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Summary

We extend to the setting of stochastic dynamic games with incomplete information a

theorem of Kuhn, and use it to prove the existence of a saddle point in a suitable class of

strategies. We then particularize this result to the situation where one of the players has full

information to show existence of a saddle point in another class of strategies exhibiting a

constant dimension sufficient statistic. A dynamic programming-like algorithm is naturally

associated with this class of strategies, and was proposed in a previous paper in a sufficient

condition setting. For this same class of games, we give an example of another use of the

main theorem, leading to a different dynamic programming-like algorithm.

Keywords. Games, saddle point, mixed strategies, dynamic programming.
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1. Introduction

In an historical paper in 1953 [5], Kuhn introduced the modern concept of game in extensive

form, extending and simplifying the concept introduced by Von Neuman and Morgenstern

[11]. In the same paper, he proved that all such games with complete memory have a saddle

point in behavioural strategies.

We shall consider the equivalent property in the setting of dynamic, and more specif-

ically multistage, games. When all variables range over finite sets, the latter are a special

case of games in extensive form. However, our approach allows us to deal with the case

where the decision variables range over infinite sets (we shall restrict them to compact sets

for technical reasons), and with noisy information. Notice also that the property of perfect

memory, which was somewhat technical in Kuhn’s set up, becomes extremely natural and

simple in the set up of dynamical systems.

For the sake of simplicity, we restrict our attention to two-player zero-sum games. It

is clear that our form of Kuhn’s theorem extends, as well as the original one, to many-

person games. (The simplest way to see that is, following Aumann [1], to lump into “player

two” the actions of all the other players). Again for simplicity, we shall first derive it for

deterministic games, and extend it to stochastic games after. We could also, of course, as

in refs [8],[9] discussed below, assume compacity of the control space of one player only,

and use the non symmetric version of Sion’s theorem.

In his paper [1], Aumann proposed an extension of Kuhn’s theorem to infinite games.

He states (p 628) “A mixed strategy can be thought of as a probability distribution, i.e.

a measure, on the set of all pure strategies”. This is is exactly what we do here. He

prefers not to place a measurable structure on the set of pure strategies. (We use Radon

measures, with various topologies). As a result, he has to use a rather restrictive class of

mixed srategies, which are not really the direct generalization of Kuhn’s mixed strategies,

but some superset of our, and his, behavioural strategies. But the difference between mixed

and behavioral then appears somewhat artificial, since his definition of behavioral is that, in

our notations, for i > j, the random variables ui and uj should be independant. However,

the probability law of ui is pi = ϕi(u
t−1, yt), explicitly depending on the realization uj . (In

the notations of [1], our ui is yi = bi(xi, ω), where xi plays the role of our ri, and encodes,
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through the function uji , the information on yj = uji (xi).)

In the past few years, several papers have dealt with this type of games, see e.g. [8]

and [9]. These two references and the related literature use a similar set up to ours, and

their strategies are our behvioral strategies. The link with what we call mixed strategies is

not made there. They do not either consider deterministic games (which are topologically

more difficult to handle), nor, more importantly, partial or noisy state information. They

deal with infinite time games. The main obstacle to doing so here is that the second part

of the paper would not carry over in a simple way.

Starting with section 7, we examine in more detail the case where one of the players

has full (causal) information, where it is known that the second guessing problem simplifies.

See [2] and the bibliography therein. A dynamic programming approach lets us achieve

two things. On the one hand, it allows us to show that there exists a saddle point in

the class of strategies used in [2], using finite dimensional sufficient statistics, which turns

the sufficient condition of that paper into a necessary and sufficient condition. On the

other hand, it may be more effective for short duration games to stay with the space of

behavioural strategies, and we shall derive a different dynamic programming-like algorithm

for the particular case of the rabbit and hunter game.

Notations. We shall study only discrete time games, so that we shall have to deal

with finite sequences of objects. We shall adopt the following conventions. Let a =

{a1, a2, . . . , aT } be a finite sequence, where at ∈ At. A subscript will refer to a particular

element of the sequence, while a superscript will refer to the restriction of the sequence to

its first elements: at = {a1, a2, . . . , at} ∈ A1 × A2 × · · · × At = At. The notation At will

therefore mean the cartesian power of A only if A1 = A2 = · · · = At = A. Likewise, if α

is a function ranging over AT , αt will be its component in At, and αt its first t compo-

nents. Finally, if a ∈ At et b ∈ At+1, then a·b stands for the element of At+1 obtained by

concatenating a and b.

Let us also agree that for a topological space A, we shall call π(A) the set of all

(Radon) probability measures over A.
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2. Multistage game.

A deterministic two-player zero-sum multistage game is given by

- An integer T called the horizon of the game. Let T = {1, 2, . . . , T} and t ∈ T is called

the time.

- A sequence of state spaces Xt. We shall use xt ∈ Xt, the state at time t.

- An initial state x1 ∈ X1, which is assumed to be part of the common knowledge of

both players.

- Two sequences of output spaces Yt and Zt. yt ∈ Yt and zt ∈ Zt are the measurements

of player 1 and 2 at time t.

- Two control sets U and V and two point to set maps admissible controls yt 7→ U(yt) ⊂

U and zt 7→ V (zt) ⊂ V. We shall oftentimes write Ut and Vt instead of U(xt) and

V (xt) when what is meant is clear. ut ∈ Ut and vt ∈ Vt are the controls of player 1

and 2 respectively at time t.

- A sequence of functions dynamics ft : Xt × Ut × Vt → Xt+1.

(1) xt+1 = ft(xt, ut, vt).

- Two sequences of output functions ht : Xt → Yt and kt : Xt → Zt, defining

yt = ht(xt),(2a)

zt = kt(xt),(2b)

(Actually, ht and kt need only be defined for t ≥ 2)

- A Capture set C ⊂ XT ×T defining the final time t1 through

(3) t1 =
{

min{t | (xt, t) ∈ C} if capture happens,
T otherwise.

- A criterion (or cost function) G that player 1, chosing the control, ut ∈ Ut strives

to minimize, and 2, chosing the controls vt ∈ Vt to maximize. G is defined via two

sequences of functions: Lt : Xt × U × V → R and Kt : Xt → R by

(4) G =

t1−1
∑

t=1

Lt(xt, ut, vt) +Kt1(xt1).
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Remark. The above set up is that of dynamical systems, and is by now classical. The

important point for us is that it defines functions

yt = h̃t(u
t−1, vt−1),(5a)

zt = k̃t(u
t−1, vt−1).(5b)

We shall also make use of

yt = ht(xt) = h̃t(ut−1, vt−1),(6a)

zt = kt(xt) = k̃t(ut−1, vt−1).(6b)

And also

(7) G = G̃t1(u
t1−1, vt1−1).

Let us introduce a last notation. We shall be interested in games with complete

memory. By this we mean that the information available to the players to make up their

choice of control values at each instant of time is the whole sequence of their own past

controls, and their past and present measurements. We shall therefore write:

(8a) rt = (ut−1, yt) player 1’s information,

and

(8b) st = (vt−1, zt) player 2’s information.

We shall also use the following definition

Definition. If the sets U and V, (and for stochastic games, W), are all finite, the game

shall be called finite.

Notice that for a finite game, the sets Xt, Yt, and Zt may, with no loss of generality

be restricted to finite sets.

For infinite games, we shall use the following topological hypothesis
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Hypothesis. The sets Ut, Vt, Xt, Yt, and Zt are all topological spaces, the first two

compact. The functions ft, ht, kt, Lt, and Kt are all continuous, (making G in (4) a

continuous function of (xT , uT−1, vT−1), or G̃ in (7) a continuous function of (uT−1, vT−1)).

3. Strategies

To make precise the definition of the game, we must now specify the strategy sets, and

what are the quantities to be minimized or maximized.

Definition 2. We call pure strategy of player 1 a non anticipatory measurable map

(9a) α : Y T−1 → UT−1 : (y1, . . . , yT−1) 7→ (u1, . . . , uT−1)

and we call A the set of all such non anticipatory maps, i.e. such that, for a and b in Y T−1

at = bt =⇒ αt(a) = αt(b).

Likewise, pure strategies of the second player are non anticipatory measurable maps

(9b) β ∈ B, β : ZT−1 → V T−1 : (z1, . . . , zT−1) 7→ (v1, . . . , vT−1).

Any pair of pure strategies (α, β) ∈ A × B generates a well defined game history by (1),

(2), and

ut = αt(y1, . . . , yt, η),(10a)

vt = βt(z1, . . . , zt, ζ),(10b)

where η and ζ are arbitrary sequences that do not affect the resulting values of ut and

vt, by the hypothesis of nonanticipativity. As a consequence, we shall omit them in the

future. There corresponds to it a well defined cost

G = Ĝ(α, β).

We can state the following fact:
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Lemma. Under the topological hypothesis, the sets A and B of pure strategies are com-

pact in the topology of pointwise convergence.

Proof. The set of all functions from Y T−1 into UT−1 is isomorphic to the power set

(

UT−1
)Y T−1

.

Since the Ut are all assumed compact, by Tychonov’s theorem so is UT−1, and therefore

also the above power set, in the product topology, which coincides with the topology of

pointwise convergence. Now, the property of non anticipativity is clearly preserved in the

pointwise limit, so that the sets of pure strategies are closed subsets of compact sets in

that topology. Q.E.D.

In the case where Ĝ has no saddle point over A×B, it is natural to introduce mixed

strategies. Assuming we have chosen a topology on A and B, we may give the following

definition :

Definition. We call mixed strategies probability measures λ and µ over A and B respec-

tively:

λ ∈ π(A),(11a)

µ ∈ π(B).(11b)

We then wish to take as a new criterion

(12) J(λ, µ) = E(G) =

∫

A×B

Ĝ(α, β) dλ(α) dµ(β).

The existence of the above integral is not guaranteed a priori, since Ĝ is in general not

continuous in α and β, and there is no guarantee that it be measurable. Three alternate

sets of hypotheses are provided here as examples of setups where this integral exists, and

that preserve the compactness of the set of allowed pure strategies. The first set is rather

trivial:

Hypothesis 1. The game is finite.

Then the integral in (12) is mearly a finite sum. The game is just a matrix game,

(possibly with a very large matrix !), and we are in the classical setting of Von Neuman

and Morgenstern.
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The second set allows us to avoid any finiteness hypothesis, but imposes rather strong

restrictions on the allowed pure strategies:

Hypothesis 2. The sets Ut, Vt, Yt, and Zt, are metric compact spaces, the pure strategies

are restricted to be Lipshitz continuous with a prescribed Lipshitz modulus.

We then have the following fact

Lemma. Under hypothesis 2, the sets A and B are compact in the topology of uniform

convergence, and the sequences uT−1, vT−1, and xT depend continuously on (α, β).

Proof. The first claim is a direct consequence of the Arzela Ascoli theorem. The second

claim derives from the fact that the xt’s are then continuous functions of the strategies, as

is easily seen by induction on t.

Finally, it is also possible to avoid regularity assumptions on the pure strategies, still

keeping infinite control sets, by assuming finite observation sets. Notice that it follows from

the standing topological hypothesis that the reachable game space is bounded, so that any

quantization of the measurement with a finite mesh will produce a finite measurement set.

This type of hypothesis was first proposed by Levine [6].

Hypothesis 3. The sets Yt and Zt are finite. The functions ht and kt can therefore not

be continuous. Assume that the sets h−1(yk) ∩ k
−1(zl) have non void interiors, the union

of their boundaries is made of the finite union of sets on which h and k are constant, that

satisfy the same hypothesis in the relative topology of this boundary, and so on recursively,

the whole construction defining a finite partition of XT .

Lemma. Under hypothesis 3, the setA×B can be partitioned in a finite union of Borel sets

(in the topology of pointwise convergence), the state trajectory xT depending continuously

on (α, β) over each of them, and thus also the control sequences uT−1, vT−1.

Proof. Let, for simplicity, A × B = C, (α, β) = γ, and, for this proof, y stand for (y, z).

Let also Pk, k = 1, . . . , K be the interior of the sets in X such that y = const, P = ∪Pk,

and

Ct = {γ | xs ∈ P, ∀s ≤ t}.
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It is easy to see by induction on t that Ct is open in C. As a matter of fact, let γ(n) be a

sequence of strategies converging to γ ∈ Ct. Since y1 is fixed, u
(n)
1 = γ

(n)
1 (y1) → u1. By

continuity of f1, x
(n)
2 → x2. Since x2 is interior to h−1

2 (y2), for n large enough, y
(n)
2 = y2.

Therefore, we can use the convergence of γ
(n)
2 and the continuity of f2 to conclude that

x
(n)
3 → x3, and so on. Therefore x

(n)
t → xt, and for n large enough, x

(n)
t is also in the

interior of its set Pk, thus γ
(n) is in Ct.

Therefore the complement Dt of Ct in Ct−1 is also a Borel set. This is the set of

strategies γ such that xs ∈ P , for s = 1, . . . t − 1, xt ∈ ∂P . Now, assume again that

xt ∈ Qi where Qi is the relative interior of one of the subsets of constant y in ∂P . The

same type of argument will show that the subset El of Dt such that the next xs, up to

s = l, are in P is again open in Dt.

We finally have a finite number of subsets of C, depending on the subsets of the

partition of X in which each of the xt lie. All are Borel sets. And since we have shown

the convergence of the x
(n)
t in each case, Ĝ is continuous in the relative interior of all of

them. This proves the lemma.

As a consequence, Ĝ is measurable, and J in (12) is well defined.

So we now have at least three cases where the following existence hypothesis is satisfied:

Hypothesis. For a suitable topology on A and B, these sets are compact, and the state

trajectory xT , as well as the control histories uT−1, vT−1, are measurable functions of the

pure strategies α and β.

As a consequence of this hypothesis, we have the following two facts.

Proposition 0. J in (12) is well defined, since G as defined in (4) is a continuous function

of (xT , uT−1, vT−1).

Theorem 0. Under the existence hypothesis, and if furthermore, Ĝ is continuous, the

game has a saddle point in mixed strategies.

Proof. See Ekeland [4], p 25. The proof makes use of Sion’s theorem (see [10]) together

with the vague topology on the set of measures.

The idea behind mixed strategies is that the players choose a pure strategy at random,

according to the probability laws λ and µ respectively, once for all at the begining of
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the game and for its whole duration. The spaces of mixed strategies are very large and

complicated sets, and this type of behavior may not appear very natural. We shall therefore

introduce another concept of strategies. But we first need a preliminary definition.

Definition. We call mixed control of the first player at time t a probability law pt over

Ut, and likewise for the second player.

Let thus

pt ∈ Pt = π(Ut),(13a)

qt ∈ Qt = π(Vt).(13b)

We now define the new class of strategies:

Definition. We call behavioral strategy of the first player a sequence of measurable maps

(14a) ϕt ∈ Φt, ϕt : U
t−1 × Y t → Pt : (u

t−1, yt) 7→ pt = ϕt(u
t−1, yt) = ϕt(r

t),

and similarly for the second player:

(14b) ψt ∈ Ψt, ψt : V
t−1 × Zt → Qt : (v

t−1, zt) 7→ qt = ψt(v
t−1, zt) = ψt(s

t).

The game is then extended by considering {xt}, {ut}, {vt}, {yt}, and {zt} as stochastic

processes, generated by (1) and (2), ut and vt being stochastic variables with probability

distributions pt and qt respectively, given by (14). Then the sequences uT−1 and vT−1 are

stochastic variables, and we define the payoff of the game as

(15) J = E(G) = E
(

G̃(uT−1, vT−1)
)

.

This is well defined, since G̃ is continuous, and (14) clearly defines a Radon probability

over UT−1 × V T−1. (By a finite, elementary, version of the Ionescu Tulcea theorem.)

The idea behind behavioral strategies is that at each instant of time, the players

choose their controls at random, according to a probability distribution function of their

information.

One might believe that this new set of strategies is richer than the previous mixed

strategies, since it involves many random choices instead of a single one. A very simple

example will teach us that this is not so.
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4. Example.

The following example is the smallest possible version of the Hunter and Rabbit game. Let

T = 4. (i.e. the game has three time steps.) The state is x = (y, w, z) ∈ {1, 2}× {0, 1, 2}2

and U = V = {1, 2}. The dynamics are

yt+1 = ut, y1 = 1,

wt+1 = vt, w1 = 0,

zt+1 = wt, z1 = 0.

Player 1 has no other information than the sequence ut−1 at time t. Player 2 knows the

whole state in addition to the past controls. The capture set is yt − zt = 0. The payoff to

player 2 is 1 if yt1 = zt1 , i.e. if capture has occured, and 0 otherwise. Hence, J = E(G) is

the capture probability. Recall that we always assume that the initial state is part of the

rule of the game, and is therefore common knowledge.

Player 1 actually plays open loop, and therefore chooses among 23 = 8 pure strategies.

Let us look at the possible strategies of player 2. The pure strategies are specified

by the decision rules at time 1 and 2, since actions taken at time 3 have no effect on the

outcome of the game. At time 1, no information is available beyond the rules of the game.

The only two possibilities are either v1 = 1 or v1 = 2. At time 2, a measurement y2 = u1

is available, which can be equal to 1 or 2. Since v2 can also be chosen as either 1 or 2,

there are 4 possible decision rules for β2(y2), i.e. v2 = 1 ∀y, that we denote by 1, or, with

the same convention, 2, or v2 = y2, or finally v2 = 3− y2. We thus have the following list

of 8 possible pure strategies:

strategy 1 2 3 4 5 6 7 8
time
t = 1 1 1 1 1 2 2 2 2
t = 2 1 2 y2 3− y2 1 2 y2 3− y2

The mixed strategies are therefore given by 8 probabilities (µ1, . . . , µ8) whose sum is

one, thus seven degrees of freedom.

Let us now look at the behavioral strategies, still for player 2. They are defined by

the probability ψ1 of playing v1 = 1, (and 1 − ψ1 of playing v1 = 2), and for time t = 2
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the four probabilities ψ2(s
2) of playing v2 = 1 according to the four possible values of

s2 = (v1, y2). Thus, these strategies are defined by five independent probabilities.

We also see on this example that one can make a mixed strategy correspond to a

unique behavioral strategy, its behavior, by seeing the latter as a conditional marginal

probability. Here, for instance, assuming that the pure strategies are numbered according

to the above table, we have

ψ1 = Pr(v1 = 1) = µ1 + µ2 + µ3 + µ4,

ψ2(1, 1) = Pr(v2 = 1|v1 = 1, y2 = 1) =
µ1 + µ3

µ1 + µ2 + µ3 + µ4

ψ2(1, 2) = Pr(v2 = 1|v1 = 1, y2 = 2) =
µ1 + µ4

µ1 + µ2 + µ3 + µ4

Likewise, the conditioning on v1 = 2 would leed to a denominator µ5 + µ6 + µ7 + µ8, and

so on. It is easy to verify that this map is onto, but cannot be one to one. An infinity of

different mixed strategies lead to the same behavioral strategy.

The aim of the next section of this paper is to show that it is enough to consider

behavioral strategies, for the outcome of the game only depends on the behavior of the

strategies used, as rigorously defined hereafter.

Let us remark, before we close this example, that the solution of this game is almost

obvious: each player should play either 1 or 2 with probability 1/2.

5. Kuhn’s theorem.

We must first make precise the relationship between a mixed strategy and its associated

behavioral strategy.

Definition. We define the map behavior γ from the set π(A) of mixed strategies to the

set Φ of behavioral strategies in the following way:

ϕt(u
t−1, yt) is the marginal law on αt(y

t) knowing αt−1(yt−1) = ut−1.

In the finite case, for instance, this can be made explicit in the following way. Let yt

and ut−1 be fixed. Let

A1 =
{

α ∈ A|αt−1(yt−1) = ut−1
}

,

A2 =
{

α ∈ A|αt(yt) = ut−1 · ū
}

⊂ A1.
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Then, γ(λ) = ϕ with, if A1 6= ∅

ϕt[u
t−1, yt](ū) =

(

∑

α∈A2

λ(α)

)(

∑

α∈A1

λ(α)

)−1

.

If A1 = ∅, ϕt[u
t−1, yt] may be arbitrarily specified, and we shall always assume that

ϕ = γ(α) has been so extended to all values of its arguments.

We shall also call γ the behavior map of the second player, from π(B) into Ψ.

We now state the main theorem, which is an extension of Kuhn [5]:

Theorem 1. There exists a function J̄ from Φ×Ψ into R such that,

∀(λ, µ) ∈ π(A)× π(B), J(λ, µ) = J̄
(

γ(λ), γ(µ)
)

i.e., the criterion J(λ, µ) of the game only depends on the behaviors γ(λ) and γ(µ).

Proof. Under the existence hypothesis, (uT−1, vT−1) is a measurable function of (α, β).

Thus a pair of mixed strategies (λ, µ) generates a probability distribution ΠT−1 over the

set UT−1 × V T−1, and one has

J(λ, µ) =

∫

UT−1×V T−1

G̃(uT−1, vT−1) dΠT−1(uT−1, vT−1),

or, in the discrete case

J(λ, µ) =
∑

uT−1,vT−1

G̃(uT−1, vT−1)ΠT−1(uT−1, vT−1).

Therefore, J only depends on the probability law ΠT−1. Notice that, for fixed ūT−1, v̄T−1,

the event (uT−1, vT−1) = (ūT−1, v̄T−1) can be writen

(uT−2, vT−2) = (ūT−2, v̄T−2) and (uT−1, vT−1) = (ūT−1, v̄T−1).

Furthermore, it follows from the definition (12) that the strategies λ and µ are chosen

independently by the two players, so that, for uT−2 = ūT−2 and vT−2 = v̄T−2 fixed, the

random variables uT−1 and vT−1 are independent.

Let therefore λ and µ be fixed, ϕ = γ(λ) and ψ = γ(µ) their behaviors,

h̃T−1(ūT−2, v̄T−2) = ȳT−1, k̃T−1(ūT−2, v̄T−2) = z̄T−1,
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ϕT−1(ū
T−2, ȳT−1) = p̄T−1, ψT−1(v̄

T−2, z̄T−1) = q̄T−1.

One has the equality

dΠT−1(ūT−1, v̄T−1) = dΠT−2(ūT−2, v̄T−2) dp̄T−1(ū
T−1) dq̄T−1(v̄

T−1).

(See, for instance, the second part of proposition V.1.1 in [7].) Or in the discrete case,

ΠT−1(ūT−1, v̄T−1) = ΠT−2(ūT−2, v̄T−2)p̄T−1(ūT−1)q̄T−1(v̄T−1),

by Bayes rule.

One then iterates this process to write ΠT−2 in terms of ΠT−3 and of ϕT−2 and ψT−2,

and so on. This proves the theorem.

This allows us to carry over results obtained by topological means on games in normal

form, such as theorem 0 above, to dynamic games in behavioral strategies. We thus have,

for instance, the obvious following fact :

Corollary 1. Under the existence hypothesis, and if furthermore Ĝ is continuous, a dy-

namic game with perfect memory admits a saddle point in behavioral strategies over the

sets Φ = γ(A), Ψ = γ(B).

The difficult task, however, is to characterize the sets γ(A) and γ(B). This is trivial

for finite games, where all behavioral strategies will be included. We shall see that the

question is easy for non degenerate stochastic games. For deterministic continuous games,

let us look, for instance, at the set up defined by hypothesis 2 of section 3. A is the set

of causal functions from Y T−1 into the compact UT−1, Lipshitz continuous with Lipshitz

modulus ℓ.

Proposition. The behavioral strategies of γ(A) have the following property : let τ : Ut →

R be a function with Lipshitz modulus m, then

Ertτ =

∫

Ut

τ(u)dϕt(r
t)(u)

is a Lipshitz continuous function of yt with Lipshitz modulus ℓm.

The proof is elementary. This includes the obvious fact that if the pure strategies are

restricted to open loop controls, so are the corresponding behavioral strategies, since this
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is the case ℓ = 0. We conjecture that this is a complete characterization of the set γ(A),

but this is not sure. We did not investigate this point in detail, since we do not need it in

the sequel.

6. Stochastic games.

Up to here, we have dealt with games with deterministic dynamics and measurements.

The information available to the players is incomplete, but not noisy. We now extend all

the previous theory to the case of stochastic games.

A stochastic multistage game is defined as in section 2, except that (1) and (2) involve

an extra stochastic process {wt}, with values in sets Wt, usually multidimensional. It will

always be assumed to be white, with probability distributions Wt known to both players.

Thus (1) and (2) are replaced respectively by

(17) xt+1 = ft(xt, ut, vt, wt),

yt = ht(xt, wt−1),(18a)

zt = kt(xt, wt−1).(18b)

The one time step shift in the argument w of ht and kt makes sense since x1 being known

to both players, the first relevant measurement is y2, z2. Moreover, with that convention,

h̃t and k̃t, as well as rt and st, all depend on ut−1, vt−1, and wt−1, greatly simplifying

the sequel. Of course, the hypothesis that w is a white process makes this much more

than a pure notational trick. One case where this is not restrictive, and equivalent to the

more classical approach, is when w enters in the dynamics and the measurements through

distinct independent components.

In this setup, the sequences x, u, v, become stochastic processes, even with pure strate-

gies, and (4) is replaced with a mathematical expectation:

(19) G = E

[

∑

t

Lt(xt, ut, vt) +Kt1(xt1)

]

.

For simplicity, we shall assume that the sets Ut and Vt do not depend on the current state.
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The definitions of the strategies are unchanged. Notice that the three sets of hypothe-

ses that have been proposed as alternate setups that insure satisfaction of the existence

hypothesis still stand here. Hypothesis 1 leads to a standard matrix game the entries of

which are the expected cost incurred. Hypothesis 2 needs no modification either. Conver-

gence of the trajectories is insured for each value of wT−1, and thus the expected values

converge. Hypothesis 3 must be extended to hold on the X ×W space. It is just a bit

cumbersome to state and deal with. A simple case is when w = (ξ, η) is made of two

independent components, ξ entering in the dynamics, and ht(x, w) = ĥt(x+ η), and like-

wise for kt. However, everything becomes much simpler if we assume that for all xt, ut,

vt, the transition probability induced by ft is absolutely continuous with respect to the

Lebesgue measure. (The so called non degenerate case). Then, the existence hypothesis

and continuity of Ĝ for pointwise convergence of the strategies is just a consequence of the

Ionescu Tulcea theorem.

Theorem 1 is still valid in this context, its proof is slightly modified as follows.

Proof. (Theorem 1 for stochastic games.) As previously, let ΠT−1 be the distribution law

of (uT−1, vT−1, wT−1) generated by a given pair of mixed strategies (λ, µ). One has

J(λ, µ) =

∫

UT−1×V T−1×WT−1

G̃(uT−1, vT−1, wT−1) dΠT−1(uT−1, vT−1, wT−1).

Moreover, as previously

dΠT−1(uT−1, vT−1, wT−1) = dΠT−2(uT−2, vT−2, wT−2) dΠc(uT−1, vT−1, wT−1),

where Πc is the conditional law of (uT−1, vT−1, wT−1) knowing (uT−2, vT−2, wT−2). Using

the notation
pT−1 = ϕT−1

(

uT−2, h̃T−1(uT−2, vT−2, wT−2)
)

qT−1 = ψT−1

(

vT−2, k̃T−1(uT−2, vT−2, wT−2)
)

for the behaviors, which are, by definition, the conditional laws of uT−1, vT−1 for a given

rT−2 and sT−2, and remembering that wT−1 is by hypothesis independent of the past, we

derive, still as previously

dΠT−1(uT−1, vT−1, wT−1) =

dΠT−2(uT−2, vT−2, wT−2) dpT−1(uT−1) dqT−1(vT−1) dRT−1(wT−1).

16



We may anew iterate the process, to conclude the proof.

7. Semicomplete information in finite games.

One of the superiorities of behavioral strategies over mixed strategies is that due to their

sequential nature, they lend themselves to dynamic programming. We shall exploit this

fact in the case of finite games with semicomplete information.

By this we mean that one of the players, say 2, has full knowledge of the relevant

variables of the game at each instant of time. More specifically, we shall assume that at

time t, 2 knows xt, yt, and also ut−1. This is not beyond the scope of our previous theory,

since we may always augment the state with the variables ηt and ξt, with ηt+1 = wt, and

ξt+1 = ut, so that knowing the full state also yields yt = ht(xt, ηt), and ut−1 = ξt. Of

course the players are still assumed to have perfect memory, so that they also remember

past values of their measurements.

Let νt be a probability distribution over Xt×V t−1. We think of νt as being player 1’s

conditional probability on (xt, vt−1). Assume ut given, as well as a behavioral strategy ψt

of the second player. Then, using the dynamics (17), we can propagate νt into a probability

ν̄t+1 over Xt+1 × V t, in the following way. Let a ∈ Xt+1 and b ∈ V t,

ν̄t+1(a, b) = νt(a
t, bt−1)ψt[a

t, ut−1, bt−1](bt)
∑

w

δ
(

at+1 − ft(at, ut, bt, w)
)

Wt(w).

Then, when the measurement yt+1 comes in, one may compute the new conditional prob-

ability νt+1 on (xt+1, vt). We shall give explicit formulas only for the simple example of

the next section. Anyhow, this defines a filter of the form

(20) νt+1 = Ft(νt, u
t, yt+1, ψt),

and also a function

(21) νt = Nt(u
t−1, yt, ψt−1) = Nt(r

t, ψt−1).

By summation over the component subspaces, we can project νt on Xt alone, let ρt be

that law on xt. We can further project on the component Xt, yielding a law

(22) ρt = Rt(r
t, ψt−1).

We can now state a theorem of dynamic programming.
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Theorem 2. Let a stochastic dynamic game be given by (17) to (19), and (ϕ∗, ψ∗) be a

saddle point in behavioral strategies (which exists according to corollary 1). There exists

a sequence of functions Vt from Xt × U t−1 × V t−1 to R such that for all (xt, ut−1, vt−1)

reached with a non zero probability while playing according to (ϕ∗, ψ∗), one has

(23) Vt(x
t, ut−1, vt−1) =

max
v∈Vt

∑

w∈Wt

∑

u∈Ut

[

Vt+1

(

xt ·ft(xt, u, v, wt), u
t−1 ·u, vt−1 ·v

)

+ Lt(xt, u, v)
]

p∗t (u)W
t(w)

=
∑

v∈Vt

∑

w∈Wt

∑

u∈Ut

[Vt+1 + Lt] p
∗
t (u)W

t(w)q∗t (v).

(the arguments in Vt+1 and Lt in the third term are of course the same as in the second)

and

(24)
∑

xtvt−1

Vt(x
t, ut−1, vt−1)ν∗t (x

t, vt−1) =

min
u∈Ut

∑

w∈Wt

∑

v∈Vt

∑

xtvt−1

[

Vt+1

(

xt ·ft(xt, u, v, wt), u
t−1 ·u, vt−1 ·v

)

+

Lt(xt, u, v)
]

ν∗t (x
t, vt−1)q∗t (v)W

t(w)

=
∑

u∈Ut

∑

w∈Wt

∑

v∈Vt

∑

xtvt−1

[Vt+1 + Lt] ν
∗
t (x

t, vt−1)q∗t (v)W
t(w)p∗t (u),

where p∗t and q∗t stand for ϕ∗
t [r

t] and ψ∗
t [x

t, ut−1, vt−1] respectively, ν∗t for Nt(r
t, ψ∗), and

yt in rt for h̃t(xt, wt−1), and

(25) ∀(x, τ) : (xτ , τ) ∈ C, ∀(u, v), Vτ (x
τ , uτ−1, vτ−1) = Kτ (xτ ),

Conversely, if a sequence of functions Vt together with a pair of behavioral strategies

ϕ∗, ψ∗ satisfy equations (23) to (25), these strategies constitute a saddle point of the game,

and the value of the game is V1(x1).

Proof. The sufficiency part of the claim is a direct adaptation of the theorem in [2] and

shall not be repeated in detail. The proof amounts to using (23)(25) to show that, for

an arbitrary sequence vT , one has G(ϕ∗, vT ) ≤ V1(x1), and using (24)(25) to derive the

other inequality of the saddle point. This second part uses the fact that when calculating
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G(uT , ψ∗), since 2 plays ψ∗, Nt(r
t, ψ∗) is actually a conditional probability. This fact is

not true, but not needed either, in the first calculation.

Let us now look at necessity.

Notice first that the second equalities in (23) and (24) amount to the fact that q∗ has

its support contained in the set of v’s that provide the maximum in (23), and likewise for

p∗ with the minimum in (24).

Let (xt, ut−1, vt−1) be a state of the game reached with a nonzero probability while

playing (ϕ∗, ψ∗). For each wt−1, there corresponds a yt−1, and we can describe the game

history from there on under the strategies ϕ∗, ψ∗. Let

Vt(x
t, ut−1, vt−1) = E

[

t1−1
∑

i=t

Li(xi, ui, vi) +K(xt1)

]

.

It is clear that Vt thus defined satisfies the second equality of (23), and thus of (24) by

summing both sides of (23). Assume now that there exists v̂ ∈ Vt that gives to the

second term of (23) a value larger than Vt. Consider the strategy ψ̂ that coincides with

ψ∗ everywhere, except at (xt, ut−1, vt−1) where it is a dirac distribution at v̂. Let, for

simplicity, Lt1 = K(xt1), and write

EG̃(ut1−1, vt1−1) = E

t−1
∑

i=1

Li + E

t1
∑

i=t

Li.

Using the fact that the information algebra is increasing, write the second expectation

above as

E

t1
∑

i=t

Li = E

[

E

(

t1
∑

i=t

Li

∣

∣

∣
xt, ut−1, vt−1

)]

.

The inner expectation is larger for (ϕ∗, ψ̂) than for (ϕ∗, ψ∗) by hypothesis. From all other

possible states at time t, this expectation coincides for the two strategy pairs, since ψ∗

and ψ̂ coincide. However, this particular state is reached by hypothesis with a nonzero

probability. Therefore the outer expectation is larger with the strategy ψ̂, which contradicts

the definition of the saddle point.

We do likewise with ϕ and (24), noticing as in the sufficiency proof that, when player

2 does play ψ∗, the quantity minimized in (24) actually is the expectation of Vt for player

1. We thus contradict the other inequality of the saddle point. The theorem is proved.

19



Notice that as in [2], this may be viewed as a fixed point theorem: multiply equation

(23) by ν∗t (x
t, vt−1) on both sides, and sum over all (xt, vt−1). Then (23)(24) together

express the fact that ϕ∗
t , ψ

∗
t provide a saddle point (over a product of simplices for ψ∗

t )

of the matrix made up of the blocks
[

Vt+1 + Lt

]

weighted by ν∗t = Nt(r
t, ψ∗t−1). So the

problem is to find a ψ∗ that gives rise to a ν∗ for which this ψ∗ is an argument of this

sequence of saddle points.

In itself, this theorem is of little use. We shall see in the next section a case where it

simplifies to the point where it can be used to compute the saddle point of the game. At

this time, we show a theoretical consequence of interest.

Corollary 2. Let ρ∗t = Rt(r
t, ψ∗). The game admits a saddle point in behavioral strate-

gies of the form ϕ∗
t [r

t] = ϕ̂t[ρ
∗
t ], ψ

∗
t [x

t, ut−1, vt−1] = ψ̂t[xt, ρ
∗
t ]. We can define a filter

ρt+1 = gt(ρt, ut, yt+1, ψt), and there exists a sequence of functions Vt(xt, ρt) such that for

all (xt, ρt) that are reached with a non zero probability while playing optimally,

(26) Vt(xt, ρt) =

max
v∈Vt

∑

w∈Wt

∑

u∈Ut

[Vt+1 (ft(xt, u, v, w), gt(ρt, u, yt+1, q̂t)) + Lt(xt, u, v)] p̂t(u)Wt(w)

=
∑

v∈Vt

∑

w∈Wt

∑

u∈Ut

[Vt+1 + Lt] p̂t(u)Wt(w)q̂t(v)

and

(27)
∑

xt∈Xt

Vt(xt, ρt)ρt(x) =

min
u∈Ut

∑

xt

∑

w∈Wt

∑

v∈Vt

[Vt+1 (ft(xt, u, v, w), gt(ρt, u, yt+1, q̂t)) + Lt(xt, u, v)] q̂t(v)Wt(w)ρt(xt)

=
∑

u∈Ut

∑

xt

∑

w∈Wt

∑

v∈Vt

[Vt+1 + Lt] q̂t(v)Wt(w)ρt(xt)p̂(u).

where p̂t stands for ϕ̂t[ρt], q̂t for ψ̂t[xt, ρt], and yt+1 for ht+1

(

ft(xt, u, v, w), w
)

, and

(28) ∀(xτ , τ) ∈ C, ∀ρ, Vτ (xτ , ρ) = Kτ (xτ ).

Conversely, if a sequence of functions ϕ̂t, ψ̂t, and Vt satisfy these equations, they provide

a saddle point of the game.
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Proof. The fact that with strategies of this form, there exists such a filter, and the

sufficiency part of the proof is exactly the main theorem of [2]. Let us look at the necessity.

Notice that, for each value of (xt, vt−1) in Xt × V t−1, we may multiply all terms

of equation (23) by ν∗t (x
t, vt−1), which is nonnegative, and sum over all such terms still

preserving the inequalities. Conversely, writing the resulting summed inequality (implicit

in the max operation) is equivalent to the separate inequalities, provided it is specified that

q∗ is allowed to depend on (xt, vt−1). (Therefore the combined maximizing variable ranges

over a product of simplices).

Therefore, the mean value V̄ (rt) =
∑

Vtν
∗
t appears as the saddle point of the kernel

∑

w

∑

(xt,vt−1)[Vt+1 + Lt]ν
∗
t (x

t, vt−1)W t(w), over a simplex for the minimizing variable,

and a product of simplices for the maximizing variable. Now look at this definition for

t = T − 1. Then, Vt+1 = KT (xT ), and the kernel depends on past values of the various

variables only through ν∗T−1. Moreover, since the variables xT−2, vT−2, and wT−2 do not

appear in VT and LT−1, we may first sum over these variables, ending up with the kernel
∑

w

∑

x[VT + LT−1]ρT−1(x)WT−1(w). Therefore, the value of the saddle point depends

only on ρT−1. And using the sufficiency argument, we can replace ϕ∗
T−1 and ψ∗

T−1 by

strategies of the form proposed for ϕ̂ and ψ̂. So VT−1 also depends only on xT−1 and

ρT−1.

Finally, using the propagation of ρt as stated in the theorem, we can iterate this

process for time T − 2, and so on down to 1. This proves the theorem.

This theorem shows that (xt, ρt) constitutes a sufficient statistic of constant dimension

for the decision problem at hand. The dynamic programming algorithm that one would

like to derive from this theory remains quite cumbersome for two reasons. On the one hand,

one must work in a space with a continuous component, while the game is discrete, and

even finite. On the other hand, as was pointed out in [2], each step involves the solution of

a difficult fixed point problem, since (ϕ̂t, ψ̂t) must be the saddle point of a kernel that itself

depends on ψ̂t through its appearance in gt. The above theory proves that this fixed point

exists, a result which could not be obtained through the classical topoligical techniques,

since the dependance of the kernel on ψ̂ is not continuous. But computing it may remain

a formidable task.
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So we turn now to an example where one may prefer to stick with the full behavioral

strategies.

8. Rabbit and Hunter game.

This game is an extension of the example of section 4. A hunter tries to shoot a rabbit

that moves in a finite space made of N positions, assumed for this example to lie on a

straight line. The game is specified by six integers:

• T, the horizon of the game. As usual, T = {1, . . . , T}.

• N, the number of possible positions of rabbit. The game space is therefore N =

{1, . . . , N}

• a, the amplitude of rabbit’s jumps, (or a−, a+, the left and right amplitudes).

• b, the number of bullets available to hunter,

• c, the capture radius (or lethal radius) of a bullet,

• d, the delay or time taken by the bullets to fly from hunter to rabbit.

The state xt s composed of the following scalar variables:

• yt ∈ N, the position of rabbit,

• wk
t ∈ N ∪ {0}, k = 1, . . . , d − 1, the position the bullet shot k time steps earlier is

flying to,

• zt ∈ N ∪ {0}, the position where the bullet shot d time steps earlier is arriving. (It

will be convenient to use this notation rather than wd).

• κt, the counter of expended bullets.

The players controls are

• ut ∈ Ut = [yt − a, yt + a] ∩N, (or U t = [yt − a−, yt + a+] ∩N), the next position of

rabbit,

• vt ∈ Vt, the position hunter aims at. vt = 0 means that he does not shoot, since 0 is

not a possible position of rabbit. To take into account the budget constraint, we set

Vt =

{

N ∪ {0} if κt < b,
{0} if κt = b.

The dynamics are

yt+1 = ut, y1 given,
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w1
t+1 = vt, w1

1 = 0,

wk+1
t+1 = wk

t wk
1 = 0,

zt+1 = wd−1
t z1 = 0,

κt+1 = κt + 1− δ(vt), κ1 = 0.

Having included the budget constraint into Vt, we may take for the capture set {|zt−yt| ≤

c}, pretending that the games goes on, even if hunter cannot shoot anymore.

In fact, to simplify the calculations below, we shall from now on assume that

b ≤ N,

so that hunter shoots at all time steps, and we may ignore κ.

We shall need the following notations:

C(w) = {u
∣

∣ |u− wd−1| ≤ c}

and

χw(u) =
{

1 if u ∈ C(w),
0 otherwise.

Furthermore, with a slight abuse of notations, we shall write either u ∈ C(w) or w ∈ C(u),

meaning (u, w) ∈ C.

Introduce finally the following shift operator operating on the vector w:

σ(v)·w =









v
w1

...
wd−2









In the sequel, let
p∗t = ϕ∗

t [y
t],

q∗t = ψ∗
t [x

t].

The filter must take into account that the rabbit computes ρt+1 only if it is alive, which

gives extra information on the past. We get (see [3])

(29) ρt+1(w) =
∑

ω/∈C(yt+1)

δ
(

w − σ(w1)·ω
)

q∗t (w
1)ρt(ω)

[

∑

ω/∈C(yt+1)

ρt(ω)
]−1

.

23



The dynamic programming equations (23)and (25) now read

Vt(y
t, wt, zt) = max

v∈Vt

∑

u∈Ut

Vt+1(y
t ·u, wt ·σ(v)·w, zt·wd−1)p∗t (u)

if yt /∈ C(zt), i.e. (yt, zt) /∈ C,

Vt(y
t, wt, zt) = 1 if (yt, zt) ∈ C.

We may simplify this expression, and more importantly reduce the size of the space to be

scanned, in the following manner. Introduce a function Wt(y
t, wt) which will be related to

the function Vt according to the following definition:

(30) Vt(y
t, wt, zt) =

{

Wt(y
t, wt) if (yt, zt) /∈ C,

1 if (yt, zt) ∈ C.

This function satisfies the following dynamic programming equations, that show that it

only depends on the indicated variables, exactly in the same way as we proved corollary 2

above:

Wt(y
t, wt) = max

v∈Vt

∑

u∈Ut

[

χwt
(u) +

(

1− χwt
(u)
)

Wt+1(y
t ·u, σ(v)·wt)

]

p∗t (u),

or equivalently

(31) Wt(y
t, wt) = max

v∈Vt

[

∑

u∈C(wt)

p∗t (u) +
∑

u/∈C(wt)

Wt+1(y
t ·u, σ(v)·wt)p

∗
t (u)

]

.

The second dynamic programming equation, equation (24), becomes now

(32)
∑

w

Wt(y
t, w)ρt(w) = min

u∈Ut

∑

w

[

χw(u)+
(

1−χw(u)
)

∑

v

Wt+1(y
t·u, σ(v)·w)q∗t (v)

]

ρt(w).

Equations (31) and (32) may be used as the basis for a numerical algorithm, provided

that the horizon T be short enough, (and a and N small enough) so that the state space

remain of a tractable size. The algorithm again involves a fixed point search: for a given

set of ρt’s at each point of the space, compute ϕ̂ and ψ̂ rearwards in time, then solve for the

fixed point Nt(y
t, ψ̂) = ρt. This can be done for instance via a successive approximation
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scheme, using subrelaxation as necessary. No convergence proof is available at this time,

however.

Notice finally that as in [3], the mean value

∑

w

Wt(y
t, w)ρt(w) = W̄t(y

t)

can be computed in a faster way, avoiding the separate computations according to the

values of w. Taking ρt+1 in (29), and for a fixed yt+1 = u, we have

∑

ω

Wt+1(y
t ·u, ω)ρt+1(ω) =

[

1− ρt
(

Ct(u)
)]−1

∑

ω

∑

w/∈C(u)

∑

v

Wt+1(y
t ·u, ω)δ

(

ω − σ(v)·w
)

q∗t (v)ρt(w).

Take the summation in ω inside the other two, and use the fact that then, the δ selects

the only value ω = σ(v)·w, to get

W̄t+1(y
t ·u) =

[

1− ρt
(

Ct(u)
)]−1

∑

w/∈C(u)

∑

v

Wt+1(y
t ·u, σ(v)·w)q∗t (v)ρt(w),

or equivalently

[

1− ρt
(

Ct(u)
)]

W̄t+1(y
t ·u) =

∑

w

(

1− χw(u)
)

∑

v

Wt+1(y
t ·u, σ(v)·w)q∗t (v)ρt(w).

We recognize the right hand side here as being the second term in the right hand side of

(32) above. Substituting into it we get a recurrent equation for W̄t:

W̄t(y
t) = min

u

[

ρt
(

C(u)
)

+
[

1− ρt
(

Ct(u)
)]

W̄t+1(y
t ·u)

]

.
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