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1 Introduction : The problems considered

1.1 Control design problems with H∞ bounds

The theory of so-called H∞-optimal control has received much attention in the last decade. It
started with Zames’ minimum sensitivity and mixed sensitivity problems in the early 80’s, [11].
The main idea is as follows.

Given a plant y = Gu (in the classical problem, it is assumed linear stationary, but we
shall not need stationarity), devise a feedback control u = Ky which shall make the sensitivity
transfer function T = (I + GK)−1 small, in order to be robust, i.e. resistant against model
errors in G. The natural meaning of “small”, to engineers, refers to the maximum value of (the
norm of) T (iω) over all frequencies, i.e. the H∞ norm of T , which has to lie in the Hardy space
H∞ in order for the closed loop system to be stable. Further, for measurement noise insensivity,
it would be desirable that the complementary sensitivity function Tc = GK(I +GK)−1 also be
small. However, since T + Tc = 1, it is impossible to make both small at a time. The solution
to this dilemma is to realize that modelling errors introduce low frequency disturbances, while
measurement errors tend to be high frequency. Hence the idea of loop shaping whereby one
attempts to control the magnitude of T , say, at low frequencies, and of Tc at high frequencies.
This is usually done by defining weighting functions W (s) and Wc(s), and controlling the norm
of the combined transfer function H = [WT WcTc].

Building on that idea, many more refined problems have been defined, attempting also, for
instance, to control the input activity transfer function K(I+GK)−1, and so on. Provided that
the various weighting functions be taken as rational, sometimes with care to the properness
of the various systems involved, all these problems may be cast into the standard problem
described below.

We do not have space to discuss here in more detail the merits of these approaches, nor
shall we try to give credit to the contributors to this theory since it began. We refer the
reader to the references [8], [7] and [9]. We shall, however, offer in the concluding chapter a
slightly different rationale for the current approach, still related to robustness, but closer to the
min-max approach we adopt here.
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As a matter of fact, the problem was first tackled by operator theoretic techniques. It
was only in 1989, after it was shown in [7] (appeared at the CDC of december 1988) that the
standard solution could be expressed in terms of familiar Riccati equations, that it was fully
understood that the problem could be simply stated in terms of a min-max linear quadratic
problem. This brought about renewed interest in the old “worst case design” approach, allowing
us to give non stationary versions of the theory, and to solve many open problems.

The following lecture is based upon the book [2], where a more detailed discussion of this
aspect of the theory can be found.

1.2 The standard problem

We consider a two input two output linear system of the form

z = G11w +G12u ,

y = G21w +G22u ,

where u(t) ∈ Rm, w(t) ∈ Rℓ, y(t) ∈ Rp, z(t) ∈ Rq. The system may be either in continuous
time : t ∈ R or discrete time : t ∈ Z. In the classical problem, it is taken stationary, thus Gij

may stand for a (linear, causal, stationary) operator, or for its transfer function.
We want to design a (causal) controller u = Ky, taken linear and stationary in the classical

problem. Under this control, we get a linear system from w to z : z = TKw, with a transfer
function

TK = G11 +G12(I −KG22)
−1KG21 = G11 +G12K(I −G22K)−1G21.

We require that K stabilizes the system. Thus TK will be in H∞, meaning that the norm
‖TK(z)‖ is bounded, in the right half plane in the continuous time case, outside the unit disk
in the discrete time case. Moreover, TK may be extended to the boundary of this domain, and
its norm taken as

either ‖TK‖∞ = sup
ω∈R

‖TK(iω)‖ or ‖TK‖∞ = sup
θ∈[0,2π]

‖TK(e
iθ)‖ ,

where ‖TK(z)‖ is the matrix norm of TK(z), i.e. its maximum singular value.
Problem Pγ : Given a positive number γ, does there exist an (internally stable) stabilizing

controller K such that ‖TK‖∞ ≤ γ, and if yes find (at least) one.

1.3 Equivalence with a game problem

Assume that the disturbance w(.), as a time function, is L2. (Square integrable in the continuous
time case, square summable in the discrete time case). Then, if TK has a finite H∞ norm, the
output z will also be L2. Thus, TK may be viewed as an operator from (L2)ℓ into (L2)q. The
basic fact is the following one, which easily follows from Parseval’s equality :

Proposition 1 The operator norm of TK as an operator from (L2)ℓ into (L2)q is the H∞ norm
‖TK‖∞ of its transfer function.

As a consequence, the basic inequality

‖TK‖∞ ≤ γ (1)
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is equivalent to
∀w(.) ∈ (L2)ℓ, ‖z‖2 ≤ γ‖w‖2 , (2)

where ‖ ‖2 stands for the L
2 norms, and of course, z = TKw. We shall rather use the equivalent

form
∀w(.) ∈ (L2)ℓ, ‖z‖22 ≤ γ2‖w‖22 . (2a)

This in turn is equivalent to

sup
w∈L2

(‖z‖22 − γ2‖w‖22) ≤ 0 , (3)

and the existence of K such that (3) holds is equivalent to

inf
K

sup
w∈L2

(‖z‖22 − γ2‖w‖22) ≤ 0 . (4)

Recall that K is the feedback law u = Ky, so (4) is basically a game problem, where the
information available to the first controller to choose its control u(t) is the set of past values of
y(s), s < t. If we can solve this game, we can check whether the inf-sup is non positive, and if
yes the optimal control law K is a solution of problem Pγ. If the inf-sup is positive, possibly
+∞, then there is no solution to that problem.

In view of (2), γ will be called an attenuation factor. We shall call γ∗ the infimum of the
attenuation factors that can be achieved.

1.4 State space formulation

As in the classical problem, we shall restrict our attention to the case where the system is finite
dimensional. It therefore has an internal representation

σx = Ax+Bu+Dw , (5a)

y = Cx+ Ew , (5b)

z = Hx+Gu . (5c)

σx stands for dx/dt in the continuous time case, and x(t + 1) in the discrete time case.
There is no need to include a term depending on u in y, because it might always be substracted
out. And we assume there is no feedthrough from w to z because it simplifies the problem.
This corresponds to the classical hypothesis that G11 and G22 are strictly proper. In the present
approach, it is straightforward to raise that restriction, but computationally heavy.

However, contrary to the classical case, we may consider a non stationary problem : the
matrices A,B,C,D,E,H and G may be time varying, bounded and piecewise continuous in
the continuous time case. We also consider the problem over a finite time interval [0, T ]. We
shall recover the stationary problem by considering the case where the matrices are constant,
letting T = +∞

We introduce the notations
(

H ′

G′

)

(H G ) =
(

Q S
S ′ R

)

and
(

D
E

)

(D′ E ′ ) =
(

M L
L′ N

)

(5)

We shall always assume the following :
HYPOTHESES
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H1. G is injective (one to one)
H2. System (5) is completely observable by z (i.e. equivalently, the pair [A−BR−1S ′, (Q−

SR−1S ′)1/2] is completely observable) over [t, T ), ∀t ∈ (0, T )
H3. E is surjective (onto)
H4. System (5) is completely reachable by w (or more precisely, the pair [A − LN−1C,

(M − LN−1L′)1/2] is completely reachable) over [0, t], ∀t ∈ (0, T ].

We shall still examine whether there exists a controller such that (2) be satisfied, but with,
for any signal v(.)

‖v‖22 =
∫ T

0
‖v(t)‖2dt or ‖v‖22 =

T−1
∑

t=0

‖v(t)‖2 (6)

depending on whether t ∈ R or t ∈ Z.
It will be convenient to further unify the notations of the continuous time and discrete time

cases by using the same notations for both cases above, as

‖v‖22 =
∫ T

0
‖v(t)‖2dt

of course, this will apply to all integrals in the future : the symbol
∫ T

t
a(t) dt will have its

classical meaning in the continuous time case, and mean
T−1
∑

t=0

a(t) in the discrete time case.

It also turns out to be natural, in going to the finite horizon case, to add to ‖z‖22 a penaliza-
tion on x(T ), weighted by some positive (semi) definite matrix X , ending up with the familiar
looking performance index

J = ‖x(T )‖2X +
∫ T

0
(x′, u′)

(

Q S
S ′ R

)(

x
u

)

dt = ‖ζ‖22 ,

where ζ = (z(.), x(T )) ∈ Z = L2([0, T ] → Rq)×Rn.
Dually, since we consider a problem where the controller does not know the state x(t), but

only a noise corrupted measurement y(t), it is consistent to consider x(0) = x0 as part of the
disturbance. We shall therefore let ω = (x0, w(.)) ∈ Ω = Rn × L2([0, T ] → Rℓ), and take as its
norm

‖ω‖22 =
∫ T

0
‖w(t)‖2dt+ ‖x0‖

2
Y

where again, Y is some positive definite matrix, the inverse of which, Z = Y −1 will turn out to
play a role dual to that of X above.

In the stationary, infinite horizon (classical) case, X and Y will disappear, because, con-
sistent with classical LQ control theory, we shall request that the controller be stabilizing, i.e.
x(t) → 0 as t → ∞, and dually we shall let x(t) → 0 as t → −∞, thus looking at the ho-
mogeneous mapping w(.) 7→ z(.), as does the classical literature which is based upon transfer
functions.

Notice also that in the classical literature, one usually makes the simplifying assumption
that S = 0 and L = 0 (i.e., H ′G = 0 and DE ′ = 0). It is well known that one can achieve that
through changes of variables, involving feedback and measurement injection. However, this is
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a complicated process for a very small simplification, so that we choose here to keep S and L
non zero. Just introduce the notations

Ā = A−BR−1S ′, Q̄ = Q− SR−1S ′, Ã = A− LN−1C, M̃ = M − LN−1L′ .

Finally, we shall not restrict ourselves a priori to linear controllers. Hence, when we shall
arrive at the conclusion that the problem has no solution (γ has been chosen too small), this
will mean that no controller, either linear or nonlinear, can achieve (2). To recall this, we
shall denote by u = µ(y) the controller. The class M of admissible controllers will be all
causal controllers (depending on the past values of y), such that, when placing u = µ(y) in the
dynamic equation, it has a unique solution x(.) for every square integrable disturbance w(.),
leading to a square integrable z(.) (i.e., although possibly non linear, Tµ is still an operator
from (L2)ℓ into (L2)q).

Thus the problem we consider will be

inf
µ∈M

sup
ω∈Ω

(‖ζ‖22 − γ2‖ω‖22) . (7)

The question is to know whether this inf sup is non positive. As a matter of fact, because
it is a quadratic form under linear constraints, it will turn out that it is either zero or plus
infinity, and when it is zero, a linear map µ will do.

2 Fundamentals of dynamic games

2.1 Information structures

Let first U and W be two (decision) sets, and J : U × W → R be a performance index over
U ×W. It is well known that one always has

sup
w∈W

inf
u∈U

J(u, w) ≤ inf
u∈U

sup
w∈W

J(u, w).

If the equality holds, the game is said to have a value. If moreover the inf sup and the sup
inf are a min-max and a max-min, then let (u1, w1) be an argument of the min max, it is then
a saddle point :

∀u ∈ U , ∀w ∈ W, J(u1, w) ≤ J(u1, w1) ≤ J(u, w1). (8)

Conversely, if a saddle point exists, then min max equals max min. And if (ui, wi), i = 1, 2
are two saddle points, (ui, wj), j 6= i provide two other saddle points yielding the same value.

Further structure arises when U and W are sets of time functions, J being given through a
first order dynamic equation

σ(x) = f(t; x, u, w), x(0) = x, u ∈ U, w ∈ W , (9)

(again, σx stands for dx/dt or x(t + 1) depending on the framework) and an additive pay-off

J = M(x(T )) +
∫ T

0
L(t; x, u, w) dt , (10)

with our standing assumption on the meaning of the integral sign holding. Then the important
point to discuss is : what information is available to each player at time t to chose its control,
u(t) or w(t).
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The simpler case is when both players play “open loop”, i.e. have no additional information
beyond the rules of the game. Then this is essentially a static game. Notice however that in
case there is no saddle point, the inf sup, or min max if it exists, is not a very operational
concept. Indeed, the first player, if it wants to play “safe” may chose this strategy, say û. But
there is actually no way in which the second player could actually play according to the same

solution concept, because the argument ŵ of the max
w

J(u, w) is itself a function of u, that the

second player does not know. It might anticipate that its opponent is a safe player, and play
ŵ = argmax

w
J(û, w). But this is not a safe behaviour, because player one might have played

otherwise.
This is not the case for a saddle point, where relation (9) says that, not only w1 is optimal

against u1 (this is the left inequality) but also it is safe (this is the right inequality). This, of
course, holds symmetrically for u1.

Assume now that player one is able to play in “closed loop”, i.e., at time t, it knows x(s),
s ≤ t, and information about the past values of its opponent’s control values w(s), s < t. And
allow it to use a causal controller u = µ(x), i.e.

u(t) = µ(t; x(s), s ≤ t). (11)

Then, for a given such controller, one can define sup
w∈W

J(µ, w). And because the behaviour of the

first player is now frozen, this sup does not depend on the information available to compute w(t)
: we are confronted with a one player deterministic control problem. Therefore, as previously,
we may consider the problem

inf
µ
sup
w

J(µ, w)

and the inf sup does not depend on the information assumed to be available to the second
player, while it does depend (as we shall see further) on the fact that the first one now plays
closed loop.

A further fact is that, because of the “updating theorem” (see [4]), for a finite duration
game satisfying, “Isaacs’condition”, i.e. such that the hamiltonian has a saddle point in (u, v),
it suffices to consider the particular subset of the closed loop strategies called the state feedback
strategies, or markovian strategies, of the form

u(t) = µ(t; x(t)) . (12)

If the hamiltonian does not have a saddle point, it may still be possible to define, say, an
upper value, replacing the saddle point in (16a) by a min-max, leading to a pair of “upper
startegies” where v(t) = ν∗(t; x(t), u(t)) explicitly depends on the current control u(t).

Furthermore, if there exists a unique state feedback saddle point, there are an infinity
of closed loop saddle points, but all yield the same state history x(.) and control histories
u(.), w(.). Moreover, the state feedback saddle point is the only strongly consistent optimal
strategy : whatever the past controls, using that strategy from current time to T yields the
best guaranteed payoff still possible. This is the essence of the “representation theorem” (see
[3]).

2.2 Dynamic programming and Isaac’s equation

The reliance on markovian strategies allows one to solve full state information games via dy-
namic programming, or, in the continuous time case, the Hamilton Jacobi Isaacs equation. We
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shall restrict our attention to the case where the game (10), (11) has a closed loop saddle point.
We have stressed that this also yields the closed loop-open loop min max, that we are seeking.

Let V : R×Rn → R be a function, of class C1 in the continuous time case, and denote

δV (t; x, u, w) = V (t+ 1, f(t; x, u, w))− V (t, x) (14a)

in the discrete time case, and

δV (t; x, u, w) =
∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t; x, u, w) (14b)

in the continuous time case. And let

H(t; x, u, w) = δV (t; x; u;w) + L(t; x, u, w). (15)

We have the following fundamental result.

Theorem (Isaacs). If there exists a function V : R × Rn → R, and a pair of admissible
feedbacks µ∗ : R×Rn → U , ν∗ : R×Rn → W , such that ∀x, t ∈ Rn× [0, T ], ∀u ∈ U , ∀w ∈ W ,

H(t; x, µ∗(t, x), w) ≤ 0 = H(t; x, µ∗(t, x), ν∗(t, x)) ≤ H(t; x, u, ν∗(t, x)) , (16a)

∀x ∈ Rn, V (T, x) = M(x) , (16b)

then (µ∗, ν∗) is a closed loop saddle point, and the optimal value of the game is V (0, x0).

Proof. The proof is entirely straightforward, noticing that summing (or integrating) H from 0
to T on a trajectory yields

∫ T

0
H(t; x(t), u(t), w(t)) dt = J(u(.), w(.))− V (0, x0).

A converse exists in the discrete time case. The discrete Isaacs equation yields a way to
compute V (t, x) retrogressively from V (T, x) : the dynamic programming algorithm. If at a
step t, inf

u
sup
w

H = +∞ for all x, then the problem (10), (11) has itself an infinite inf
µ
sup
w

. This

easily follows from the fact that from a state x at time t, the second player can insure himself
a payoff at least V (t, x).

The same converse does not hold in the continuous time case, because the value function
might not be of class C1. A specific proof has to be developped for the linear quadratic case,
yielding the needed result.

3 Partial information

3.1 The certainty equivalence principle

The problem P̄ of interest to us is one of the form (10) (11), but where the information available
to the first player is not the full state, but a measurement sequence of the form

y(t) = h(t; x(t), w(t)). (17)
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To account for the fact that x0 may be unknown, we also modify the performance index, and
let it be

J̄(u, w) = M(x(T )) +
∫ T

0
L(t; x(t), u(t), w(t)) dt−N(x0) .

It turns out that, if the full state information game (10) (11) has a (state feedback) saddle
point (µ∗, ν∗), then under suitable conditions, the min max of this partial information game
can be obtained via a certainty equivalence principle : one can compute recursively, from the
available information, an “estimate” x̂(t) ∈ Rn such that the strategy

µ̂(y)(t) = µ∗(t, x̂(t)) (18)

is a min max strategy.
The estimate x̂ is obtained by solving, at each instant of time, an auxiliary problem, that

we now define. Let τ ∈ (0, T ). Let, for any time function v(.), vτ denote the set {v(t), t < τ}.
To a given pair (uτ , yτ), associate the set Ωτ of disturbances (x0, w(.)) (or equivalently ω) such
that, when placed together with uτ in (10) and (17), they generate the given yτ . We write this
in short

Ωτ (u
τ , yτ) = {ω | uτ , yτ} (19)

and call it the set of disturbances compatible with (uτ , yτ). Next define an auxiliary performance
index

Gτ (uτ , ωτ) = V (τ, x(τ)) +
∫ τ

0
L(t; x(t), u(t), w(t)) dt−N(x0) (20)

and an auxiliary problem :

Problem Qτ (uτ , yτ) :
max

ωτ∈Ωτ (uτ ,yτ )
Gτ (uτ , ωτ) .

Then, if Qτ has a unique solution, say ω̂τ(.) generating a trajectory x̂τ (.), let x̂τ (τ) = x̂(τ) for
short. This is our “estimate”.

We have the following theorem ([6], [2]).

Theorem 1 (min max certainty equivalence principle). If the full state information game (10)
(11) has a unique saddle point (µ∗, ν∗) leading to a (C1 in the continuous time case) value
function V (t, x), and if all auxiliary problems Qτ have unique solutions, (which are the only
solutions of the variational inequalities ; this extra condition being needed only in the discrete
time case) then the strategy (18), where x̂(τ) is the state at time τ in the maximizing trajectory
of Qτ (uτ , yτ), is a min-max strategy for the problem P̄. Furthermore, the value of the min-max
is the same as that of the full information saddle point.

The proof is a bit too technical to be given in the framework of this short lecture. As a
matter of fact, it gives a slightly more powerful result : whatever uτ , use of u(t) = µ̂(y)(t) from
time τ on insures the best possible guaranteed pay off given the available information at time
τ . In that sense, µ̂ is strongly consistent. It can be extended to the case where (µ∗, ν∗) is only
an upper saddle point.
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3.2 Forward-backward dynamic programming

The above theory seems difficult to apply, since at each instant of time τ ∈ (0, T ) a new con-
strained maximization problem Qτ must be solved to get x̂(τ). However, dynamic programming
can again be used to provide a recursive computation of x̂.

Let W (t, x) be a function from R×Rn into R, and construct

K(t; x, u, w) = δW + L (21)

as in (14) (15), with V replaced by W . Let also Ψt be a set of instantanenous disturbances
given by

Ψt(x, y) = {w | h(t; x, w) = y} . (22)

Assume that for a given pair of time functions {uτ (.), yτ(.)}, one has

∀(t, x) ∈ [0, τ)×Rn, ∃ŵ ∈ Ψt(x, y(t)) : ∀w ∈ Ψt(x, y(t)),

K(t; x, u(t), w) ≤ 0 = K(t; x, u(t), ŵ) , (23a)

∀x ∈ Rn, W (0, x) = N(x) . (23b)

Then, whatever x0 and the sequence wτ , provided they be compatible with (uτ , yτ), i.e.
w(t) ∈ Ψt(x(t), y(t)), ∀t ∈ [0, τ), we have by summing (23a) and using (23b), as in Isaac’s
theorem

Gτ (uτ , wτ) ≤ V (τ, x(τ))−W (τ, x(τ)) ,

with the equality possible if w(t) = ŵ(t), ∀t < τ .
Assume finally that all x ∈ Rn are reachable at time τ by maximizing trajectories. This

assumption is natural since x0 is free. Then the auxiliary problem Qτ (uτ , yτ) has a finite
maximum if and only if there exists

max
x∈Rn

(V (τ, x)−W (τ, x)) = V (τ, x̂(τ))−W (τ, x̂(τ)). (24)

Notice that (23) provides a way of computing W (t, x) from W (0, x) = N(x) :

∂W

∂t
(t, x) = − max

w∈Ψt(x,y(t))

(

∂W

∂x
f(t; x, u(t), w) + L(t; x, u(t), x)

)

(25)

in the continuous time case and a slightly more complicated dynamic programming algorithm
in the discrete time case : let

Φt = {(w, ξ) ∈ W ×Rn | f(t; ξ, u(t), w) = x, h(t; ξ, w) = y(t)} ,

the associated algorithm is

V (t + 1, x) = − max
(w,ξ)∈Φt

(−V (t, ξ) + L(t; ξ, u(t), w)). (26)

4 Finite horizon minimax (H∞ bounded) controller

We now examine the problem (8) for the possibly non stationary system (5). We first need
to find the state feedback saddle point, and its condition of existence. This obliges us to deal
separately with the continuous time and the discrete time problems.
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4.1 Continuous time case

Let us first look at the state feedback problem. It is a well known fact that in the Linear-
Quadratic (LQ) problem, one can seek a value function of the form

V (t, x) = ‖x‖2P (t), (27)

and the Hamilton-Jacobi Isaacs equation degenerates into the celebrated Riccati equation

Ṗ + PĀ+ Ā′P − P (BR−1B1 − γ−2DD′)P + Q̄ = 0 , (28a)

P (T ) = X , (28b)

and the saddle point strategies are given, if P (.) exists by

µ∗(t, x) = −R−1(B′P + S ′)x, (29a)

ν∗(t, x) = γ−2D′Px. (29b)

Existence of P (.) solution of (28), over [0, T ] is a sufficient condition for the existence of
a saddle point. The reciprocal is a bit more complex. If the Riccati equation fails to have a
solution, i.e. the matrix P (.), when integrated backward from T , diverges before t reaches 0,
we say it has a conjugate point in [0, T ]. The game may still have a value, and a saddle point
in some sense (see [5]). But this is a limiting case, as the following result shows ([2], chap. 8).

Theorem 2 If the Riccati equation (28) has a solution over [0, T ], then the state feedback
differential game has a saddle point, given by (29), and the value of the game is given by (27).
Conversely, if the Riccati equation has a conjugate point in [0, T ], then for any smaller γ the
game has an infinite inf sup.

Let us now now apply the forward dynamic programming of section 3.2 to find x̂ to be used
in (29) according to the certainty equivalence principle. Thus we want to solve the p.d.e. (25).
Again, we try a quadratic function W , but we have to take it nonhomogeneous :

W (t, x) = ‖x− x̌(t)‖2K(t) + k(t) (30)

where we have to choose x̌(t) ∈ Rn, the symmetric matrix K(t), and the scalar function k(t).
The constraint Ωt, or Ψt in (22), is affine. The constrained maximization in (25) is easily

performed via a Lagrange multiplier method. Identification of the quadratic terms in x to
zero yields a differential equation for K, identification of the linear terms one for x̌ and of the
constant terms (w.r.t. x) one for k. One easily gets

K̇ = −KÃ− Ã′K + γ2C ′N−1C −Q− γ−2KM̃K , (31a)

K(0) = γ2Y . (31b)

It turns out to be convenient to write everything in terms of

Σ(t) = γ2K−1(t) (32)

which, in view of (31) satisfies

Σ̇ = ÃΣ + ΣÃ′ − Σ(C ′N−1C − γ−2Q)Σ + M̃ , (33a)
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Σ(0) = Y −1 = Z. (33b)

Similarly, and substituting (32) in the equation, it comes

˙̌x = Ax̌+Bu+ γ−2ΣH ′(Hx̌+ Gu) + (ΣC ′ + L)N−1(y − Cx̌) ,
x̌(0) = 0 .

(34)

One also gets an expression for k̇, but we do not need to write it.
Finally, (24) becomes here

max
x

[

‖x‖2P (t) − ‖x− x̌(t)‖2K(t)

]

.

Hence the problem is strictly concave if and only if P −K < 0, which we may write in terms
of the spectral radius ρ(ΣP )

∀t ∈ [0, T ], ρ(Σ(t)P (t)) < γ2 (35)

and leads to
x̂(t) =

(

I − γ−2Σ(t)P (t)
)−1

x̌(t). (36)

The dynamic programming approach followed here shows that if both Riccati equations
(28) and (33) have solutions over [0, T ], that satisfy (35), then all problems Qτ being strictly
concave, the problem P̄ has a solution, obtained by applying (18), i.e. here

u(t) = −R−1(B′P + S ′)x̂(t) . (37)

The converse is slightly more technical to prove. One however obtains the following result.

Theorem 3 If both Riccati equations (28) and (33) have solutions over [0, T ], that satisfy (35),
then γ ≥ γ∗, and a controller that guarantees an attenuation level γ is given by (37), where
x̂ is given by (34) (36). If one of the three conditions fail, then γ ≤ γ∗ (i.e. for any smaller
attenuation level, the problem has no solution).

A remarkable fact is that the system (34)(36) admits an alternate representation, as can be
checked by direct calculations:

˙̂x(t) = Ax̂+Bµ∗(x̂) +Dν∗(x̂) +
(

I − γ−2ΣP
)−1

(ΣC ′ + L)N−1(y − ŷ)

where ŷ = Cx̂ + Eν∗(x̂), as expected. This looks very much indeed like a standard Kalman
filter. Moreover, multiplying this differential equation to the left by (I − γ−2ΣP ) allows one to
write a complete solution to the problem without ever inverting this matrix. This is usefull if
one wants to use the minimum γ∗ for which the problem still has a solution. As a matter of
fact, under fairly general conditions, this will be characterized by the fact that this matrix fails
to be invertible. Then we still have a controller, although the “filter” equation for x̂ is now an
implicit differential equation. One then needs the theory of implicit systems.
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4.2 Discrete time case

The discrete dynamic programming equation (16) for the full information (state feedback)
problem again has a solution of the form (27), where Pt is given by the discrete Riccati equation

Pt = Ā′Pt+1Ā− Ā′Pt+1[B D]
(

R +B′Pt+1B B′Pt+1D
D′Pt+1B −γ2I +D′Pt+1D

)−1
[

B′

D′

]

Pt+1Ā+ Q̄ , (38a)

PT = X . (38b)

Because of the hypothesis H2, whenever Pt+1 exists, it is positive definite and (38a) may be
written alternatively

Pt = Ā−1(P−1
t+1 +BR−1B′ − γ−2DD′)−1Ā + Q̄ (38c)

The maximization problem in the dynamic programming is strictly concave if and only if

γ2I −D′Pt+1D > 0 (39)

which can easily be shown to be equivalent to P−1
t+1 − γ−2DD′ > 0, so that the inverse in (38c)

a fortiori exists. If γ2I − D′Pt+1D has a negative eigenvalue, the supremum in w is always
infinite, and so is the inf sup of the game. If it has a zero eigenvalue, it is easy to see that for
any smaller γ it would fail to be nonnegative definite. We therefore end up with the following
theorem.

Theorem 4 If the Riccati equation (38) has a solution that satisfies (39) for all t ∈ [0, T − 1]
then the full information game has a unique state feedback saddle point

µ∗(t, x) = −R−1[B′(P−1
t+1 +BR−1B′ − γ−2DD′)−1Ā+ S ′]x,

ν∗(t, x) = γ−2[D′(P−1
t+1 +BR−1B′ − γ−2DD′)−1Ā+ S ′]x.

(40)

If for some t, (39) fails to hold, then γ ≤ γ∗ : for any smaller γ the game has an infinite
supremum in w for any strategy µ.

We turn now to the imperfect information problem. The forward dynamic programming
algorithm again has a solution of the form (30). The detailed theory is a little more complicated
than in the continuous time case. One has to notice that for Qτ to be strictly concave, K has
to be positive definite. In any extent, one arrives at the equations, dual to the previous one :

Σt+1 = ÃΣtÃ
′ − ÃΣt[C

′ H ′]
(

N + CΣtC
′ CΣtH

′

HΣtC
′ −γ2I +HΣtH

′

) [

C

H

]

ΣtÃ
′ + M̃ , (41a)

Σ0 = Y −1 = Z , (41b)

and because of H4, (41a) takes the alternative form

Σt+1 = Ã(Σ−1
t + C ′N−1C − γ−2Q)−1Ã′ + M̃. (41c)

Now, dynamic programming leads to a strictly concave problem if and only if

∆t = Σ−1
t + C ′N−1C − γ−2Q > 0, (42)
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and one may as previously argue that if it is only nonnegative definite at some time t, for any
smaller γ it would fail to be so at some time τ , and the problem Qτ would have an infinite
supremum. We also obtain

x̌t+1 = Ax̌t +Bu+ γ−2Ã∆−1
t H ′(Hx̌t +Gu) + (Ã∆−1C ′ + L)N−1(yt − Cx̌t) , (43a)

x̌0 = 0 , (43b)

and finally, the problem Qτ is globally concave as previously if and only if furthermore (35)
holds, and x̂ will again be given by (36). So that we get the following complete theorem.

Theorem 5 If the solutions of the Riccati equations (38) and (41) satisfy the conditions (39),
(42) over [0, T − 1] and (35), then γ ≥ γ∗, and an optimal controller, that guarantees an
attenuation level γ, is obtained by computing x̂ via (43) and (36), and substituting it to x in
(40). If one of the three conditions fails at some time, then γ ≤ γ∗ : for any lower γ the
problem has no solution.

We are not aware at this time of an equivalent to the alternate representation.
We have a rather complete answer for the finite time problem. In both the continuous time

and discrete time problems, we have two dual Riccati equations with a condition on each of
them, the conjugate point conditions and the global concavity condition ρ (Σ(t)P (t)) < γ2,
sometimes called the spectral radius condition. If all conditions are satisfied, then we have an
n-dimensional controller that solves the “H∞-bounded” problem. If one fails, then γ is at best
the limiting one γ∗ or is smaller than γ∗. It should be emphasized, however, that this solution
is highly non unique. It has been part of the classical problem to characterize all (linear)
controllers that satisfy the H∞ norm bound. The present approach may not be the best suited
to that end. See however in [2] the derivation of a very large class of possibly nonlinear variants
in the continuous time case.

Some more analysis must be performed to show what happens if we assume that x0 is
known to be zero. The result holds good under the added hypothesis that (A,D) is completely
reachable over (0, t), ∀t ∈ (0, T ), just taking Z = 0 to initialize the second Riccati equation.
Intuitively, this amounts to placing an “infinite weight” on x0 in the norm of the disturbance,
hence constraining it to be zero.

5 The stationary problem

We are now in a position to turn back to the original stationary problem. It turns out that in the
linear quadratic optimization theory that we are extensively using, going from the finite horizon
problem to the stationary infinite horizon one is simpler when one furthermore restricts the
allowable controllers to those that stabilize the system. However this requirement is precisely
part of the classical H∞ problem. As a consequence the above analysis will carry over very
easily.

Let us first consider the full state information problem, which is a perequisite. The problem
considered is defined by (5), with constant matrices and (with a continuous or discrete sum)

J =
∫

∞

0
‖z(t)‖2dt. (44)
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We need to consider the Riccati equation for P (t), either (28a) or (38a), integrated backward
in time from P (0) = 0. If it exists, call P ∗ the limit of its solution P (t) as t → −∞. Then
under our hypothesese, it is positive definite, reached from below, it is the maximum solution
of the algebraic Riccati equation obtained by letting P (t) = constant in the equation. And
furthermore, the closed loop system

σx = Ax+Bµ∗(x)

where P (t) has been replaced by P ∗ in µ∗, is asymptotically stable.
The following theorem was proved by Mageirou [9] (see also [3]).

Theorem 6 The criterion (44) has a inf sup less than +∞ if and only if P ∗ exists, and in the
discrete time case satisfies (39). In that case, substituting P ∗ for P (t) in µ∗ as given by (29)
or (40) yields the min sup.

We now turn to the imperfect information problem. The certainty equivalence problem
holds, with

G0 = V (0, x) +
∫ 0

−∞

L(x, u, w)dt

and imposing that x(t) → 0 as t → −∞. The system obtained by maximizing G0 w.r.t. w (over
the disturbances compatible with the current information) is stable, thus unstable as t → −∞,
so that the constraint uniquely defines x̂(0).

The maximization of G0 still involves the Riccati equation (31a), which through the trans-
formation (32) yields the equation (33) in Σ, or its counterpart (41) in the discrete time case.
Again, integrated forward from Σ(0) = 0, it may have a limit Σ∗ which is then, under our
hypothesese, positive definite, reached from below, it is the maximum solution of the related
algebraic Riccati equation, and stabilizes the system (34) or (43).

The global concavity condition is unchanged, and must hold with Σ∗ and P ∗ :

ρ(Σ∗P ∗) < γ2. (45)

Altogether, this yields the following theorem.

Theorem 7 If both Riccati equations admit limit values P ∗ (satisfying (39) in the discrte time
case) and Σ∗ (satisfying (42) in the discrete time case), jointly satisfying (45), then replacing
P (t) and Σ(t) by P ∗ and Σ∗ in the equations of the (finite horizon) controller yields a stable,
stabilizing stationary controller insuring an attenuation level γ. If one of the above conditions
fails, γ ≤ γ∗.

It is worthwhile mentioning the fact that P ∗ and Σ∗ can be characterized in terms of the
stable subspaces of 2n×2n hamiltonian matrices, and that this yields another way of computing
them.

6 Concluding remarks

The solution of the basic problem (1) is usally non unique, particularily if γ is not the minimum
possible one γ∗. The one we have given here is known in the literature as the “central solution”.
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It is a very remarkable fact that it resembles so much the classical LQG regulator. In
essence, the value function associated to our auxiliary problem, a “conditional maximization”
problem, plays the role of the conditional probability law in stochastic control. As a matter of
fact, the classical LQG regulator is obtained as the formal limit of this “central” regulator as
γ → ∞.

This together with the state space formulation of the problem, suggests a slightly different
motivation for the new theory, beyond the “classical” motivations, as related in [8], [9] for
instance. All pertain to some form of robustness.

Let us take it for granted that there is some merit to the following way to derive a controller
for a dynamical system : fit a linear model to your data on the system, choose a quadratic
performance index, J , and choose a control that “keep it small in spite of the disturbances”.
Now, these disturbances do exist, otherwise there would be no control problem. They come
from the fact that the real system may deviate from its linear approximation, and from physical
disturbances either in the dynamics (wind, and other variations on “natural” phenomena) or
as measurement noise. The problem, thus, is to find a way to devise a rational behaviour in
presence of these unknown disturbances.

The classical approach, stochastic control, is in a large extent inspired by the experience of
electric noise in electric devices, turbulence in gases, and the like. These are high frequency
phenomena, with a predictible average value in the long run. Hence the idea to represent
them as stochastic processes, white noises of known covariance, appealing to the theory of
probabilities. Once it is decided to do so, a rational behaviour is to minimize the expectation
of J , hence the LQG controller.

Notice, however, that how compelling they may sometimes appear, probabilities are not in
the physical world : they are our mental construct to model it, and it is our choice to use them
in the control problem at hand.

While some types of distrubances may fit well the white noise model (or a process with
Gauss-Markov representation, modelled through a shaping filter included in the plant model),
others may not. This may be the case if the bulk of these unknown quantities comes from poor
modelling, either because the plant is very nonlinear, or because it is ill known. We argue that
in that case, it may be more efficient ot use a different approach, namely the one we explain in
section 1.2 above. It is plain that if w is “large” we wont be able to keep J small. Let us at
least try to control J ’s rate of growth, i.e. J/‖w‖2. This is what the new theory does.

There remains to accumulate more engineering experience to know whether it behaves bet-
ter, when, and to what extent.
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[3] T. Başar and G.J. Olsder: Dynamic Noncooperative Game Theory, Academic Press, 1982

[4] P. Bernhard: “Information necessaire pour la commande dans le cas le plus defavorable”
Rapport CEREMADE 7923, Université Paris 9 Dauphine, 1979

15



[5] P. Bernhard: “Linear-quadratic two-person zero-sum differential games, necessary and
sufficient conditions”, JOTA, 27 pp 51–69, 1979

[6] P. Bernhard: “A min-max certainty equivalence principle and its applications to continuous
time, sampled data, and discrete time H∞ optimal control”, INRIA report 1347, august
1990

[7] J. Doyle, K. Glover, P. Khargonekar, and B. Francis: “State-space solutions to standard
H2 and H∞ control problems”, IEEE Transactions in Automatic Control, AC-34(8), pp
831–847, 1989

[8] B. Francis: A course in H∞ control theory, Lecture notes in control and information
sciences, 88, Springer-Verlag, 1987

[9] H. Kwakernaak: “The Polynomial Approach to H∞-optimal Regulation”, Lecture Notes
1990 CIME Course on Recent Developments in H∞ Control Theory, Villa Olmo, June
18-26, 1990, Italy. To be published by Springer Verlag.

[10] E. F. Mageirou: “Value and strategies for infinite duration linear quadratic games”, IEEE
Transactions on Automatic Control, AC 21(4), pp 547–550, 1976

[11] G. Zames: “Feedback and optimal sensitivity: Model reference transformation, multiplica-
tive seminorms and approximate inverses”, IEEE Transactions on Automatic Control, AC

26, pp 301–320, 1981

16


