,

∀(x, t), ∂Vt(x)

∂t
+min

u∈U
max
w∈W

Ht(x,
∂Vt(x)

∂x
, u, w) = 0 (13)
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or, in the discrete time case,

Vt(x) = min
u∈U

max
w∈W

[Vt+1 (ft(x, u, w)) + Lt(x, u, w)] . (14)

It should be pointed out that, because we have introduced the term N(x0)
in the payoff, the actual (upper) value of the full information game is

min
φ

max
ω

J(φ, ω) = Γ0 = max
x

[V0(x) +N(x)] .

3 The continuous time problem

3.1 Dynamic programming

Notice that equations (9) and (10) behave as a filter : (10) can, in principle,
be integrated forward in real time from W0 = N , with ut and yt as forcing
terms in the right hand side. Let W be the space of all functions from IRn

into IR that can be reached by Wt for all t and all (u(·), ω) ∈ U× Ω.
Let Ut be a function from W into IR. Assume it has a derivative with

respect to t, denoted ∂Ut/∂t, and a Gateaux derivative with respect to its
argument W ∈ W, denoted DUt. Actually, it suffices that the directional
derivative DUt(W ).dW be defined for all (W, dW ) ∈ W ×W. The dynamic
programming equation is as follows.

∀t, ∀W ∈ W,
∂Ut(W )

∂t
+min

u∈U
max
y∈Yt

DUt(W ).Ft[W,u, y] = 0 , (15)

where Ft is defined in (10), and the terminal condition

∀W ∈ W, UT (W ) = max
x

[M(x) +W (x)] . (16)

Notice first that if such a U exists, the minimization over u in (15) defines
a control u depending only on t andW . Let u = µ̂t(W ) be such a minimizing
control. Likewise, let y = η̂t(W,u) be a maximizing y. We shall further need
the notation ψ̂t(W,x, u) = ψ̃t(W,x, u, η̂(W,u)).

We can state the following result.

Theorem 3.1 (Main equation) Assume hypotheses H1 and H1a hold. If
there exists a function U from IR ×W into IR satisfying the main equation
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(15)(16), and corresponding strategies ut = µ̂t(Wt) and wt = ψ̂t(Wt, x, u)
well defined and admissible when used with (9)(10), then µ̂ is an optimal
strategy for the problem at hand, and the optimal cost is U0(N)

Proof As a matter of fact, everything has been cast into the hypothe-
ses, so that the proof is very simple, and similar to that of the classical
Isaacs’equation.

Assume first that we play according to ut = µ̂t(Wt). Since, as we have
pointed out, Wt only depends on ut and yt, this is a causal strategy. Pick
a fixed ω̄ ∈ Ω. Together with µ̂ they generate trajectories {xt}, {yt}, and
{Wt} evolving according to (10). By (15), we know that

∂Ut(Wt)

∂t
+DUt(Wt).Ft[Wt, µ̂t(Wt), yt] ≤ 0. (17)

As a consequence, Ut(Wt) will be a decreasing function of t, so that

UT (WT ) ≤ U0(W0) .

Let us use (16) and the definition of WT as cost to come to rewrite the left
hand side of the above inequality

UT (WT ) = max
x

[

M(x) + max
ω∈ΩT (x)

(

∫ T

0
Lt dt+N(x0)

)]

.

Hence

UT (WT ) = max
ω∈ΩT

[

M(xT ) +

(

∫ T

0
Lt dt+N(x0)

)]

.

Now, ΩT in the above max is that generated by the sequences uT , yT gener-
ated by ω̄. Therefore, ω̄ ∈ ΩT . Thus, using also (9) we get

J(µ̂, ω̄) ≤ UT (WT ) ≤ U0(N) .

Assume now that w plays according to wt = ψ̂t(Wt, x, u). On the one
hand, because for every (W,x, u, y), ht(x, ψ̃(W,x, u, y)) = y, this strategy
will generate as output variable yt = η̂(Wt, ut). Therefore, together with µ̂,
we have the equality in (17), and thus UT (WT ) = U0(N). On the other hand,
w being everywhere maximizing in (10), we have, for such a disturbance,
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J(µ̂, ω) =M(xT ) +WT (xT ). Finally, by the hypothesis H1a, WT is nowhere
−∞ over IRn, i.e., all x’s are reached by maximizing trajectories, so that the
right choice of x0 leads to J(µ̂, ω) = UT (WT ) = U0(N), which is thus the
maxω J(µ̂, ω).

Assume now that any other admissible strategy µ is chosen by u. Let
again w use wt = ψ̂t(Wt, xt, ut). The same arguments as before show that
along the trajectory generated,

∂Ut(Wt)

∂t
+DUt(Wt).Ft(Wt, ut, yt) ≥ 0.

Therefore UT (WT ) ≥ U0(N). And again, there is a choice of x0 such that for
the ω thus generated, J(µ, ω) = UT (WT ) ≥ U0(N). This ends the proof.

3.2 An example

The present example is the same as in [7], where a direct derivation of the
min-max strategy can be found. By several features it does not fit exactly
the previous theory. These features are interesting in that they give hints on
how to extend the general theory.

The system is of dimension 2. We call the state variables x and y, and y
is also the output variable, i.e. the minimizer’s measurement. The dynamics
are

ẋ = −cu+ b cosw (18)

ẏ = −a + b sinw (19)

The constants a > b > c are parameters, the control is u ∈ [−1,+1] and the
disturbance is w ∈ [0, 2π], and x0 on which we have an a priori information
x0 ∈ X0 = [m0 − ℓ0, m0 + ℓ0]. Since y is observed, so is y0, which is always
positive.

Final time is T = min{t | y(t) = 0}, and the payoff is

J(u(·), ω) = |x(T )|.

Two features at least do not agree with the above theory.
On the one hand, final time is not given, but is a function of u(·) and

ω. But we shall see that knowledge of W allows one to decide whether the
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game is terminated or not. Therefore it is trivial to extend the above theory
by letting (16) hold for any W such that the game be terminated.

On the other hand, there is a constraint on the allowed initial state x0.
We may remove it by introducing a term N in the cost, defined by

N(x) =

{

0 if x ∈ X0 ,
−∞ otherwise.

But now, N is no longer of class C1 nor will W be. Therefore we cannot use
(10), and we shall adapt slightly the theory.

Because of the simple form of the problem (and we shall come back to
that point later), we see from its definition that the function Wt will always
be of the form

Wt(x, y) =

{

0 if x ∈ Xt and y = yt ,
−∞ otherwise.

where Xt is the set of possible xt’s given the observations up to time t. Given
the observation process, this set is always of the form Xt = [mt − ℓt, mt + ℓt].
And recall that the second component of the state, yt, is known.

Therefore, the space W is three dimensional, and W ∈ W is entirely
characterized by the three variables m, ℓ, and y. It is straightforward to see
that the filter is now given by

ṁ = −cu
ℓ̇ =

√

b2 − (ẏ + a)2

remembering that
ẏ = b sinw − a

and the main equation now reads

UT (m, ℓ, 0) = |m|+ ℓ

and

∂Ut

∂t
+min

u
max
w

[−cuDmUt + b(DℓUt| cosw|+DyUt sinw)− aDyUt] = 0 .

Because of the symmetry with respect to the plane m = 0, we may look
only at the half space m ≥ 0. As a matter of fact, we may use a classical
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method of characteristics to solve this classical Isaacs equation. We see that
the problem being stationary, ∂Ut/∂t = 0, the minimaximizing controls are
given by

û = signDmU

cos ŵ =
DℓU

√

(DℓU)2 + (DyU)2

sin ŵ =
DyU

√

(DℓU)2 + (DyU)2

The adjoint equations are

˙DmU = ˙DℓU = ˙DyU = 0 .

In the field of trajectories that reach the terminal plane y = 0 at m > 0, the
transversality conditions give

DmU = 1, DℓU = 1 ,

and the main equation gives DyU as the positive root of the equation

−c + b
√

1 +DyU2 − aDyU = 0 .

This root is thus

r =
−ac +

√

a2c2 + (a2 − b2)(b2 − c2)

a2 − b2
(20)

In that field, one has û = 1, and ŵ given by the above formulas, and this is
a certainty equivalent controller with x̂ = m+ ℓ.

By placing these controls back into the dynamics in m, ℓ, y, one sees
however that the field of trajectories leaves a void between those trajectories
that reach y = 0 at m = 0 (with a negative slope in m) and the symmetry
plane m = 0. That void may be filled with trajectories reaching the ℓ axis.
But there U is not differentiable in m, and the transversality conditions no
longer hold. One sees that all trajectories reaching the same point on the
ℓ axis will lead to the same UT , therefore have the same U . And they live
in a plane parallel to the m axis, so that in that field, DmU = 0. Thus û
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is arbitrary as long as it drives the state to the ℓ axis without leaving that
field. The adjoint DyU is now the positive root of

b
√

1 +DyU2 − aDyU = 0 ,

let us call it

s =
b√

a2 − b2
, (21)

leading to a different ŵ. It can be seen that the slope of the corresponding
trajectories is such that this new field can in fact intersect the first one. One
should devise a dividing surface, in fact a plane, which is a dispersal plane in
the language of differential games, given by the equality of U in both fields.

The above construction synthesizes a Value function given by

U(m, ℓ, y) = max{|m|+ ℓ+ ry, ℓ+ sy}

where r and s are the constants given by (20) and (21) respectively.
This analysis gives back the same solution as found in [7], with that

difference that there we proposed a particular choice of û in the singular
field, while we see here that u is arbitrary as long as we do not reach the
edge of the field. (The dispersal plane.)

3.3 Certainty equivalence

We can derive from the new theory the following certainty equivalence, which
is similar to that of [9], but weaker than that of [7].

Define the auxiliary problem as follows. Let again t, ut, and yt be fixed,
and as usual let Ωt be Ωt[u

t, yt] as defined in (6). Consider the maximization
problem

max
ω∈Ωt

[

Vt(x(t)) +
∫ t

0
Ls(x, u, w) ds+N(x0)

]

.

Notice that this problem is equivalent to

max
x

[Vt(x) +Wt(x)] . (22)

In a sense, the auxiliary problem defines a candidate worst case disturbance
or, in its second form, worst case current state. We shall call it x̂t.

We have the following fact.
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Theorem 3.2 (Certainty equivalence) Under the hypotheses of theorem
3.1 and hypothesis H2, if furthermore the auxiliary problem has, for every t
and every (ut, yt), a maximum leading to a unique worst case current state
x̂t, the optimum controller of theorem 3.1 is a certainty equivalent strategy
ut = φ∗

t (x̂t).

Proof The proof uses the following fact

Lemma 3.1 Under the assumptions of the theorem, the function

Ut(W ) = max
x

[Vt(x) +W (x)] (23)

is a solution of the main equation.

Proof of the lemma Notice first that (23) defines a function that clearly
satisfies (16). The hypothesis says that for every W ∈ W, the max in (23)
is reached at a unique x̂. Let us calculate a directional derivative of Ut as
given by (23). Let dW ∈ W, and

Ut(W + θdW ) = max
x

[Vt(x) +W (x) + θdW (x)] .

The maximum in x being reached at a unique point x̂t, it follows from Dan-
skin’s theorem that

∂

∂θ
Ut(W + θdW )|θ=0 = dW (x̂t) .

Therefore, Ut has a Gateaux derivative given by

DUt(W ).dW = dW (x̂t) .

We also use Danskin’s theorem to calculate the partial derivative

∂Ut(W )

∂t
=
∂Vt(x̂t)

∂t
.

Placing this back into the main equation (15) with Ft given by (10) yields

∂Vt(x̂t)

∂t
+min

u∈U
max

y

[

max
w|y

Ht

(

x̂t,−
∂Wt

∂x
(x̂t), u, w

)]

= 0 ,
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i.e.

min
u∈U

max
w∈W

Ht

(

x̂t,−
∂Wt

∂x
(x̂t), u, w

)

= 0 .

Notice that since x̂t maximizes in (23) and both Vt and Wt are assumed C1

(both are defined over IRn),

∂Wt(x̂t)

∂t
= −∂Vt(x̂t)

∂t
,

and thus the previous equation is just Isaacs equation (13). This ends the
proof of the lemma.

Let us turn back to the proof of the theorem. The last two equalities
show that indeed the minimizing ut = µ̂t(Wt) is just ut = φ∗(x̂t). We see
also, using (23) and (9), that in that case, the minimax value of the criterion
is

U0(N) = max
x

[V0(x) +N(x)] = Γ0

as in the full information game.

Remark If one only assumes uniqueness of the certainty equivalent con-
trol φ∗

t (x̂t) rather than that of x̂t itself, the above derivation can easily be
extended to show that the main equation is still satisfied with the partial
derivative in time replaced by a right derivative, and the Gateaux derivative
replaced by a directional derivative. The regularity hypotheses on U then
have to be adapted in consequence to let one integrate by parts and reach
the same conclusion.

3.4 A dual formulation

In the example above, the payoff is purely terminal, and as a result the cost
to go Wt is the characteristic function of the set Xt of conditionally reachable
states defined as

Wt(x) =

{

0 if x ∈ Xt ,
−∞ otherwise.

If Xt is convex, this is a concave function. Clearly it is not of class C1, but
its support function may be, and might be used to characterize W .

More generally, if W is concave u.s.c., it is entirely characterized by its
Fenchel dual W ∗ from IRn into IR defined as

W ∗(p) = min
x

[(p, x)−W (x)] . (24)
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More precisely, the bidual

W ∗∗(x) = min
p
[(p, x)−W ∗(p)]

is the smallest concave u.s.c. function larger or equal to W , and is thus W
whenever the latter is concave u.s.c.

We shall obtain a meaningful result using W ∗ even in the case where W
is not concave.

We need three more hypotheses :

Hypothesis H3 The minimum over x in (24) is reached at a unique point
for every W ∈ W.

Hypothesis H4 The observation process is with no reappraisal, i.e. new
information comming in as time goes on cannot invalidate a possible past
disturbance. Thus, if we let

Ωτ
t = {(x0, wτ) | (x0, w(·)) ∈ Ωt} ,

our new hypothesis states that

∀(u(·), ω), Ωt
t = Ωt

T .

Hypothesis H5 For all x, w on any maximizing trajectory of the auxiliary
problem, the jacobian matrix ∂ht/∂w is of full row rank.

The last two hypotheses are satisfied, for instance, if for any (t, x), the
map w 7→ ht(x, w) is onto. But this is a more restrictive condition than
needed. Observe for instance that it is not satisfied in the example above,
while it does satisfy the hypothesis H4, and it shall be a simple matter to
formulate it in such a way that H5 be met too.

One should also notice that the fact that the observation process be non
anticipative implies that

∀(u(·), ω), ω ∈ Ωt ⇔ ωt ∈ Ωt
t .

We have the following fact:

Lemma 3.2 Under hypotheses H1, H3, H4, and H5, W ∗ satisfies the fol-
lowing dual forward dynamic programming equation:

∂W ∗
t (p)

∂t
+max

w|yt
H(

∂W ∗
t (p)

∂p
,−p, ut, w) = 0
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where the notation w | yt should be understood as

{w | ht(
∂W ∗

t (p)

∂p
, w) = yt} .

We shall write the above formula for ∂W ∗
t (p)/∂t as F

∗
t [W

∗
t , ut, yt]

Proof Replace Wt by its definition in (24):

−W ∗
t (p) = max

x

[

(−p, x) + max
ω∈Ωt(x)

(
∫ t

0
Ls ds+N(x0)

)

]

Recalling the definition (7) of Ωt(x), the above expression yields

−W ∗
t (p) = max

ω∈Ωt

[

(−p, xt) +
∫ t

0
Ls ds+N(x0)

]

.

Notice that the expression being maximized in the right hand side only de-
pends on ωt. According to Hypothesis H4 and to the remark above, we may
therefore rewrite the preceding as

−W ∗
t (p) = max

ω∈ΩT

[

(−p, xt) +
∫ t

0
Ls ds+N(x0)

]

.

According to Danskin’s theorem, we may compute directional derivatives in t
and p, that will involve the supremum of some expression over all maximizing
ω in the max above. But these expressions depend on ω only through xt,
which is assumed to be the same x̂t for all, and on wt for the partial derivative
in t. We thus find that W ∗

t has a right derivative in t given by

−∂W
∗
t

∂t
= sup

ŵt

[(−p, ft) + Lt](x̂t, ut, ŵt)

where the sup is to be taken among those ŵt that belong to maximizing
disturbances. Thanks to hypothesis H5, we may apply standard necessary
conditions locally at final time to the constrained maximization problem,
and conclude that the optimal w’s maximize the hamiltonian under the con-
straint. Therefore, the above simply reads

−∂W
∗
t

∂t
= max

w|yt
[(−p, ft) + Lt](x̂t, ut, w) .
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Similarily, Danskin’s theorem yields

−∂W
∗
t

∂p
= −x̂t .

The last two equalities yield the result.
Therefore, we have a filter type of equation to integrate W ∗, the initial

condition being of course
W ∗

0 (p) = N∗(p) .

Finally, let W∗ be the space of all possible functions W ∗
t .

Now, the main equation may be replaced by the following one. (We use
the same letter U for the value function, which is a slight abuse of notations)

∀t, ∀W ∗ ∈ W∗,
∂Ut(W

∗)

∂t
+min

u
max

y
[DU(W ∗).F ∗

t [W
∗, u, y]] = 0. (25)

UT (W
∗) = max

x
min
p
[(p, x) +M(x)−W ∗(p)] (26)

Again, call µ̂t(W
∗) a minimizing control in (25). We have the following

result ;

Theorem 3.3 Under hypotheses H1, H3, H4, and H5, if there exists a func-
tion U satisfying (25),(26), and a corresponding control µ̂t(W

∗
t ) generating

an admissible strategy, this control guarantees a performance no worse than
U0(N

∗), and if WT is concave, this controller is optimal.

Proof The proof is completely similar to that of the main theorem, up to
the fact that, by playing ut = µ̂t(W

∗
t ), we get

UT (W
∗
T ) ≤ U0(W

∗
0 )

with the equality possible for some ω, and the reverse inequality for some
ω for any other admissible controller. We end up by noticing that for any
control,

max
ω

J(u(·), ω) = max
x

[M(x) +WT (x)] ≤ max
x

[M(x) +W ∗∗
T (x)]

= max
x

[M(x) + min
p
[(p, x)−W ∗

T (p)] = UT (W
∗
T )

And if WT is concave, the only inequality above is an equality.
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3.5 The example : dual formulation

To apply the above theory, we convert the measurement process into one
that satisfies hypothesis H5 by pretending that our measurement is ẏ. The
constraint now reads

−a + b sinw = ẏt .

Let us apply the above theory, with (p, q) as the dual variable. (p in the
general theory.) It gives, first for W ∗:

W ∗
0 (p, q) = pm0 − |p|l0 + qy0 ,

and

−∂W
∗
t

∂t
= max

w|b sinw=ẏt
(pcu− pb cosw + qa− qb sinw) ,

i.e.
∂W ∗

t

∂t
= −pcu− |p|

√

b2 − (ẏt + a)2 + qẏt .

This is a particularly simple P.D.E. which yields

W ∗
t (p, q) = αp+ yq ,

with
α0 = m0 − sign(p)ℓ0

and
α̇ = −cu− sign(p)

√

b2 − (ẏ + a)2 .

This last equation leads to

αt = µt − sign(p)λt

with

λt = ℓ0 +
∫ t

0

√

b2 − (ẏs + a)2 ds ,

µt = m0 − c
∫ t

0
us ds .

The main equation (25) is now converted into

∂Ut(W
∗)

∂t
+min

u
max
w

DUt(W
∗).[−pcu+ |p cosw| − qa+ qb sinw] = 0 .
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and if the space W∗ is made up of functions of the form above, time T is
defined by ∂W ∗/∂q = 0, and the final condition on U is

UT (W
∗) = max

x
min
p
[px− αTp+ |x|] .

It is a simple matter to check that this gives

UT (W
∗) = |µT |+ λT .

We may now check that the function

Ut(W
∗) = max

{

∂W ∗

∂p
(−1, 0) + r

∂W ∗

∂q
(−1, 0) ,

1

2

(

∂W ∗

∂p
(−1, 0)− ∂W ∗

∂p
(1, 0)

)

+ s
∂W ∗

∂q
(1, 0) ,

−∂W
∗

∂p
(1, 0) + r

∂W ∗

∂q
(1, 0)

}

,

or, in a simpler form,

Ut(W
∗) = max {|µ|+ λ+ ry, λ+ sy}

is indeed a solution of the main equation. One has to identify the Gateaux
derivative of that function and apply it to F ∗

t [W
∗, u, y](·) as given previously,

a simple matter again in this case, as one can see that each of the three terms
in the big max above is a linear operator on W ∗, and should therefore be
applied unchanged on F ∗

t [W
∗, u, y](·) in the region where it holds.

4 The discrete time problem

4.1 Dynamic programming

The “filter” Ft is now defined by (11), with the same initial condition (9) as
in the continuous time case.

The dynamic programming equation now reads :

Ut(W ) = min
u

max
y
Ut+1(Ft[W,u, y]) (27)
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with the same end condition (16) as in the continuous time case:

UT (W ) = max
x

[M(x) +W (x)] .

If such a function U exists, the above minimization leads to a control
ut = µ̂t(W ) depending only on W . Notice also that if Wt is computed
according to (9)(11), it only depends on past u’s and past y’s, up to time
t−1. It is therefore possible to choose the minimizing control as ut = µ̂t(Wt).
Let us call that strategy u = µ∗(y). Let again y = η̂t(W,u) be a maximizing
y in (27).

One should notice that equations (16) and (27) imply that if [−∞] is the
constant function equal to −∞, then Ut([−∞]) = −∞. As a consequence,
η̂t(W,u) always has an inverse image by ht, with an x component such that
Wt(x) > −∞.

Theorem 4.1 Under the hypotheses H1 and H2, the above strategy is min-
imax among the strictly causal strategies. It leads to a performance

max
ω

J(µ∗, ω) = U0(N) .

Proof Assume the strategy µ∗ is used. Pick a fixed ω̄. Together, they
generate sequences {yt} and {Wt}. Along a trajectory, the main equation
(27) gives,

Ut(Wt) ≥ Ut+1(Wt+1) . (28)

Therefore, UT (WT ) ≤ U0(N). As in the continuous time case, this results in

J(µ∗, ω̄) ≤ U0(N) .

Consider the sequence {Ŵt} generated by (9) and (11) in which we place
ut = µ̂t(Ŵt) and yt = η̂t(Ŵt, µ̂t(Ŵt)) (and not yt = ht(xt, wt): at this stage,
we have not specified a wt.) Let x̂T be such that

UT (ŴT ) = max
x

[M(x) + ŴT (x)] =M(x̂t) + ŴT (x̂T ) .

From this, construct the backward sequence

(x̂t, ŵt) = ζ(Ŵt, x̂t+1, µ̂t(Ŵt), η̂t(Ŵt, µ̂t(Ŵt)))
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By construction, this generates a feasible trajectory, generated by µ̂ and a
ω̂ = (x̂0, {ŵt}). On the one hand, the output generated by this trajectory
is precisely yt = η̂t(Ŵt, µ̂t(Ŵt)), which was used to construct the filter. As
a consequence, along that trajectory, we shall have an equality in (28), and
thus UT (ŴT ) = U0(N). On the other hand, because (x̂t, ŵt) maximize in
(11), we get

J(µ̂, ω̂) =M(x̂T ) + ŴT (x̂T ) = UT (ŴT ) = U0(N) .

Thus this is the max in ω of J(µ̂, ω).
For any other admissible strategy µ, consider likewise the sequence {Wt}

generated by ut = µt, yt = η̂(Wt, µt). It will cause Ut+1(Wt+1) ≥ Ut(Wt),
hence UT (WT ) ≥ U0(N), and as above, we may exhibit an ω which yields
precisely that sequence yt = η̂t(Wt, ut) and J(µ, ω) = UT (WT ). This ends
the proof.

4.2 Certainty equivalence principle

We define as previously the auxiliary problem in either its extensive form

max
ω∈Ωt

[

Vt(x(t)) +
t−1
∑

s=0

Ls(x, u, w) +N(x0)

]

,

or in its equivalent form (22). We also let

St(x, u) = max
w∈W

[Vt+1(ft(x, u, w)) + Lt(x, u, w) +Wt(x)] .

We have the theorem:

Theorem 4.2 Under hypotheses H1 and H2, if furthermore ∀(u(·), ω) ∈ U×
Ω and ∀t the function St has a saddle-point

max
x

min
u∈U

St(x, u) = min
u∈U

max
x

St(x, u) ,

then the certainty equivalent controller ut = φ∗(x̂t), where x̂t is a current
worst case state in the auxiliary problem, is unique and optimal.

Proof As in the continuous time case, we show that the function (23) is a
solution of the main dynamic programming equation.
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Lemma 4.1 Under the assumptions of the theorem, the function

Ut(W ) = max
x

[Vt(x) +W (x)]

is a solution of the main equation.

Proof of the lemma Assume the above form for Ut. The left hand side
of the main equation (27) can be rewritten using Isaacs’equation (14) to
substitute for Vt :

Ut(Wt) = max
x

min
u

max
w

[Vt+1(ft(x, u, w)) + Lt(x, u, w) +Wt(x)] . (29)

The right hand side requires some more work. We have, assuming the
special form for Ut+1,

max
y
Ut+1(Ft[Wt, u, y])

= max
y

max
x

{

Vt+1(x) + max
(ξ,v)∈Zt(x,u,y)

[Wt(ξ) + Lt(ξ, u, v)]

}

= max
ξ,v

{Vt+1(ft(ξ, u, v)) +Wt(ξ) + Lt(ξ, u, v)} .

Equivalently, changing the name of the mute variables from (ξ, v) to (x, w),
we obtain

min
u

max
y
Ut+1(Ft[Wt, u, y]) =

min
u

max
x

max
w

[Vt+1(ft(x, u, w)) +Wt(x) + Lt(x, u, w)] (30)

The comparison of (29) and of (30) yields the result of the lemma.
Unicity of the certainty equivalent control follows from the following :

Lemma 4.2 Under hypothesis H1, existence of a saddle-point to S implies
that the certainty equivalent control φ∗

t (x̂t) is unique.

Proof of the lemma If the current worst case state x̂t is unique, then since
we have assumed uniqueness of the optimal feedback strategy φ∗, the result
follows. Assume that at some time instant, x̂t is not unique. Let therefore
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x̂1 and x̂2 be two states that maximize in (22), and thus also in (29) above.
Let φ∗(x̂1) = u1 and φ∗(x̂2) = u2, and

max
x

min
u
St(x, u) = St(x̂

1, u1) = St(x̂
2, u2) = Γt .

Since the optimal feedback strategy φ∗ is unique, it follows that

∀u 6= u1, St(x̂
1, u) ≥ Γt .

Thus if minu maxx St = Γt, it can only be reached at u = u1. But if u1 6= u2,
the same uniqueness hypothesis yields

St(x̂
2, u1) ≥ Γt .

Thus necessarily u2 = u1. This ends the proof of the lemma.
The proof of the certainty equivalence theorem follows. As a matter of

fact, the optimal u is that of (30), but it then coincides with that of (29),
which is just φ∗

t (x̂t).

Remark As far as we know, this is the most general statement to date of a
condition under which a discrete-time certainty equivalence principle holds.
The first such principle ever seems to have been in [13], but was restricted
to the linear quadratic case in its approach. In [6], we gave a proof with
convexity concavity hypotheses that hardly hold in any case without at least
linear dynamics. In [3], we hinted at the possibility to extend the linear
theory of the book to a nonlinear setup. But without a detailed statement.
An interesting feature of the condition given here is that it implies uniqueness
of the certainty equivalent control rather than of the worst case state.

5 Conclusion

It is not clear that the above theory is of much practical use as such. One of
its merits is to give a more general framework within which to understand the
certainty equivalence principle, and also to clarify the said principle in the
discrete time case. Other particular cases might be interesting to investigate.

We want to make a remark concerning the value functions Ut : they
are always max-plus linear (m.p.l.) in the sense of [1]. That is, given two
functions W 1 and W 2 from IRn into IR and given a real number a considered
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as the constant function from IRn into IR equal to a for all x, we have, for all
t,

Ut(max{W 1,W 2}) = max{Ut(W
1), Ut(W

2)},
Ut(a +W ) = a+ Ut(W ) .

One should be careful, however, that the max in the argument of the
first equation above is to be taken in the sense of the partial ordering of real
functions :

W 1 ≤W 2 ⇔ ∀x ∈ IRN , W 1(x) ≤W 2(x),

and may not exist. This is not to be confused with the function

max{W 1,W 2} : x 7→ max{W 1(x),W 2(x)} .
Let us first prove the claim:

Proposition 5.1 In the continuous time case, under the hypotheses of the
main theorem, the function Ut is m.p.l. for all t. In the discrete time case, a
function satisfying the main equation (27), (16) is m.p.l.

Proof We consider the two cases in the reverse order.

In the discrete time case, notice first that the formula (16) for UT is trivially
m.p.l. Now, take the recurrence formula (27) and assume that Ut+1 is m.p.l.
ReplacingW by a larger (in the partial ordering of real functions) function W̄
in Ft as given by (11) clearly gives, for any (u, y) a larger function Ft[W̄ , u, y],
and therefore Ut(W̄ ) ≥ Ut(W ). Similarly, adding a constant to W in Ft adds
that constant to Ft[W,u, y], and by the recurrence hypothesis also to Ut(W ).

In the continuous time case, it would be nice to derive the m.p.l. property
directly from the functional differential equation (15), as the terminal con-
dition is the same as in the discrete time case, and thus m.p.l. also. This
seems less easy to do though. However, under the hypotheses of the main
theorem (3.1), the function Ut has an interpretation as

Ut(W ) = min
µ∈M

max
(xt,w(·))

[

M(xT ) +
∫ T

t
Ls(xs, us, ws) ds+W (xt)

]

under the constraint (1). This is again clearly m.p.l., as replacing W by a
larger W̄ again clearly increases Ut(W ), and adding a constant to W adds
the same constant to Ut(W ).

This shows that there is still some unexploited structure in that theory,
and thus a hope to exploit it further.
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