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Introduction 

In [7], we derived a certainty equivalence prin- 
ciple for mln-max control problems with mcom- 
plete information. It says that one should, at each 
instant of t~me, compute the worst perturbatmn 
compatible with the currently available informa- 
tmn, and use the current state on the correspond- 
ing trajectory as the 'estimate' of the state, and 
place it in the optimal state feedback strategy, 
obtained as the saddle point of a full reformation 
two-person zero-sum game. 

On the other hand, it has recently been dis- 
covered that the so called H a control problem is 
fundamentally a rain-max control problem. See 
[11] and [12] for a review of tins aspect. Tins has 
allowed several authors to use a game theoretic 
approach to solve these problems. In the most 
classical cases, tins gives back the state space 
solutions, such as derived in [8] for instance. As a 
matter of fact, this approach even predates H a 
control theory (see [5]). It also allows one to solve 
new problems, such as the time varying finite time 
problem for instance, and also more significant 
extensions such as the delayed measurement or 
the sampled data problems for example. See [1,2,3] 
in  particular. 

However, up to recently, this powerful ap- 
proach could not be apphed to the output feed- 
back problem, or ' four  block problem', for the 
lack of a theory of nun -max  control with partial 
reformation. State space formulas were neverthe- 
less obtained by other means, see [8,10]. In [13], a 
solution was found to the classmal four-block 
problem by a man-max approach, completing the 
squares. Tins is not yet a general way of tackhng 
such problems 

In this paper, we show that apphcation of our 
certainty equivalence principle very easily yields 
the solution of the sampled data output feedback 
problem. Since this problem seems to have eluded 
attempts to solve it vta other means, tins ts an 
indication that the new theory is indeed powerful. 

1. The certainty equivalence principle 

1.1. The conttnuous measurement problem 

We quickly recall here our main theorem of [7]. 
Let a two-player dynamical system be given by 

.~ = f ( x ,  u, v, t ) ,  X(to)  = Xo- (1) 

with 

t ~ [to, r ] ,  x ( t )  ~ n", u( t )  ~ u, v( t )  ~ v. 

Let ~2 u and $2 o be the set of open loop controls. 
Adequate regularity and growth conditions have 
been assumed on f to guarantee existence and 
unlclty of the solution of (1) over [t 0, T] for any 
x 0 and any (u, v) ~ U x  V. 

A criterion, to be mammized by the first player 
and maximized by the second, is gwen by 

J~o,,o(U, o) = M ( x ( T ) )  

+ f r L ( x ( t ) ,  u(t) ,  v(t) ,  t) dt 

+ N(xo). (2) 
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We assume that  the cor responding  full informa-  
tmn zero-sum two-person  d i f fe ren t ia l  game,  
without the N(xo) term that we add  for future use, 
has, in an adequa te  setting, a pure  feedback  
s t rongly  t ime consis tent  saddle  point  

u ( t )  = t ) ,  o ( t )  = t ) ,  

(3) 

and a plecewlse C 1 value function V(x, t). 
In t roduce  now a par t ia l  measurement  or  ou tpu t  

(4) y ( t ) = h ( x ( t ) ,  v ( t ) ,  t) 

We also allow for an uncer ta in  ini t ial  s tate x o ~ X 0. 
The p rob lem we tackle is to f ind a causal  con- 
troller  u = K ( y )  that  will solve the fol lowing 

p r ob l em 

Problem ~ .  

man max J,o,,o(K(_v), v) 
K uE~, ,  

x o ~ X  o 

The solut ion to this p rob l em as given m [7] 
involves,  for each t 1 ~ [to, t], a family  of  auxlharv 
problems ~'~(u, y)  pa rame tnzed ,  beyond  t 1, by  
the pas t  control  and  observa t ion  instories u[t 0, tl] 
and  y[t o, t~], with payof f  funct ion 

uIt0. t,], t,]) 

= t , )  

+ f t ' L ( x ( t ) ,  u( t ) ,  v ( t ) ,  t )  dt + U(xo) .  
lo 

(5) 

The auxlhary  p rob lem is one of maximiza t ion  
under  constraint ,  def ined as 

Prob lem ~ " ( u [ t  0, tl], y[t o, tl]) 

max  max G " ( x  o, u[ t  0, q ] ,  v[ t0 ,  q ] )  

In  the  above ,  I2~,' s t a n d s  for  the set 
~2'?(x0, u[t o, tl], y[t o, lid of all pe r tu rba t ions  
v[t 0, q]  that, together  with x o and the pas t  con- 
trols u[t o, tl], generate  the pas t  ou tputs  y [ t  0, t~]. 
Let /3',( ) be the solut ion of tins problem,  assumed 
to exist and be unique, and  -~'~(-) be the corre- 

sponding  t ra jec tory  The  theorem says that,  on the 
one hand,  under  these assumpt ions  an op t imal  
control ler  is ob ta ined  by  using 

u( t )  = q~*(~ ' ( t ) ,  t),  (6) 

and  that  on the o ther  hand,  If for some t~* the 
auxi l iary  p rob lems  have an inf ini te  sup remum for 
all (u,  y) ,  then the or iginal  p r o b l e m  had  an in- 
finite sup remum for all causal  control lers  K 

The p roo f  is indeed very simple,  and is based  
upon  showing that  the re turn  funct ion  

w',(u, y) 

= max m a x G " ( x  0, u[t o, t,], v[t o, t , ] )  

is decreas ing with time t 1 as soon as u is chosen 
according to (6). This also proves  that  tins con- 
t rol ler  is s t rongly  op t ima l  in that  sense that  it no t  
only  solves p rob lem ~ ,  but  moreover ,  if one uses 
any cont ro l  unti l  some in te rmed ia ry  tl, and  then 
(6) from then on, it guarantees  the best  poss ib le  
value to J given the in fo rmat ion  up to t ime q.  (In 
[7] we called this p rope r ty  t ime consis tency,  bu t  it 
seems to be a bad  choice ) 

1.2 The sampled data problem 

It  is s t ra igh t forward  to see that  the pr inc ip le  of  
[7] extends to the set up where  the avai lab le  mea-  
surements  occur  at a sequence of  t ime ins tants  

(~1, ~-2 . . . . .  rN}, where t 0 < ' q < ' r 2 < - - - < ' r N <  
T. We must  now spil t  the pe r t u rba t i on  v in to  
(t,, w) where v is a con t inuous  par t  and w a 
discrete  sequence (or impuls ive  par t )  { w k } Let  (4) 
be replaced  by  

y~ = h k ( x ( ~ ' , ) ,  wk). (7) 

We must  also inc lude  a term In w in the cost, 
rep lac ing  (2) by  

J~,, ,,)(u, t,, w)  

= M ( x ( r ) )  + . ( t ) ,  o(t). t) at 

N 

+ Z L k ( x ( T , ) ,  w ~ ) + N ( x o )  (8) 

To make  things simple, we shall  assume that, Vx, 

£ ' ( x , O ) = O ,  £ ~ ( x ,  w ) < 0 ,  V w 4 : 0 .  (9) 
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Then,  in the full i n fo rma t ion  game, the obvious  
so lu t ion  is w = 0, leaving the op t ima l  s trategies 

and  the value unchanged  
The  same te rm in L mus t  also be  added  to G ~' 

in the def imt lon  (5) of  the auxi l iary  p rob lem,  
lnmt ing  the s u m m a t i o n  to all indices  k such that  
% < q. W e  shall  of ten call  ~ the largest  such 

index.  % < t 1 _< ~'~ + 1- 
B e t w e e n  two measuremen t  ins tants  %, the p roo f  

of  [7] remains  unchanged  At  an ins tant  T,, con- 
sider  the auxi l iary  p r o b l e m  taking  y, in to  account .  
Ei ther  wT' = 0. Then on the t ra jectory  ~ ' ,  G" is 
cont inuous ,  and  the theory  of  [7] applies.  Or if," 
0, and  G" has a j u m p  decrease.  In  bo th  cases, it is 
decreasing,  and  we may  still conc lude  that W "  is 
decreasing.  This  is the crux of the theorem 

actenzang the m f i m u m  3'* of all poss ib le  a t tenua-  
tmn levels, and for any ~, > 3t* in f inding  a con- 
trol ler  that  achieves that  a t t enua t ion  level. 

2.2. Applymg the general theory 

It  is now classical to associa te  to the above  
p rob l e m the cr i te r ion  

J r ( x 0 ,  u, v, w) 

= + f , [ , z l l  

(11) 

2. The  sampled data output f eedback  H a control  

problem 

2 1. The problem 

W e  are given the fol lowing l inear  system in R n 
over  the t ime interval  [to, T],  in which a sequence 

( % }  i s ~ v e n ,  to<~" 1<¢2  < ' < ' r N < T  

g = F ( t ) x + G ( t ) u + E ( t ) v ,  x ( t o ) = X  o, 

Yk = H , x (  r~ ) + J, wk, 

z = C ( t ) x  + D(t)u 

W e  set the fol lowing nota t ions :  

O' (C D)= S' R '  S,J;=N  (10) 

A causal  cont ro l le r  

u ( t )  = K ( y , ,  Y2 . . . .  y , ) ( t ) ,  where  ~, < t < r,+ l,  

is said to have an a t t enua t ion  level T if it  guaran-  

tees 

V(x0, v, w) ~ x0 x ~2. x f2w, 

Ilzl12+ IIx(T) I1~ 

_<'t2(llvllZ+ Ilwl12+ IIx0112-,)- 

The  norms  have to be  unde r s tood  with respect  to 
the a p p r o p r i a t e  spaces:  L z spaces for the cont inu-  
ous var iables  z and  v, R nN for w, and  R",  with 
weight ing posi t ive  def ini te  matr ices  for x 0 and  
x ( T )  The H ~ cont ro l  p rob l em consists  in char-  

and  to seek whether  the p r o b l e m  

mln  K max  . . . . . .  Jy(xo, K ( y ) ,  v, w) 

has a solution. (I t  will then be  zero ) 
A saddle  po in t  of  the comple t e  i n fo rma t ion  

d i f ferent ia l  game in un i fo rmly  Lapschitz feedback  
strategies exasts if and  only if the fo l lowing Ricca t l  
equa t ion  has a so lu t ion  over [t 0, T]  (see [6]): 

P + P ( F - G R  I S ' ) + ( F ' - S R - a G ' ) P  

- P(GR-1G" - y 2 E E ' ) P  + Q - S R - I S "  = O, 

P ( T )  = A .  (12) 

The  saddle  po in t  is then given by  

u ( t ) =  - R - l i G ' P  + S ' ) x ( t ) ,  
(13) 

o( t )  = y - 2 E ' P x ( t ) ,  

and  the value funct ion is V(x, t)  = II x l ib,)-  
To express  the aux lhary  p rob lem,  we turn  to an 

ope ra to r  form Let  t i ~ ( r ,  "r,+l]. We w n t e  u, o, z 

for u[t o, tl], v[t o, tl], and  v[t o, q], and  z[t o, tl], 
that  be long to a p p r o p n a t e  L z spaces,  and  y and 
w for {Ya}k_<, and  (wk}k_<, in a p p r o p r i a t e  
Euchdean  spaces The  sys tem res t r ic ted to [t 0, ti] 
m a y  be wr i t ten  in the form 

y =.~¢u + ~ v  + Y w  + 7/Xo, 

z = ~ u  + ~ v  + ~'x 0, (14) 

x (  ti) = Xu + ~tv + vx o 

The l emma in [7] extends to the fol lowing one:  
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Lemma. The system 

a =~aC*p + W*q + X*~, 

f l = ~ g * p + ~ * q + p * ~ ,  O = J * p ,  

~(to)  = n * P  + ~'*q + v * ~ ,  

admtts the following internal representation" 

- ~ = F ' f ; + C ' q ,  ~(t~) = ~ ,  

a = G ' ~  + D ' q ,  /3 = E ' ~ ,  

Proof.  Compute  

~' ( t~)x(  tl) - ~'( to)X( to) 

p~ : J/p~ - 

(16) 

= f '~ ( } (x  + X'Yc) dt  
l 0 

I 

+ E 
k=l  

substituting from the above equations, and iden- 
tify to finally get 

~;x ( t , )  + fq'  + Y'~p'~yx = l~'(to)X o + ~_.oxwx 

+ fflo+ fau 
This proves the lemma. 

In these notations, the auxiliary problem reads 

a "  = It ~ u  + ~ v  + ~'x o II 2 + II Xu + ~v + vx o I1~, 

_ . / 2 (  II vii 2 +  II wll 2 + ii go i1~_,) ' 

with the constraint  

,aC u + ,~ v + ,~  w + rlX o = y 

Form the Langranglan with a multiplier 2p, dif- 
ferentiate with respect to v, w,  a n d  x 0 to obtain.  

~ * p + ~ * ~ + l ~ * P ~ ( t ~ )  = y 2 3 ,  j . p  = y2~ ,  

~l*P + ~ ' 3  + v*P~fc( t~) = y~B-t~0,  

where £ = Cu + ~ + ~-~o, and ~ ( q )  = ~,u + #t3 + 
PXo" 

As in [7], we use the representation (15), (16) to 
express these conditions more concretely. We 
easily get t J = y  ~E'~, ~k = Y  ~J~P~, with p~ = 

3 , 2 N - l ( y ~ _  Hk~(~k )). Overall, the necessary con- 
ditlons read: 

) c=F~  + y - Z E E ' ~ + G u ,  ; o = y - 2 B ~ ( t o ) ,  (17) 

~= - Q ~ -  F ' g ; - C ' D u ,  l ~ ( t , ) = P l ~ ( t ~ )  , (18) 

f;(r~ ) =f;(r~-) + y2H;Nx ' (Yk - -  H~2(rk)  ). (19) 

If we can find a solution of  thas boundary  value 
problem, and if the auxallary problem is concave, 
then the optimal controller we propose  Is u(t~) = 
- R  I ( G ' P + S ' ) ~ ( q )  for each tl, or more  ex- 
phot ly ,  recalhng that ~ in the above equations 
stands for 2" ,  

u ( t )  = - R - I ( G ' P  + S ' ) ; ' ( t )  (20) 

2.3 Recurswe formulas 

The apparent  difficulty to obtain recurslve for- 
mulas similar to those In [7] comes f rom the fact 
that the jumps  in ~ are in terms of  :U,(-q), there- 
fore depending on t 1 The way around this diffi- 
culty will be to introduce jumps  In ~ so as to get 
jumps  in terms of the recursive variable .L Let us 
therefore introduce the matrix 2~(t) defined, when 
it exists, by 

~ = F ~ + ~ F ' + y - 2 ~ Q ~ + E E  ", , ~ ( t o ) = B  , 

(21a) 

Z (  rk + ) = Z ( %  ) [ I  + H;N~- 'H,Z( ' r~)]  - 1  

= [Z ' ( ¢ ; )  + H [ N ; ' H , ]  - '  (21b) 

Notice that according, for instance, to [13], if 
,~(~k+ 1) is positive definite, it remains so over 
(Tt ~, ~-~) Then our j ump  condit ion at ~k amounts  
to a positive jump  on the inverse Therefore the 
reverse will stay positive definite after the jump,  
and thus 2~ also. Hence, B being positive definite, 

will be so as long as it exists 
In t roduce the variable 

:~ = : ~ -  y 2X~. 

Some stalghtforward calculations show that it 
satisfies the following equations 

= ( F +  y - 2 X Q ) ~  + (G + y - Z ~ , S ) u ,  

:~(to) = 0, (22a) 

-~(~k +) = ; ( ~ ' Z ) + ~ ' ( ¢ ; ) H / , N ~ ' ( Y k - - H ,  Yc('rk)) 
(22b) 
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But now, these equat ions  do  not  depend  on  t 1. 
There fore  they give a recurslve fo rmula  for ,~" ( t  1), 
f rom which we recover  ~ t ' ( t l )  using the final con- 
d l t ion  of  (18) (expressed in terms of t ins tead  of  
q )  

~' ( t )  = [ I -  r - ~ z ( t ) P ( t ) ] - ' , ( t ) .  (23) 

We can now state the theorem.  

Theorem.  Let "t* be the opttmal attenuation level 
for the sampled data output feedback H °° control 
problem. Then a necessary condttion for y > y * is 
that the Rwcan equatwns (12) and (21) have a 
solutton over [to, T],  satisfying p(2:( t)P(t))  <'y2, 
t 1 ~ [to, T]. I f  thts last inequality is strengthened to 
a strict one, then "y > "[*, and a strongly optimal 
controller ts gwen by equattons (12), (21), (22), (23), 
and (20) to be placed back into (22). 

Proof .  The  p roo f  goes exact ly  as in [7], wi th  some 
obvious  modi f i ca t ions  that  we shall  indica te  here. 
W e  still  look at the homogeneous  p rob lem,  where  
(u,  y )  = (0, 0) The  genera t ing  matr ices  of the ex- 
t remals  are now def ined  by  

~ = F ~ + E E ' ~ ,  ~ ( t o )  = B, 

,fit = - y - Z Q t ~  - F " / ' ,  # ( t o )  = I 

~t*( v~- ) = ~('rk- ) + H;N;IHkeI)('r,). 

As previously,  we see that  2: = ~ ' / ' - ~  The  funda-  
men ta l  iden t i ty  of  the ext remals  x ( t ) =  ~( t ) /* ,  
~ ( t )  = "y2~/t(t)/-t, now reads  

~'( t l ) x (  tl) -- ~'( to)X( to) 

t 

- v  z ]~ I lWkl l2=0 ."  
k = l  

so that  on an extremal ,  we have 

G" = I lX( t l ) I ]  2, - ~ ' ( q ) x ( q )  

II x ( q )  2 = lie(,,) :x ,.,), 

the second express ion hold ing  true when 2:(ta) 
exists. This lets us show tr ivial ly that  inver t ib i l i ty  
of # ,  hence existence of ~ ,  is indeed  necessary,  as 
well as P(t~) - ~, ~(tl) < O, for all ta ~ [t 0, T].  

W h e n  this last  inequal i ty  is strict,  a H a n u l t o n -  
J a c o b l - C a r a t h e o d o r y  theory under  the cons t ra in t  

n ~ . ( ¢ ~ )  + J : ,  = 0, k=l . . . . .  ~, 

can be  deve lopped .  As it requires  some more  care, 
we give some detai ls  here (Exac t ly  the  same the- 
ory  could  be  m a d e  on the pa r t i cu la r  p r o b l e m  at 
hand  using comple t ion  of the squares,  h id ing  the 
general  na ture  of  the approach . )  

Let  a system be  given by  

: ~ = f ( x ,  v),  X ( t o ) = X  0, 

together  wi th  a cr i ter ion 

G ( x  o, v, w ) =  M ( x ( q ) )  + f q L ( x ,  v) dt 
to  

i 

+ ~_~ L(x ( ' rk ) ,  w k ) + N ( x o )  
k = I  

W e  are in teres ted  in the p r o b l e m  of  maxi rmzlng  G 
with respect  to x 0, v, and  w, subject  to the con- 
s t ra ln t  that  for a sequence of  t ime ins tants  { % }, 

h k ( x ( ~ ) ,  w~) = 0. 

Assume there  exists a funct ion  W(x,  t),  and  an 
admiss ib le  feedback  ~ = + ( x ,  t )  sa t is fying the fol- 
lowing equat ions .  

Vx ~ Xo, W ( x ,  to) = - N ( x o ) ,  

Vt ~ ~k, Vx E R ' ,  

OW OW "x ~--/- + - ~ - 1 (  , . )  + L ( x ,  . )  _< 0, 

with equal i ty  for v = 13, 

f o r k = l ,  . ,~,  V x ~ R " ,  

W(x, V )  = W(x, v ) -  L k ( * ) ,  

where L, assumed to exast, is def ined  by  

L ~ ( x )  = m a x L k ( x ,  w) 
w 

under  the cons t ra in t  tha t  hk(x ,  w) = O, 

the max  be ing  reached at  w = ~k(X). 
Then, for all ad imss ib le  x0, v, w, 

G(Xo, v, w) _< M ( x ( t , ) )  - w ( ~ ( t , ) ,  t,),  

the equal i ty  be ing  reached  for  v = ~ and  w = ~.  
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I t  suf f ices  to m t e g r a t e  b y  p a r t  a l o n g  a t ra jec-  

t o r y  t he  p a r t i a l  d i f f e r e n t m l  e q u a t i o n ,  n o t i c i n g  t h a t  

t he  j u m p  c o n d i h o n  o n  W at  ~'~ c a n  b e  w r i t t e n  

W ( x ,  ~ ? ) -  W ( x ,  ~ )  + £ ~ ( x ,  w )  _<0, 

w i t h  a n  e q u a h t y  fo r  w = 

A p p l y i n g  th is  t h e o r y  to the  a u x l h a r y  p r o b l e m  

exac t l y  y ie lds  the  las t  e x p r e s s i o n  fo r  G "  a b o v e  as 

a n  u p p e r  b o u n d ,  w h i c h  is r e a c h e d  o n  the  ex- 

t r ema l s .  T h i s  e n d s  t he  p roo f .  

Acknowledgement 

T h e  s u g g e s t i o n  to  a p p l y  o u r  c e r t a i n t y  e q m v -  

a l e n c e  p r i n c i p l e  to  th is  p r o b l e m  was  m a d e  b y  

T a m e r  Ba§a r  a t  the  s y m p o s m m  o n  D i f f e r e n t i a l  

G a m e s  a n d  A p p l i c a t i o n s  h e l d  a t  H e l s i n l o ,  A u g u s t  

1 0 - 1 1 ,  1990.  

Bibliography 

As a f ina l  r e m a r k ,  n o t i c e  t h a t  the  e q u a t i o n s  for  

a b o v e  l o o k  ve ry  m u c h  l ike a K a l m a n  f i l te r  I t s  

d i f f e r e n t m l  e q u a t i o n  p a r t  ~s s i rmla r  to  t h a t  o f  the  

c o n t i n u o u s  m e a s u r m e n t  p r o b l e m  

= F~ + T 2 X C ' ~  + Gu 

the  t e r m  in y - H . ~  e n t e r i n g  of  c o u r s e  in  the  

j u m p s .  It  w o u l d  b e  p a r t l c u l a n l y  m t e r e s t m g  to 

k n o w  w h e t h e r  the  s a m e  f i l ter  s h o w s  u p  in  t he  

L E Q G  p r o b l e m ,  s t r e n g t h e n i n g  the  s i rmla r i t y  be-  

t w e e n  the se  two  f ie lds  (see [4,5]) 

Conclusion 
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the  m i n - m a x  c e r t a i n t y  e q u i v a l e n c e  p n n c i p l e  m 
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th is  d e s e r v e  c lose r  e x a m l n a t t o n .  O n e  is the  case  

w h e r e  t he  m e a s u r e m e n t s  a re  p r o d u c e d  b y  i n t e g r a t -  

ing  devices ,  t h a t  is, of  the  f o r m  v~ = y ( - r , ) +  w, ,  

w i t h  

= H x  + Jo,  Y ( to ) = Yo 

T h i s  is a c t u a l l y  a p a r t i c u l a r  case  o f  t he  a b o v e ,  

t a k i n g  ( x ' ,  y ' ) '  as the  s ta te .  E i t h e r  Y0 is a s s u m e d  

to  b e  u n k n o w n ;  t h e n  o n e  s h o u l d  a d d  a cos t  o n  tt  

m t he  payof f ,  p r e s u m a b l y  w i t h  a ve ry  l a rge  w e i g h t  

B,-1, h e n c e  a ve ry  s m a l l  By, to m e a n  t h a t  i t  h a s  to 

be  smal l ,  o r  Jt is a s s u m e d  to b e  ze ro  A s l igh t  

e x t e n s i o n  o f  the  t h e o r y  s h o w s  t h a t  this  is o b t a i n e d  

by  m a k i n g  the  c o r r e s p o n d i n g  B v zero.  

M a n y  o t h e r  c lass ica l  p r o b l e m s  c o u l d  b e  so lved  

a l o n g  the  s a m e  hnes ,  i n c h i d m g  d e l a y e d  m e a s u r e -  

m e n t ,  r m x e d  s a m p l e d  d a t a  a n d  c o n t i n u o u s  m e a -  

s u r e m e n t s ,  etc.  
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