Systems & Control Letters 16 (1991) 229-234
North-Holland

229

Application of the min—max certainty
equivalence principle to the sampled data
output feedback H* control problem

Pierre Bernhard

INRIA Sophia Antpolis, 2004 route des Luctoles, BP 109, 06561
Valbonne, France

Received 27 August 1990

Abstract We apply our certainty equivalence pninciple to the
solution of the sampled data output feedback H®™ control
problem As expected, the solution bears close resemblance to
a Kalman filter design
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Introduction

In [7], we denived a certainty equivalence prin-
ciple for min—max control problems with incom-
plete information. It says that one should, at each
instant of time, compute the worst perturbation
compatible with the currently available informa-
tion, and use the current state on the correspond-
ing trajectory as the ‘estimate’ of the state, and
place it in the optimal state feedback strategy,
obtained as the saddle point of a full information
two-person Z€ro-sum game.

On the other hand, it has recently been dis-
covered that the so called H* control problem 1s
fundamentally a min-max control problem. See
[11] and [12] for a review of this aspect. This has
allowed several authors to use a game theoretic
approach to solve these problems. In the most
classical cases, this gives back the state space
solutions, such as denived in [8] for instance. As a
matter of fact, this approach even predates H™
control theory (see [5]). It also allows one to solve
new problems, such as the time varying finite ime
problem for instance, and also more significant
extensions such as the delayed measurement or
the sampled data problems for example. See [1,2,3]
n particular.

However, up to recently, this powerful ap-
proach could not be applied to the output feed-
back problem, or ‘four block problem’, for the
lack of a theory of min—max control with partial
information. State space formulas were neverthe-
less obtained by other means, see [8,10]. In [13], a
solution was found to the classical four-block
problem by a min—max approach, completing the
squares. This 1s not yet a general way of tackling
such problems

In this paper, we show that application of our
certainty equivalence principle very easily yields
the solution of the sampled data output feedback
problem. Since this problem seems to have eluded
attempts to solve it via other means, this is an
indication that the new theory is indeed powerful.

1. The certainty equivalence principle
1.1. The continuous measurement problem

We quickly recall here our main theorem of [7].
Let a two-player dynamical system be given by

x=f(x,u,v,1), x(1) =X (1)
with
te(t,, T), x(z1)eR", u(t)eU, v(r)eV.

Let 2, and £, be the set of open loop controls.
Adequate regulanty and growth conditions have
been assumed on f to guarantee existence and
unicity of the solution of (1) over {¢,, T'] for any
x, and any (u, v) EUX V.

A critenion, to be mimimized by the first player
and maximized by the second, 1s given by

Jeyi(#, 0) =M(x(T))
+'/;TL(x(t), (1), v(1), 1) de

+ N(x,)- (2
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We assume that the corresponding full informa-
tion zero-sum two-person differential game.
without the N(x,) term that we add for future use,
has, in an adequate setting, a pure feedback
strongly time consistent saddle point

u(t)=o¢*(x(1), 1), v(t)=y¢*(x(1), 1),
(3)

and a piecewise C ! value function V(x, t).
Introduce now a partial measurement or output

y(t) =h(x(1), o(1), 1) (4)

We also allow for an uncertain initial state x, € X,.
The problem we tackle is to find a causal con-
troller u= K(y) that will solve the following
problem

Problem #.

min max J, , (K(»v).v)
K veQ,
X9 € Xy

The solution to this problem as given n [7]
mvolves, for each ¢, € (14, t], a famuly of auxihary
problems 2" (u, y) parametrized, beyond ¢, by
the past control and observation histories u[¢,, t,]
and y[¢,. t;], with payoff function

G'(xq. ulty. 1,], v[tg. 1,])
= V(x(t|)~ tl)

+flUﬂLuULMOJ)m+Nuw.
(5)

The auxiliary problem is one of maximization
under constraint, defined as

Problem 2" (u[t,, 1,], y[to, t1])

max max G"(x,, u[ty. 1,1, v[ty, 11])
X0 € Xp pe

In the above, ' stands for the set
Q2(xq, ulty. 1), v[te. 1;]) of all perturbations
v[t,, 1;] that, together with x, and the past con-
trols u[t,, t,], generate the past outputs y[t,, ;]
Let 5( ) be the solution of this problem, assumed
to exist and be unique, and 2‘(-) be the corre-

sponding trajectory The theorem says that, on the
one hand, under these assumptions an optimal
controller 1s obtained by using

u(t) = ¢*(2'(1). 1), (6)

and that on the other hand, if for some r* the
auxiliary problems have an infinite supremum for
all (u, y), then the onginal problem had an 1n-
finite supremum for all causal controllers K

The proof 1s indeed very simple, and 1s based
upon showing that the return function

Wi(u, y)

= max max G"(x,, u[ty. 1,], v[te, 11])
WEX, ven

18 decreasing with time ¢, as soon as u is chosen
according to (6). This also proves that this con-
troller is strongly optimal 1n that sense that it not
only solves problem £, but moreover, if one uses
any control until some intermediary ¢, and then
(6) from then on, 1t guarantees the best possible
value to J given the information up to time ¢,. (In
[7] we called this property tume consistency, but it
seems to be a bad choice)

1.2 The sampled data problem

It 1s straightforward to see that the principle of
[7] extends to the set up where the available mea-
surements occur at a sequence of time instants
{1, &,..., 7y}, Where f(p<T<7m< -+ <7y <
T. We must now split the perturbation v into
(v, w) where v 1s a continuous part and w a
discrete sequence (or impulstve part) {w, } Let (4)
be replaced by

.vk=hk(x(Tk)' we ) (7)

We must also include a term 1n w 1n the cost,
replacing (2) by

J.  (u, v, w)

Xo fo

=MUUW+£QUULM0JULHM

+ Zik(x(“'A)sWA)"‘N(xo) (8)

To make things simple, we shall assume that, Vx,

L*(x,0)=0. L"(x, w)<0., Yw#0. (9)
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Then, 1in the full information game, the obvious
solution is w=0, leaving the optimal strategies
and the value unchanged

The same term 1n L must also be added to G"
m the defimtion (5) of the auxiliary problem,
Limuting the summation to all indices 4 such that
7, <t,. We shall often call : the largest such
index. 7, <t <7, ;.

Between two measurement instants 7., the proof
of [7} remains unchanged At an instant 7,, con-
sider the auxihiary problem taking y, into account.
Either w™ = 0. Then on the trajectory £, G" 15
continuous, and the theory of {7] applies. Or W™ #
0, and G" has a jump decrease. In both cases, it 15
decreasing, and we may sull conclude that W" is
decreasing. Thus is the crux of the theorem

2. The sampled data output feedback H™ control
problem

2 1. The problem

We are given the following linear system m R”
over the time interval [t,, T}, in which a sequence
{r,}isgven, fp< T <7 < -+ <7y <T"

x=F(t)x+ G(t)u+ E(t)v,
Ve = Hix(m) +Jw,
z=C(t)x+ D(t)u

x(’o) = Xo»

We set the following notations:

C’ S ,
(S)e »=(2 3)  ax-n% 0
A causal controller

u(t)=K(y, y5.--

is said to have an attenuation level y if it guaran-
tees

, ¥y )(t), wherer <t<m7,,,

V(xg, v, w)E Xy X 2, X8,
Izl 2+ x(T) I3
<y (Il + Iwlil>+ 1 xoll3-1)-

The norms have to be understood with respect to
the appropriate spaces: L? spaces for the continu-
ous variables z and v, R"" for w, and R”, with
weighting positive defimite matnces for x, and
x(T) The H* control problem consists in char-

actenzing the infimum y* of all possible attenua-
tion levels, and for any y > y* in finding a con-
troller that achieves that attenuation level.

2.2. Applying the general theory

It is now classical to associate to the above
problem the critenon

J,(xq, u, v, w)

T
= Ix(T) I3+ 120 de

o
T N
2 2 2 2
=¥ [Tlol? det Xoilwell? + lxoll- |
fo k=1t

(11)

and to seek whether the problem
min, max,_, ., J,(xo, K(y), v, w)

has a solution. (It will then be zero)

A saddle point of the complete information
differential game in umiformly Lipschitz feedback
strategies exusts if and only if the following Riccati
equation has a solution over [t,, T'] (see [6]):

P+P(F—GR 'S’)+(F' —SR™'G')P
—P(GR™'G'—y *EE’)P+ Q- SR7'S"=0,
P(T)=A. (12)
The saddle pont 1s then given by
u(t)y=—R'(G'P+S")x(t),
vEt§=y_2E'l(’x(t), < (13)

and the value function 1s V(x, 1) = || x || %)

To express the auxilary problem, we turn to an
operator form Let 1, €(7, 7,,,]. We wnte u, v, z
for u(t,, 1], vity, 1], and v[t,, 1], and z[tg, 4],
that belong to appropriate L* spaces, and y and
w for {y,}x<, and {w,},., in appropnate
Euclidean spaces The system restricted to [, 1]
may be written in the form

y=u+ Bv+ITw+nx,,
z=%u+ Qv+ {x,, (14)
x(,) =Au+pov+rx,

The lemma in [7] extends to the following one:
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Lemma. The system
a=s/*p+ €*q+ A\*§,,
B=B*p+Dq+u*k,.
£(to) =n*p+{*q+v*§,,

p=T*p.  (15)

admits the following internal representation-

—£=F't+C'q, &(1)=¢,
‘f("'/.i) =§(TA+) + H/p,- (16)
a=G't+ D'g, B=E’¢, o =J Py

Proof. Compute
E(r)x(1) — & (15)x (1)

'l \ ’
=/ (Nx +Xx) de
Lo

+ Z’: (5/("':) —g,(TA_))x(Tk)
k=1

substituting from the above equations, and iden-
tify to finally get

&ix(1) +fq'z + 2P =8 (1) xe+ 2 pws

+/,Bu+/au

This proves the lemma.

In these notations, the auxiliary problem reads
G"=||Fu+Dv+{xy|*+ ||)\u+uv+vx0||,§|
2 2 2
=Y (Uell> + 1wl + 1 xell3-1).
with the constraint
Hu+Bo+ITw+nxg=y

Form the Langrangian with a multipher 2 p, dif-
ferentiate with respect to v, w, and x, to obtain.

B*p+D*:+ u*P,x(1,) =y, T *p=vw,

n*p+E*E+p*P (1) =v*B 'R,

where 2= Cu+ 206+ {x,, and £(t,)=Au+pd+
¥x,.

As n [7], we use the representation (15), (16) to
express these conditions more concretely. We
easily get 6=y E’'¢, w,=v J/p,, with p, =

yzN,fl( Y — H x(7,)). Overall, the necessary con-
ditions read:

E=F&+vy 2EE't+ Gu, %,=v BE(1,), (17)
‘f: _Qi_F,‘f_C/Du» §(t])=P1)2(t1), (18)
.‘E(T[)=§(T,‘+)+72H,('N,:1(yk—H,.)‘c\(’rk)). (19)

If we can find a solution of this boundary value
problem, and if the auxibary problem 1s concave,
then the optimal controller we propose 1s u(z,) =
—RY(G'P+ S")4(1,) for each t,, or more ex-

plicitly, recalling that £ in the above equations
stands for x£1,

u(ty = —R"Y(G'P +S")& (1) (20)

2.3 Recursiwe formulas

The apparent difficulty to obtain recursive for-
mulas similar to those in [7] comes from the fact
that the jumps 1n £ are 1 terms of X"(7,), there-
fore depending on #;, The way around this diffi-
culty will be to introduce jumps 1n 2 so as to get
Jjumps in terms of the recursive vanable xX. Let us
therefore introduce the matrix 2(t¢) defined, when
1t exists, by

S=F3+3F +y 2303+ EE’, 3(t,)=B,

(21a)
S(r)=2(s) [ 1+ HINC'HZ()]
= [271(71‘—) + H/:NkAlH/‘] ! (21b)

Notice that according, for imstance, to [13], if
3(7,_,) is positive definite, it remains so over
(7,_1. 7,) Then our jump condition at 7, amounts
to a positive jump on the inverse Therefore the
mverse will stay positive definite after the jump,
and thus 2 also. Hence, B being positive definite,
2 will be so as long as 1t exists
Introduce the vanable

¥=%-y 23t

Some staightforward calculations show that 1t
satisfies the following equations

F=(F+vy22Q)%+ (G+y *ZS)u,

%(1,) =0, (22a)
i(‘r,f) =i(”1—) +2(TA+)HI:NI:1()}I( - Hki(’rl:))
(22b)
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But now, these equations do not depend on ¢,.
Therefore they give a recursive formula for ¥"(t,),
from which we recover £(,) using the final con-
dition of (18) (expressed 1n terms of ¢ instead of

1)

#(t)=[1-y22() P()] ' %(1). (23)

We can now state the theorem.

Theorem. Ler y* be the optimal attenuation level
for the sampled data output feedback H™ control
problem. Then a necessary condition for y=y* is
that the Riccan equations (12) and (21) have a
solution over [t,, T], satisfying p(Z(t)P(1)) <v?
t, €[ty, T If this last inequality is strengthened to
a strict one, then y>vy*, and a strongly optimal
controller 1s given by equations (12), (21), (22), (23),
and (20) to be placed back into (22).

Proof. The proof goes exactly as in [7], with some
obvious modifications that we shall indicate here.
We still look at the homogeneous problem, where
(u, y)=(0, 0) The generating matrices of the ex-
tremals are now defined by

&=F®+EE'Y, &(1)=B8,
Y=y Q0—F'¥, ¥(1,)=1I
‘P(“f) = ‘I'("'k_) + Hl:Nk_lHk‘p("'A)-

As previously, we see that ¥ = @¥~' The funda-
mental identity of the extremals x(¢)= @()p,
£(1) = y*¥(t)p, now reads

£ (n)x(1) — £ (1) x (1)
+fl"(||x||5—vz||6||2) dr

2 A2 -
=y X Iw =0
k=1

so that on an extremal, we have
G" = |l x() ”13l — &' (1) x(1,)
= || x(tl) “3(11)712271(11)7

the second expression holding true when 3(¢,)
exists. This lets us show tnvially that invertibility
of ¥, hence existence of 2, is indeed necessary, as
well as P(t,) — 2 (1) <0, for all 1, €[1,, T].

When this last inequality is strict, a Hamilton—
Jacobi—Caratheodory theory under the constraint

Hx(t)+Jw, =0, k=1,...,1,
can be developped. As 1t requires some more care,
we give some details here (Exactly the same the-
ory could be made on the particular problem at
hand using completion of the squares, hiding the
general nature of the approach.)

Let a system be given by

x=f(x, v),

together with a criterion

x(t5) = x,

G(xy, v, w)=M(x(1y)) +ftlL(x, v) dt

+ Zi: f‘(x(Tk)’ Wk) + N(x,)

We are interested 1n the problem of maximizing G
with respect to x,, v, and w, subject to the con-
straint that for a sequence of time 1nstants {7, },

hk(x(’rk)’ Wk) =0.

Assume there exists a function W(x, t), and an
admissible feedback 5 = §(x, t) satisfying the fol-
lowing equations.

Vxe X,, W(x,ty)=—N(xp),
Vi#1, VXER",

aw oW
3 + a—xf(x, U) +L(x, U) <0,

with equality for v =5,
for k=1, .,1, VxeR",
W(x, 7)) =W(x, 1) — L(x),
where f,, assumed to exist, 1s defined by
Ly(x)= rnne,le,k(x, w)
under the constraint that h, (x, w) =0,

the max being reached at w = w, (x).
Then, for all admissible x4, v, w,

G(xy, v, w) < M(x(1,)) — W(x(1,), 1,).

the equality being reached for v = § and w = Ww.
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It suffices to integrate by part along a trajec-
tory the partial differential equation, noticing that
the jump condition on W at 7, can be written

Wix, 77)—W(x, 1) +l~,,\(x, w) <0,

with an equality for w=w

Applying this theory to the auxiliary problem
exactly yields the last expression for G* above as
an upper bound, which 1s reached on the ex-
tremals. This ends the proof.

As a final remark, notice that the equations for
x above look very much like a Kalman filter Its
differential equation part 1s similar to that of the
continuous measurment problem

X=FX+y ?2C’? + Gu

the term in y — HX entening of course in the
jumps. It would be particulanly interesting to
know whether the same filter shows up in the
LEQG problem, strengthening the simularity be-
tween these two fields (see [4,5])

Conclusion

This short developement shows the power of
the min-max certainty equivalence principle in
solving various forms of the four block H* con-
trol problem. Clearly, many particular cases of
this deserve closer examination. One is the case
where the measurements are produced by integrat-
ing devices, that 1s, of the form y, = y(7,) + w,,
with

y=Hx+Jv, y(1,)=y

This 1s actually a particular case of the above,
taking (x’, y’)’ as the state. Either y, 1s assumed
to be unknown; then one should add a cost on 1t
in the payoff, presumably with a very large weight
B~ ! hence a very small B,, to mean that it has to
be small, or 1t 1s assumed to be zero A slight
extension of the theory shows that this 1s obtained
by making the corresponding B, zero.

Many other classical problems could be solved
along the same lines, including delayed measure-
ment, mixed sampled data and continuous mea-
surements, etc.
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