partial observation, whose application to the linear quadratic control problem provides the
solution to the H> four block control problem. We first solve the finite time continu-
ous problem with continuous measurement. The solution agrees with recently published
versions of the “central controller”, although not exactly with the classical one, whose
equivalence with our formulas is less than obvious. The new formulation bears closer re-
semblence with the I{alman filter. Moreover this establishes the “central controller™ of the
literature as the one that best exploits the available information. We also use the same
approach to solve the continuous dynamics, sampled data output feedback problem, and
the discrete time one. Both are new results as far as we know. The former is completely
proved, as the proofs are very similar to the continuous case. Complete proofs for the
latter are not included, but will be given in a monography to appear soon. In every case.
standard tools of control theory and stationary Riccati equations allow one to extend the
results to the stationary infinite time problem. Again details are not given here but in the
aforementioned monography.

Un principe d’équivalence a la certitude minimax
et son application aux problémes de commande H> optimale

continu, 3 mesures échantillonnées et discret.

Résumé. On démontre un principe d’équivalence a la certitude pour des problemes de
commande minimax, dont 'application au probléme linéaire quadratique donne la solu-
tion de problemes de commande “H> optimale” dits “a quatre blocs™. (En feedback de
sortie). On résoud d’abord le probléeme continu, retrouvant des résultats récents auxquels
on apporte quelques améliorations. Puis on résoud le probléme continu a mesures échan-
tillonnées et le probleme en temps discret, deux résultats nouveaux a notre connaissance.






Abstract. We derive a certainty equivalence principle for min-max control problems with
partial observation, whose application to the linear quadratic control problem provides the
solution to the H* four block control problem. This approach yields the solution of
the discrete or continuous time, finite horizon time varying or stationary problem. This
establishes the “central controller” of the literature, in continuous time, as the one that
best exploits the available information. We also find new formulas whose equivalence with
the previous ones is by no means obvious. In addition, our results also apply to game
problems other than the H> control problem.

Introduction.

Worst case design as an approach to sensitivity reduction is an old idea. A whole session
of an IFAC symposium held in 1973 was devoted to that topic. In ref [6], presented at
that symposium, we derived the now called H> controller for the full information linear
quadratic problem, and began a discussion of its merits as compared to the classical H?
controller.

In [6]. the problem considered was explicitly to minimize the largest possible value of
a quadratic performance index under an L? norm constraint on the perturbation. therefore
explicitly minimizing the (square of ) the operator norm of the resulting closed loop system.
The fact that the so caled H* control problem is equivalent to that, with an added stability
constraint in infinite time, is now well understood. Moreover, the literature has introduced
the so-called suboptimal H*® problem, which amounts to a min-max problem with a fixed
criterion. See [2]-[4], [11], [13]-[15], and the bibliography of [11] and [14] in particular.
This has given rise to solutions of that problem in the state space domain, in both finite
and infinite time.

However, the partial information case, or the four block problem in the jargon of H>
control, is less easy to solve using the tools of min-max control, for the lack of a theory of

partial information min-max control. In [13], such a solution is given, using ad hoc tools
far the linear anadraticr cace and neerimina nnesars that tha admiceilhla cAanteallace avn



information case in |12].

In the continuous time case. we show that the controller obtained is in some sense
strongly time consistent, (see [1]), implying that it optimally exploits the available infor-
mation. The equivalent property for the discrete time controller turns out to require a
somewhat more complex controller than the classical one. To keep the exposition simple.
we shall omit it here, deferring this topic to a later paper.

In section 1, we derive the certainty equivalence principle in a nonlinear setup. as
well as the converse theorem we need to apply it to H> control, both in continuous and
discrete time. In section 2, we apply this principle to the continuous time and the discrete
time H > control problems respectively.

1. The certainty equivalence principle.

1.1 The Problem.

Let a two player dynamical system in IR™ be given by

¥ = f(x,u,v,t), (tg) = o, (1)

where
x(t)e R, w(t)eU, v(t)eV, telty.T).

The time instants tg and T are fixed, U and V" may be taken for instance as closed subsets
in euclidean spaces. We denote by Q, and 2, the sets of admissible control functions (or
“open loop controls™) from [to, T} into U and V" respectively. (Say, measurable functions.)
The function f is assumed to satisfy regularity and growth conditions that insure existence
and unicity of the solution of (1) over {to, T] for any (2¢,u,v) in IR™ x , x Q,.

We shall often need restrictions u[to,t] and v[to,?] of v and v to [ty t], and shall again
write u[tg.t] € 2, and likewise for v, as this abuse does not result in an ambiguity. (It
would be more consistent with the rest of our notations to write u[ty.t] € Q')

We shall consider a differential game problem whose dynamics wil be (1), where feed-



Here. y(t) € ¥ where, for instance, ¥" = IRP. We shall consider the problem of devising a

controller of the form
u=K(y)

where i has to be causal. Id est
ufto, t] = K(y[to.t]).

The admissible controllers are all the causal controllers that are compatible with ¥, i.e
such that Vi € ¥, the differential equation

&= fla. K(y), v(x,t),1)

y(t) = h(x(t), v(a(t).1).t)

has a unique solution, satisfying I'(y) € €.
A criterion or payoff function is given. of the form

T
J(u,v) = M(2(T)) +/ L(x(t),u(t),v(t),t) dt, (3)

to

where L and M are given real functions, L regular enough to insure existence of .J. We shall
also use the abusive but unambiguous notations J(¢.v), J(u,v), and J(I.v) or J(L.\').
Also. in a classical way, we shall imbed the game problem so defined in a family letting
and tg vary, so that (1)(3) define J,, ¢, (1, v).

The min-max control problem is usually defined as

min max J(, v).
K veQ,

However, this logically yields a controller Ii' that depends on w¢, and this may be unac-
crontalhle 117 2 framewnrle where the ctate 1c nat availahla +A fAarm tha cranteal 30 b Anlee



1.2 The auxiliary problem.

The system (1)(3) may be viewed as defining a zero-sum two-person differential game, with
u as the minimizer and v as the maximizer. Assume it admits a unique state feedback (i.e.
full information) saddle point (6*,v*), and a Value function V piecewise C'!. That is, (see
[9))

V(u,v) € Qy x Qy, V(& 7)€ R" x [to,T),

Jer(0%,0) S Jer(0%,07) = V(€ 7) < Jg,r(u, 6%).
The Value function V" satisfies Isaacs’equation, stated in terms of

’ ’
H(x,u,v.t) = %(a’,t) + %(.T,t)f(:r,u, v, t) + L(x,u,v,t)

as: Y(u,v) e U x V,V(a,t) € R" x [to, T},
H(zx.o"(a.t).v,t) < H(a, 0" (2, t),¥*(2,t),t) =0 < H(a,u,v"(x.t).t).

Let now t; € [to. T], 0 € Xo, u[to,t1] € Qu, y[to,t1] be fixed, and define a subset of
Q, (restricted to [tg,t1]) as

QU (2o, ulto. t1), ylto, t1]) = {vlto, t1] € QU | A(a(t),v(2),t) = y(t), VtE€ [to.t1]} ()

where z(t) is the solution of (1) generated by v[to,t;] with the given z¢ and u[to,?;]. and
y(t) is also given. (These are all the perturbations compatible with x¢ and the available
past data up to time t;.) Introduce also the auxiliary cost function

ty
G" (xo,u,v) = V(z(t1), t1) + / L(x(t),u(t),v(t).t) dt + N(ap). (6)

to

The auxiliary problem associated to these data is
PRORT.ENM Otifal4. 4.1 4. +. 1N



The optimal controller will be shown to be given by the fixed point ©v* = L*(y) of the
equation

u”® =1Af(u*.y). (8)

This means that at each instant of time ¢; € [tg.T], one solves the auxiliary problem Q"
with the control u[tg,t;] that has actually be applied up to that time, and the observed
output y[tg,t;] as its parameters. Then, take the final (i.e. at time t;) value of the state
on the optimal trajectory of the auxiliary problem as the “estimate” of current state, and
apply a certainty equivalence principle to this estimate.

1.3 The certainty equivalence principle.

We are now ready to state and prove the two main theorems.

Theorem 1. If the auxiliary problems Q" (L*(y).y) have a unique solution for every t,
and every y, then '* as defined by (7)(8) is a solution of problem P, and the guaranteed
payoff is V(zg.to) + N(ag).

Proof. Introduce the function

W (ufto. 1], y[to, t1]) 3 eQ‘lm(ax )G"(ro,u,v).
“ v v (To,u,y

Notice that on a trajectory of the system, one has

d
(ltl

G" (xo,u,v) = H(a(tr), u(t1), v(t1), t1).
Therefore. on the trajectory &', on which u(#;) = ¢*(z(t1),¢1). we have

d o
— To, N, 0) <0.
dth (20,,0) <0

And by definition, G (#9, K, &) = W' (u,y). Using Danskin’s theorem, from the assumed

™ 1 vword. o -
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it follows that no controller can insure a cost smaller than V(xg,%9) + N(xg), i.e. that

inf max max J(xo. K. v) > V(zk.to) + N(at).
i Mo mex (xo ) 2> V(zg.to) (zg)

Comparing this inequality to (9) proves the theorem.

As a matter of fact, if xg = 2§ and v(t) = ¢¥*(@(t).t). then we shall have N*(y)(t) =
o"(a(t).t) for all t. Therefore, I'* is a representation of z.¢* (see (1]), in the game
min,,maxro.l.j . And the strong time consistency of the feedback saddle point is crucial
here.

The controller K is also strongly time consistent in the following sense.
Corollary 1. For each t; € [to,T), for every ulto,t1] and y[to,t;], use of the control
u(t) = K(u.y)(t) for all t > t, guarantees
Yv € Q,, J(xo,u,v) < W (u[tg. 1], ylto, t1]).

and no controller can guarantee a better bound.

Proof. By definition, for every ¢t we have G' < W'(u[to,t],y[to,t]). We also have that
GT = J. and we have shown that under the control u(t) = IAC( u,y)(t), W decreases with
t. Hence the first claim. Moreover, the perturbation generated by

g = i:)l
v(t) = 61 (1), if t € [to, 1)
T vt (x(t),t), ifte(t,T)

insures J > 11" for any u(-) over [t1,T]. Hence the second claim.
This property insures that in some sense, the controler i’ optimally uses the available



1te|to,ly),

U=\ et ifte (.T).

Because of the saddle point property of ¢*, it results in
J(Zo. I, v*) > GY (To. 1o, T) > w.
As w was chosen arbitrarily, the theorem follows.

1.4 The discrete time case.

The previous theory extends to the discrete time case. We limit ourselves here to a “week”
extension. where the technique used to prove the optimality of the controller does not
give its strong time consistency. (In the sense of corollary 1 above). As we stated earlier.
this topic is deferred to a later paper, together with that of causal but not strictly causal
controllers. We shall also need here some more regularity on the data, due to the technique
of proof used, which shall not be needed in the more elaborate treatment.

Let the system be
e(t+1) = fa(t). u(t),v(t). 1), x(tg) = xp. (10)

The output is still given by (2), and the augmented payoff by

T-1
J(xo.u.v) = M(2(T)) + > L(x(t).u(t).v(t).t) + N(xo). (11)

t=to

The functions f, L, M, and N are all assumed to be C''. The sets Q, and Q, are now

those of all sequences of length T — ¢y in U and 1" respectively.
We shall consider the problem of finding a strictly causal controller ', i.e. such that

ll[tn.tl = I\—(ll[fn.f - 1])



Let &¢', ¢t be a solution of Q'', and &' the associated state trajectory. The controller
we propose here is given by

I;.(U[to.fl - 1] y[fo,fl - 1])“1) = O*(.i‘t'(fl),tl).

and u* = L*(y) as the fixed point of equation (8) as previously. Of course the interpre-
tation of this formula is the same as in the continuous time case. We can state the main
theorem.

Theorem 3. If for all t; € [to.T] the auxiliary problem Q"' is strictly concave and has
a solution. then I'* is an optimal strictly causal controller, and the guaranteed payoff is
Viag.to)+N(ay). If for somet}, Q'i has an infinite supremum for all (u[to.t; — 1. ylto-t1—
1]), then the problem P has an infinite supremum for all strictly causal controllers.

Proof. Notice first that the maximization in ¢ in P can be imbeded into a classical
control problem by introducing a step -1 into the system, with

r(=1) =0, flr.u,v,—1) = v, L(x,u.v,—1) = N(v).

Now the choice of 2y is equivalent to that of v(—1). So. for this proof, let v include
x9. We use the classical argument of Basar [1]. slightly detailed. Remark that I'* is a
representation of 0*. As a matter of fact. let 2*(-) be the trajectory generated by (o*.v*).
and u*. v*, and y* be the controls and output associated to that trajectory. It is known
that v* maximizes G over all v € Q,, thus a fortiori over Q!1=1(u*.y*) for each .
Therefore, #'(t) = x*(t) for all ¢. and thus I (u*,y*)(t) = u*(t).

Let

J(v) = 1€nf J(u,v).

From Danskin’s theorem, it follows that



e & v ~ hd v

We consider a two-input two-output linear system over IR" given by

r=Fr+Gu+ Fv, x2(tg) = 2o, (13)
y=Hz + Ju,
:=Cux 4+ Du. (15)

The system is considered over a fixed time interval [to,7]. The matrices F', G. E, H. J.
C'. and D are of appropriate dimension. possibly time varying, say piecewise continuous.
with J(#) surjective and D(t) injective for all t. We take §2, and Q, as the sets of square
integrable functions from [tg,T] into IR™ and IR™ respectively.

As in section 1, y is the measured output, while = is the output to be controlled. (As a
matter of fact, we shall also control 2(7T).) The input u is the control, v the perturbation.
(Again. together with zg¢).

We are looking for a controller u = I'(y) with the only restrictions that \” be causal.
and that it insure existence of the solution of the differential equation (13) for every mea-
surable control v or linear feedback v(t) = L(t)x(t) with a bounded piecewise continuous
gain L(t).

It is now well understood that the equivalent to the so called suboptimal four block
H™> control problem is to find the admisible controller i’ that minimizes the supremum
of ||z||* = +?||v||*. Since we are here in finite time, we do not have stability conditions. but
we must include the initial state in the perturbation. and we add a term depending on the
final state to the output norm by symetry. Moreover, we wish to characterize the infimum
~* of all % for which a solution exists. We call it the optimum attenuation level of the H>
control problem.

We shall endow the output and input spaces with the norms

1/2 T 1/2

T
e+ [ soide) o and (ol + [ ool a
t

to 0

respectively, where 4 and B are positive definite matrices. This naturally leads us to

R} + 9 o " you ) - 1 . 9



N=7

Then P(t) is positive definite for all ¢, the saddle point strategies are
o*(x.t) = —R"YG'P + §")x,
v*(a,t) =y 2E'Pa.
and the value is
T(070%) = [2olbqeay = 72l llds = 2ol%y—apos- (22)
1 ! (to) ! olip-1 0llpg—~2B-1 L
If (20) has no solution, its maximum extension interval being (¢, T] with ¢} > ¢, then the
supremum in v of J(¢,v) is infinite for all admissible ¢.
We shall apply the previous theory to the problem. To that end, it will be necessary
to consider restrictions of (13)(14)(15) to a subinterval [tg,t;]. We shall omitt many su-

perscripts t1. It will be convenient to rewrite the system (over [t,t;]) in an operator form
as

y = Au + Bv + nao,
2 =Cu + Dv + (ay, (23)
x(t1) = Au + pv + vao.

Here y. z. u. and v live in appropriate L? spaces. xo in IR", A, B.C. D. n, (. A, p. and v
are linear operators, whose adjoints will be denoted with a *.
We recall the following classical fact

Lemma. The system
a=A"p+C'q+ A&,

B8=B"p+ D¢+ u"&. (24)
§(to) =n"p +(7¢ +v76
admits the following internal representation :
~E=F'¢+Hp+C'q, &) =6,
a=G'¢ + D'q, (
3=FE'€+ Jp.

rr » 1 . -~ . -
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ot



Here, Py = P(t;), where P(-) is the solution of (20).
To solve this problem, dualize the constraint with a Lagrange multiplier p necessarily
in L?([to.t;] — Y'), differentiate successively with respect to v and ¢ to obtain

B*p+ D*(Cu+ Dv + (o) + " Pr(Au + pv + vag) = v,

NP+ C*(Cu+ Dv+ (ao) + v*Py(Au + pv 4+ vag) = v2B Ly,

According to (24)(25), the left hand sides of the above two equations can be expressed as
the second output and the initial state respectively of a system of the form (25) excited
by p and the second output of a system of the form (24) (that we shall write in &), and
whose final state is P;#(t;). Let us do that. It comes

i =F%+ Gu+ Ev, (26)

:=CI+ Du, (27)

as our system in &, whose output and final state are used in the system in £ :
~E=F¢+Hp+C's &)= Pih). (28)

The necessary conditions of optimality now read

o =FE'¢+ J'p, (29)
v2B™ 2o = €(to). (30)

The constraint is
y=Hzx+ Jv. (31)

From (29) we get
0=~ YE'€+ J'p). (32)



where & is the solution of the two point boundary value problem (34)(35).

Of course, this formula is not recursive, and thus not very usefull as such, since the two
point boundary value problem (34)(35) has to be solved for each time instant t; € [to,T]
to apply (36). Finding a nicer form of this controller will be a matter of calculation. and
is the topic of the next subsection.

2.2 The continuous time case: recursive formulas.

We shall use the classical device of the Riccati equation to transform the two point bound-
ary value problem. Let, if it exists, £(¢) be the solution of the following Riccati equation.

S=FS+SF -S(H'NT'H-~572Q)S+ M. S(t) = B. (37)
It is a simple matter to check that the variable # = & — v 25¢ satisfies the equation
f=[F+S(v2Q-H'NT'H)|#+(SH'+ L)N 'y +(G+172ZC'D)u, &(to) = 0. (38)

And from the condition on £(t;) in (33) and the definition of #. it follows that. if the
Inverse exists,

#(t1) = (I =7 72S(8)P(t)) " &(t). (39)

Equation (38) is the same for all auxiliary problems, (all ¢;), therefore together with (39)
it does give a recursive formula for &, that can be used in the controller (36).
We now state the theorem that gives a first solution of the H> control problem.

Theorem 4. Let v* be the optimum attenuation level for the H> control problem defined
by (13) to (15). Then, a necessary condition for v > ~* is that the Riccati equations (20)
and (37) have a solution over [tg,T], and that p(S(t)P(t)) < 42 for all t. Furthermore.
strengthening this last inequality to a strict one suffices to insure that v > 4*. In that case.
an optimal controller is given by (20)(37)(38)(39), and (36) which defines u to be placed

terbn FAR)Y Thin mavbwnllan tn nbvmenmder dlonn mmennlmbmemd f ablon L L0 .M. ... 1 _1
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the matrix T exists over [tg, T], and satisfies together with P the spectral radius condition.
We are dealing with the minimization of a quadratic form under an affine constraint, i.e.
over an afline subspace. It is easily seen, for instance by using the formulation (23). that
concavity of the problem does not depend on the non homogeneous terms, here (u.y).
And if the problem is not concave, it indeed has an infinite supremum whatever they are.
(Notice also that if the problem is concave, but not strictly so. replacing v by + — € for any
positive € adds a term €||v]|? to the criterion, making it surely not concave, so that in that
case. 7 < v*).

Let us therefore investigate the homogeneous problem, 1.e. with (u,y) = (0.0).

We s'lmll first show the necessity of the existence of . It is known that, since M/ =
E'(I — JVJ)E is positive semidefinite, and B positive definite, then T is positive definite
when it exists. (See, e.g., [16] for a concise proof).

Let us rewrite the necessary conditions (34) (35) for the homogeneous problem. in
terms of A = 4 72¢ :

&= Fa+ M, t(to) = BA(tg).

N=(H'N"'H —572Q)x = F'), AMt1) =37 Pra(ty),

with ¢ = =J' N 1Ha + (I — J'N7YJ)E'X. We call extremals solutions of the differential
system, without the boundary conditions. They are trajectories of the system generated
by ©. On such trajectories, we have the fundamental identity

(N2)* = ~ll2llg + 2],

and thus integrating.

t

~,~’A’<t1).r<t1)—v’A'(to)x(to>+/ (el = +*1el*) dt = o.

to
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But then the same calculation yields, for any t,

6" = ()3, s

Since ¢ is now invertible, 2(t;) can be chosen arbitrarily. Therefore. we see that a necessary
condition for the problem to be concave is P(t;) — 4257 !(¢;) < 0. and this must hold for
all ;. This is equivalent to the condition p(Z(¢)P(t)) < 42. The necesary condition is
proved.

To prove the sufficiency part. we just do a classical Hamilton Jacobi Caratheodory
theory under the constraint Hx 4+ Jv = 0, initializing the return function T (x.t) at
Wir.tg) = 72||\1'||%_1. We find that the solution of the forward Hamilton Jacobi equation
is W(x,t) = 7*||2[|£-1 ) This establishes the above expression for G'* as an upper bound.
The continuity of the solution of the Riccati equations with respect to v imply that the
three conditions are satisfied in an open set, thus in that case v > 4*. This ends the proof
of the theorem.

There are two final remarks to be made. The first one is that solving the stationary
version of the problem with an added constraint that the system should be internally stable
is now straightforward. As a matter of fact, the stability constraint is exactly the one that
allows one to state the equivalent results in infinite time. (see, e.g. [10]) Hence we recover
the theorem that the standard H> problem has a solution for a given « if and only if the
stationary versions of the Riccati equations have positive definite solutions P and . and
if the eigenvalues of PT are smaller than ~2.

The second remark is that the controller obtained seems different from the one pro-
posed in the literature. as in [11] for instance. It is worhtwhile to rewrite it here. redevel-
opping in terms of the original matrices

t=[F+S(y*C'C-H'(JI)'H)-EJ(JJ)'H
—(G++7*£C'D)D'D)y"HG'P+ D'C)I —-~7*TP) )&
+(SH'+ EJ')JJ') ty. (40



Nerode equivalence class of the controller -—, on the past w,y. It is a striking fact that
it satisfies the same equations (37) and (43) as the sufficient statistics in the LEQG. or
“risk sensitive”, control. as given in [3], equations (1.6) and (1.7). (At least in the case
considered there, where EJ' and C'D are both zero.)

On the other hand, it is possible to compute the time derivative of

i =(I-+72sP)" '

replacing the derivatives of ¥ and P by their expressions in the Riccati equations and
taking that of & above. We should point out that this time derivative is not that given by
equation (34). That one was (d/dt)z" (t), while we are in effect computing here (d/d#)i'(t).
differentiating with respect to both occurences of the variable t. An elementary (but bulky)
calculation yields the following equations, which exhibit a strange “duality” with (40)(42)

#=[F+(+*EE'-G(D'D)"'G"\P - G(D'D)"'D'C
—(I=+7*SP)"SH'+ EJ')(JJ')""(H +~*JE'P)|3
+(I =y TPSP)YTNSH + EJ)JT) Ty, (44)

r(tg) = 0, (43)

u=—(DD')"YG'P +D'C)i. (36)

These formulas coincide with that of [11], at least for the case considered there where C'D
and EJ' are both zero.

2.3. The discrete time case.

We consider now the discrete time system



P=(F-GR'S""A(F'=-=SR™'G")+Q—-SR™'S",  P(T)

]
N
ot
S

where A has many equivalent forms, two of them being :

-1 " -1
A= [p;l+(G E)(RO V_‘IO_QI) (E,)] (50a)

, R+G'P,G  G'PLE \ '[G& }
AN=P, - P, (G E)( E,P+5 E,P+E+_72I) (E,)P_,_. (50b)

The saddle point feedback strategies are now given by the simple, but apparently non
causal formulas

and

u=—RYG'Pyxy + S'2).
v=~"2E'Pyag,

or equivalently in an explicitly causal form as

u=-RYG'AF-GR'S")+ S§")x, (31)

v=~"2E'A(F - GR™'S)a. (32)

Call again u. v. y. and = the sequences {u(t).t € [to,.?1 — 1]} and likewise for the other
three, and the system restricted to [tg.?;] can be written with the same equations (23) as

in the continuous time case.
The lemma on duality stands provided that (25) be replaced by its discrete counterpart

E=F¢ +Hp+Clq.  &(h) =6,
a=G"E + D'q,
3=FE'€t +J'p.

The same calculation as in the continuous time leads to the two-point boundary value
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formulas .

N + HSH' HEC! )“<y—H-
I P

L , 7 — .
.1'+=F‘l'+FS(Hl Cl)( C,SH, C'SC’I—"Q >+L.\ JU+GH

.f'(f()) = 0.
(36)
where
:=C#%+ Du.
and as in the continuous case, using the final condition of (54), for the variable &'(t).
=T —-~TP) 4. (37)

We may therefore state the following theorem.

Theorem 5. If the Riccati equations (50) and (55) have solutions P and ¥ defined over
[to. T] that furthermore satisfy p(SP) < +2, formulas (50),(55),(56),(57), and (51) define
an optimal min max controller for the system (46) to (49). (Hence an H> controller for
(46)—-(48) with atenuation level +).

We did not state here that the conditions of the theorem are necessary. It will be
shown elsewhere that A > 0 and the spectral radius condition are indeed necessary, as well
of course as the existence of P, when the matrix [F E] is surjective and the matrix [F* C]’
is injective, with a slight further hypothesis on the data.

We did not either try to find an alternate form of the controller where the dynamical
equation would bear upon & and not &. Anyway, we feel that the form in & is more inter-
esting. Notice only that in (56) again, y enters the equation only through the combination

y— Hzr.

Conclusion.
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Abstract. We apply our certainty equivalence principle to the solution of the sampled
data, output feedback H°® control problem. As expected, the solution bears close resem-
blance to a Kalman Filter design.

Keywords. H®> control, sampled data, min-max, certainty equivalence, dynamic games.
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Introduction.

In [7], we derived a certainty equivalence principle for min-max control problems with
incomplete information. It says that one should, at each instant of time, compute the worst
perturbation compatible with the currently available information, and use the current state
on the corresponding trajectory as the “estimate” of the state, and place it in the optimal
state feedback strategy, obtained as the saddle point of a full information two-person zero-
sum game.

On the other hand, it has recently been discovered that the so called H* control
problem is fondamentally a min-max control problem. See [11] and [12] for a review of this
aspect. This has allowed several authors to use a game theoretic approach to solve these
problems. In the most classical cases, this gives back the state space solutions, such as
derived in [8] for instance. As a matter of fact, this approach even predates H* control
theory. (See [5]). It also allows one to solve new problems, such as the time varying
finite time problem for instance, and also more signifcant extensions such as the delayed
measurement or the sampled data problems for example. See [1],(2],[3] in particular.

However, up to recently, this powerfull approach could not be applied to the output
feedback problem, or “four block problem”, for the lack of a theory of min-max control



te(t,T), a(t)e R", u(t)eU, v(t)eV.

Let €, and 2, be the set of open loop controls. Adequate regularity and growth conditions
have been assumed on f to guarantee existence and unicity of the solution of (1) over [to, T
for any x¢ and any (u,v) € U x V.

A criterion, to be minimized by the first player and maximized by the second, is given
by

T
Jro to(w,v) = M(2(T)) + / L(a(t),u(t),v(t),t) dt + N(xo).
to

We assume that the corresponding full information zero-sum two-person differential game,

without the N(ap) term that we add for future use, has, in an adequate setting, a pure
feedback strongly time consistent saddle point

u(t) = ¢*(x(t),t), (3a)
v(t) =" (:L’(t),t), (3b)

and a piecewise C'! value function V(z,t).
Introduce now a partial measurement or output

y(t) = h(z(t),v(t), ). (4)

We also allow for an uncertain initial state g € Xy. The problem we tackle is to find a
causal controller u = I{(y) that will solve the following problem.
Problem P.
min max Jzq ¢ (K(y),v).
K veEN,

10€Xo

The solution to this problem as given in (7] involves, for each t; € [to, T), a family of
auziliary problems Q' (u,y) parametrized, beyond ¢;, by the past control and observation
histories u[tg,t;] and y[to, 1], with payoff function

4
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and that on the other hand, if for some ¢} the auxiliary problems have an infinite supremum
for all (u,y), then the original problem had an infinite supremum for all causal controllers

Iy,

The proof is indeed very simple, and is based upon showing that the return function

Wh(u,y) = Jnpy max G (2o, ufto, t1], v[to, t1])
Ko vent

1s decreasing with time t; as soon as u is chosen according to (6). This also proves that
this controller is strongly optimal in that sense that it not only solves problem P, but
moreover, if one uses any control until some intermediary ¢;, and then (6) from then on,
it guarantees the best possible value to J given the information up to time ¢,. (In [7] we
called this property time consistency, but it seems to be a bad choice.)

1.2. The sampled data problem.
It is straightforward to see that the principle of [7] extends to the set up where the available
measurements occur at a sequence of time instants {7y, 72,...,7n}, where to <73 < 713 <
o+ < 7n < T. We must now split the perturbation v into (v,w) where v is a continuous
part and w a discrete sequence (or impulsive part) {wx}. Let (4) be replaced by

yk = hi(z(me), wi). (7)

We must also include a term in w in the cost, replacing (2) by
rI-v ‘?\7
Jro,to(w,v,w) = M(2(T)) + / L(a(t),u(t),v(t),t) dt + Z Li(2(7k), wr) + N(zg). (8)
to k=1

To make things simple, we shall assume that, Vz,

L¥(2,0) =0, LH(ae,w) <0, Yw #0. (9)



We are given the following linear system in IR™ over the time interval [¢o,T], in which a
sequence {7} is given, tg <y <71 <7TN < T.

&= F(t)x + G(t)u + E(t)v, x(tg) = o,
yk = Hya(mi) + Jrwi,
:=C(t)x + D(t)u.

We set the following notations :

(f;ﬁ)(c D)=(§, }92) ToJl = Ny (10)

A causal controller

u(t) = K(y1,y2,...,yi)(t), where 7, <t< 71y

is said to have an attenuation level « if it guarantees,
V(w0 0.10) € Xo X Qu x Que (|20 + (TG < 92 (0l + oll® + llzoll-1 ).

The norms have to be understood with respect to the appropriate spaces : L? spaces for
the continuous variables z and v, R"™N for w, and R", with weigting positive definite
matrices for 29 and 2(7T). The H* control problem consists in characterizing the infimum

~* of all possible attenuation levels, and for any v > v* in finding a controller that acheives
that attenuation level.

2.2. Applying the general theory.

It is now classical to associate to the above problem the criterion



L) — —av (v o 0 L), \i9)

v(t) = y“2E'Pa(t),

and the value function is V(x,t) = [lz]|5 -

To express the auxiliary problem, we turn to an operator form. Let t; € (i, Ti41]. We
write w, v, z for u(te,t1], v[te.t1]. and z[te,?;], that belong to appropriate L? spaces, and
y and w for {yk}kS,‘ and {wk}ks,- in appropriate euclidean spaces. The system restricted
to [to,t1] may be written in the form

y = Au+ Bv+ Jw + nao,

z = Cu+ Dv + Cxy, (14)
x(ty) = Au+ pv + vay.

The lemma in (7] extends to the following one :

Lemma. The system
a=Ap+Cq+ A&,
3=DB"p+D"q+pu",

« (15)
p=J"p,
§(to) =n"p+CTg+v76,
admits the following internal representation :
~E=Fe+C' ) =6, 7)) =€) + Hipr,
a=G'"¢€+ D',
S q (16)

B=E't
Pk = Jipk.

Proof. Compute



Form the Lagrangian with a multiplier 2p, differentiate with respect to v, w, and z to
obtain :
B*p+ D" + p* Pii(t) = +°9,

J*p =7,
n"'p+ i+ v PE(t) = ~v2B™ 14y,

where z = Cu 4+ D0 + (o, and &(t;) = Au + puv + viy.

As in [7], we use the representation (15)(16) to express these conditions more con-
cretely. We easily get & = vy 2E'¢, wx = v 2Jipx, with px = 2N (yn — Hid(7x)).
Overall, the necessary conditions read :

i=Fi+~2EE'€+Gu, io=r~ 2Bé(t), (17)
£=—-Qi—F't—C'Du, &(t)=Pii(t), (18)
Er7) = &) + VP H N (yr — Hicd(1x)). (19)

If we can find a solution of this boundary value problem, and if the auxiliary problem is
concave, then the optimal controller we propose is u(t;) = —R™}(G'P + §')&(t;) for each
t1, or more explicitly, recalling that # in the above equations stands for !,

u(t) = —R™Y(G'P + S"&'(t). (20)

2.2. Recursive formulas.

The apparent difficulty to obtain recursive formulas similar to those in (7] comes from the
fact that the jumps in £ are in terms of 2! (7 ), therefore depending on t;. The way around
this difficulty will be to introduce jumps in ¥ so as to get jumps in terms of the recursive
variable &. Let us therefore introduce the matrix £(t) defined, when it exists, by

Y =FYS 4+ SF' ++4722Q% + EE', T(te) = B. (21a)



But now, these equations do not depend on t;. Therefore they give a recursive formula for
' (t1), from which we recover #'1(¢;) using the final condition of (18) (expressed in terms
of t instead of ;) :

Bty = [T =y 2S()P)] " (). (23)
We can now state the theorem.

Theorem. Let v* be the optimal attenuation level for the sampled data output feedback
H*®® control problem. Then a necessary condition for v > +* is that the Riccati equations
(12) and (21) have a solution over [to.T), satisfving p(S(t)P(t)) < ~%, t1 € [to,T). If
this last inequality is strengthened to a strict one, then v > 4™, and a strongly optimal
controller is given by equations (12), (21),(22),(23), and (20) to be placed back into (22).

Proof. The proof goes exactly as in [7], with some obvious modifications that we shall
indicate here. We still look at the homogeneous problem, where (u,y) = (0,0). The
generating matrices of the extremals are now defined by

& =F®+EE'V, &) =B,
U==7"2Q% - F'U, U(ty) =1,
U(rh) = U(ry) + HiNTVH® (i)

As previously, we see that ¥ = ®¥~!, The fundamental identity of the extremals z(t) =
d(t)pe, £(t) = v*¥(¢)u, now reads

t
0

£'(t)x(tr) — €'(to)z(to) + / (el = 2*1121%) dt = +* Y [l =0,
t k=1

so that on an extremal, we have

G" = Ilfl’(tl)|'§’, = &'(t)z(t) = “x(tl)”?’(11)—-722-1(“)7



t
G(zo,v,w) = M(x(t1)) + / (z,v)dt + Z L(a ,wi) + N(z).

to

We are interested in the problem of maximizing G with respect to zg, v, and w, subject
to the constraint that for a sequence of time instants {74},

hL( (Tk), wk) =0.

Assume there exists a function W(z,t), and an admissible feedback ¢ = (z, t) satisfying
the following equations
Vz € Xo, Wi(z,ty) = —N(z0),

ow oW

Vt # 1, Va € R", ot +—f(x v) + L(z,v) <0,

with equality for v = 0,

for k=1,....i, VeeR", Wz, rl)=W(z,7)— Li(z)
where L, assumed to exist, is defined by
Li(z) = max f}k(a‘,w) under the constraint that hx(z,w) =0,

the max being reached at w = wi(z),
then, for all admissible z¢, v, w,

G(zo,v,w) < M(x(t1)) — W(z(t1),t1)
the equality being reached for v = v and w = .

It suffices to integrate by part along a trajectory the partial differential equation,
noticing that the jump condition on W at 7 can be written



This short developpement shows the power of the min-max certainty equivalence principle
in solving various forms of the four block H> control problem. Clearly, many particular
cases of this deserve closer examination. One is the case where the measurements are
produced by integrating devices, that is, of the form yx = y(m) + wi, with

y=Hz+Jv,  y(to) = yo.

This is actually a particular case of the above, taking (2',y')" as the state. Either yp is
assumed to be unknown. Then one should add a cost on it in the payoff, presumably with
a very large weight B!, hence a very small By, to mean that it has to be small, or it is
assumed to be zero. A slight extension of the theory shows that this is obtained by making
the corresponding By zero.

Many other classical problems could be solved along the same lines, including delayed
measurement, mixed sampled data and continuous measurements, etc.
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