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Exact Controllability of Perturbed Continuous-Time
Linear Systems

P. BERNHARD

Abstract—We derive a necessary and a sufficient condition for the
exact controllability of a linear system to a linear subspace in the frame-
work of square integrable controls and causal information structure. We
also give some results in the framework of absolutely integrable controls,
relating the latter to the former.

INTRODUCTION

The aim of this paper is to investigate the output controllability in
fixed time of a continuous-time finite-dimensional linear system, in the
presence of unpredictable perturbations. Since the perturbation can as
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well be thought of as an opponent, this work belongs also to the theory
of (qualitative) differential games and therefore bears relationships we
shall comment upon with [6]. In contrast to previous works on related
topics [9], [10], but in keeping with classical system theory, we allow
unbounded controls and perturbations, and seek conditions on the
algebraic data (the matrices) of the system. We furthermore have to
specify admissible classes of control functions as a means of prescribing
how the controls are allowed to increase in the vicinity of final time. (As
usual when dealing with nonstationary systems, the problem really
makes sense over a prescribed time interval [¢,,1,], but if ¢, were free, one
could look for, say, the smallest such instant such that the sufficient
conditions be met.) Again keeping with traditional control theory, and in
contrast to [4), [5], we use classical causal information to control the
system. We shall nevertheless provide some comparison with [5].

In [1] we studied the same question for discrete-time systems. In
addition to strong controllability (noncausal information) for which we
pointed out that the criterion is the same for discrete-time and continu-
ous-time systems, we had to distinguish between capturability, where the
controller plays “after” nature, i.e., knows the perturbation at current
time, and ideal capturability where he does not. We shall see that while
the capturing strategies we propose do not make use of such informa-
tion, and the class of strategies we allow is more of the ideal capturabil-
ity type, the criteria we get resemble those of capturability for discrete-
time systems.

In Section I we state the problem and some preliminaries. In Section
H we deal with L2 capturability and in Section 11 we deal with L'
capturability. In Section IV we give some counterexamples and discuss
open questions.

I. PRELIMINARIES

" A. The Problem

We consider a linear system whose state x ranges over R":

x(£)=F(£)x(t)+ G()u(t) + E()v(t) (N
y()=Hx(1). ) (2)

Initial and final time, ¢, and ¢,, are given. The control u ranges over R?
and the perturbation v over R?. The output y, considered only at final
time, ranges over R’. The admissible control functions and perturbations
are specified by

u()EQ,, u(-)EQ,. 3

The matrix functions F(-), G(-), E(-) are of appropriate type, piecewise
continuous and bounded, chosen right continuous everywhere and left
continuous at ;. The matrix H has full rank (i.e., /).

The controller wants to control y(t,), which, by the superposition
principle, he can do if the unperturbed system is output controllable, and
if he can impose, in the perturbed system the capture condition,

x(1;) EIM =ker H. 4

We pose dimM =n—I=m.

In forming his control, the controller is allowed to make use of past
information on the perturbation (which he can get through proper
processing of the measurement of the state, for instance). Precisely, this
means that the control function will be given by a strategy @: R" x R x
Q,-9,,

u(1) = @(xg, tg; t(-))(1). (5)

The set @ of admissible strategies is that of all such functions that satisfy
the following conditions.

1) @ is causal, ie., if 0,(+),0,(-)EQ, and v,(¢)=0v,(¢) almost all ¢ <7,
then @(xg, fo; 01(-))(7) = P(xg, 13 U2 ))(7).

2) ¢ is compatible (with the system), i.e., for all admissible perturba-
tions o(-), the differential equation
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x(8)= F(1)x(1) + G()p(x0, 13 v(-))() + E(1) (1) (6)

has at least one solution.

: The sufficient conditions here after will dwell on exhibiting a captur-
ing strategy which is a linear pure state feedback, and thus satisfy these
conditions. The necessary condition, however, will hold for a class of
: strategies slightly less general than that stated here, which we consider a
f weakness of the present theory. We shall require admissible strategies to
" satisfy.

3) ¢ is a compatible pure state feedback or is feedback-compatible,
i.e.,, for every compatible pure state feedback o(¢)=y(x(1),1), (that satisfy
the equivalent of condition 2) above, but with the roles of ¥ and v
reversed), the differential equation

x(0)=F()x(£) + G()p(x0: 103 (X (), - N(O) + E(W(x(1), 1) (T)

has at least one solution. [We can notice that this condition is in fact
somewhat stronger than necessary. We only need it to hold for the very
particular class of feedbacks ¢ specified by (19)}.

We now state the definitions that specify the object of investigation.

Definition 1: The initial state x, [respectively the initial phase (xg, )]
is capturable modulo 9 over [t,,1,] (respectively at ¢,) if there exists a
strategy ¢ in @ ensuring capture for any admissible perturbation o(-)
and for all trajectories generated by (¢, v(-)) form (xg, ¢o).

Remark 1: If the origin is capturable modulo 9N over [7,,¢,], then so
is any initial state which is u-controllable (i.e., controllable in the
perturbation free system) modulo 9% over this same interval. As a
matter of fact, let p%(v(+)) be the capturing strategy for the origin and
#(xg)(+) an open-loop control u-controlling x, to 9 ; then the strategy
@(xg; 0(+))=9%v(-)) + u(x,) captures xo to M, as direct calculation
shows. Furthermore, an initial state which is not u-controllable modulo
9N is a fortiori not capturable. Hence, we have the following definition.

Definition 2: The system (H,F(-),G(-),E(-)) is capturable if every
initial phase which is u-controllable modulo 9N at ¢, is also capturable
modulo 9N at ¢,. The system is completely capturable if it is completely
u-output controllable and capturable.

Remark 2: When both €, and @, are L? (respectively L') (although
they are different spaces since the image spaces are not the same), we
shall write L? capturability (respectively L' capturability).

II. L2 CAPTURABILITY
A. Sufficient Condition

The condition we shall give makes use of the controllability matrices

C(r)= H(j:"(D(tl,s)G(s)G’(s)(IJ’(tl,s)dr)H’ (82)

D(f)= H(j;I'Q)(tl,s)E(s)E’(s)@’(tl,s)ds)H’ (8b)

where ®(-, ) is the transition matrix associated with F(-). (Here and in
the rest of the text, the accent means “transposed.™)
For € a given (positive) number, we use the notation

X (t)=C(1)~ eD(1). (%)
The following two conditions are equivalent:

Fe>0: Vie(lyt), X[(1)>0 (10a)

Je>0: VEER, VIE(1p0), £X (>0 (10b)

We prove the following result.

Theorem 1: Under the condition (10) [where X, is defined by (8) and
(9)], the system (H,F(:),G(:),E(")) is L?-capturable modulo 9N at ¢,.
There exists a pure state feedback capturing strategy u(f)= @ (x(¢),!),
which, for a differentially u-output controllable system, can be chosen as

o (x,0)=— G (¥ (1), ) H' X, (1) HO(1,,1)x. (11)
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Proof: To simplify the notations, to the phase (x,f) we associate the
(/+ 1)-dimensional phase (x,¢) defined by

x=Ho(1,0)x. (12)
It is a classical fact that x is governed by
x(1)= G(yu(t)+ E(1)o(1) (13)
where
G(ty= HO(t,,0)G(1), E(6)=H®(t,,1)E(1). (14)
Moreover, capture is defined by
x(£)=0. (15)

Since, as we have seen, only u-controllable modulo 9L phases matter,
we can reduce the state space of (13) to R(C(ty)), the range space of
C(1g), so that then, C(fy)>0. We also know that R(C(¢)) is a piecewise
constant subspace, decreasing at isolated instants of time r;. Therefore,
C(#) is positive definite over [#,7,). Now, in order to capture the state, it
is necessary to ensure that

":("'1) EM, = R(C(1))).

We therefore have to solve a capturability problem over [¢y,7,) for x,
the relevant H, matrix being, for instance, the orthogonal projection
from R’ onto the orthogonal complement of 91, suitably endowed with
a basis. The corresponding X, matrix is now

X ()= H\X(t)H{=H,C(t)H{~ eH,D(1)H].

Since it is positive semidefinite, with C(¢) positive definite, € can be
chosen small enough to make it positive definite. It is null at t=1,.

From 7, on, the state space can be further reduced to 9N, and the
same analysis applies to each time interval where R(C(1)) is constant,
down to the last one [1,,1,]. We have therefore brought the capturability
problem to a sequence of capturability problems for differentially »-out-
put controllable systems, with the X, matrix positive. We continue the
analysis for the last one. It clearly holds for all.

Consider the following time derivative, taken along a trajectory gener-
ated by any pair of controls # and v:

%(;(z)x; (1)) =(w'G' + v ENX'%
+ XX, (Gu+ Ev)+ %' X" (GG’ — ¢EE') X, '%.
Through a classical “completion of the squares,” this may be written as
d,~ - R 1 R [N
2 (KX =Nt GXT Sl = o = B X, RIP+ ol
Integrating this equality from ¢, to ¢, we get (with x(1,)= x,)

S (1 = 1o ds = £, ()50 = 20X (0D

+ [ llu()+ G ()X, () Es) s

I ALCGRUACI AN RO

Assume the controller uses the strategy (11), which was chosen such as to
make the first integrand on the right-hand side (RHS) vanish. We find
then
! 2 g0 1re 2
fl‘nu(s)n do= o J oGP
+ X0 X, () X — X (DX, (1) x(1)

_%j;'”U(S)—EE'(S)X("(S);(S)HZdY' (16)
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From this relation, we derive first that, because of (10),
t I e .ty
J s < - [Uo(Pds+ X T (1)
! »

Since o) is by hypothesis square integrable over [t4,¢,], so is u(:)
generated by this feedback, which is thus an admissible strategy. Fur-
ther, since the left-hand side (LHS) of (16) is positive, and the first two
terms of its RHS are positive and bounded, we conclude that each of the
last two terms, which are both negative, is bounded as ¢ goes to ¢,. In
particular, there exists a positive number a such that

2X X =X VO <a?
and thus
12Dl =1X 20X ()x(0))
<IXADINXT VO] <1 XD a.

But X,(f), and thus its square root, goes to zero as ¢ goes to f,, and thus
the result follows, in view of the characterization (15) of capture.

Remark 3: It can be shown [2] that if the system is not differentially
u-output controllable, one get a capturing strategy, obtained by suitably
concatenating the above construction, by replacing the central term
H'X,”'H in (11) by

HTH[(I— H*H)+f ®(1,,5)(G(s)G'(5) — eE(s) E'(5))®'(1,,5) dyHTH]*.

Remark 4: It is very easy to check that the control
u(t)= =G (1, ) H' X" (YH(P(1),0)x(1) — x)

for x, € R" fixed, ensures capture to the affine set O + x,.

Now, under condition (10), the system (1) can be driven by u to 9
“under worst perturbation.” However, it is very possible (for instance in
the case £= G) that there exist a strategy y,, for v that drives the system
to M + xy, x; #0, “under worst controls.” The paradox is only apparent.
This only proves that under the pair of strategies (¢,,¥,), none of the two
controls generated (if they exist) is admissible.

Remark 5: Theorem 1 bears a strong relationship to the early paper
by Ho et al. [6]. However, two important differences are that on the one
hand, instead of their heuristic limit approach, we have a precise state-
ment and a rigorous proof, and on the other hand, by varying €, which
stands for their S ~!, we do not have to impose a priori constraints on
the players available energy, nor do we have to worry about conjugate
points.

B. Necessary Condition

We prove the following result.

Theorem 2: A necessary condition for the system (H, F, G, E) to be L?
capturable at ¢, with feedback compatible strategies, or with compatible
pure state feedbacks, is that the following condition be fulfilled:

ViE<0ER!, 3e>0: VIE(1,), £X ()60 17N

Proof: The proof rests on two lemmas, the first of which seems
rather fundamental (although it is there that the restriction to feedback
compatible strategies rests).

Lemma I: If the system is L’-capturable mod 9N at ¢,, for every
square integrable perturbation v(:), there exists a square integrable
control u(+) such that [see notations (14)]

VEER!, VIE(1p1)), £’_I;IIG~(s)u(s)ds>fl"|£'1::(s)u(s)|ds. (18)

Proof of Lemma 1: Let v(-) be fixed, and ¢ be a capturing strategy for
some initial phase (xq,7o). Consider the feedback for v given by

$(x,1) = v(sgn(g %(1))sgn(& E(1)o(1)). (19)

This feedback is compatible. Moreover, we have the following proposi-
tion.

Proposition: A compatible pure state feedback ¢ is also Y-compatible.
Proof of the Proposition: Check that at a point where & x(¢)5£0, (19)
locally behaves as an open-loop control. At a point where £'x(¢)=0, if
(p,¢¥) does not generate locally, a trajectory (¢,0) does not either, since
we would have, for any sequence x,—> x, with £ x, of constant sign,

lim (£ G(,) 9 1) + I8 (1) 0(1,)[] <0 i £5,>0

lim [€6(t,)9(ints) ~ I B(t) ()]0 if §5,<0

and this would be a fortiori true with v=0.

Therefore, the pair (¢,y) generates trajectories over (f,¢,). Moreover,
the controls o(+) generated are, by construction, square integrable, since
[16]1%= ||v]|>. Thus, these trajectories, which are also those generated by
(p,0), induce capture. We have, using the system (12)—(15),

(&%) =& Gy + ¢ Evlsgn(¢'5)
and thus, multiplying by sgn(¢'x)
I/ x| =& Gosgn(¢'3) + ¢ Eol.
Integrate between ¢ and f; taking into account that x(¢;)=0, and
posing, on the trajectory chosen, psgn(¢ x)= — u. It becomes

—Ex(0)]=— [ "¢ Guds + f{ "¢ Eo|ds <0

and hence (18).

We now establish the second lemma, which is technical and whose
proof will only be sketched.

Lemma 2: Let {a,} and {d,} be two sequences of real positive
numbers, such that the series Za, and Xd, converge. There exists a
sequence of positive numbers { b} such that

o0
>, bid, converges
k=0

and for an infinite sequence of integers m;,
o ™ 1/2
Vi, 2 bed> (a,,,‘_ > dk) .
ko=m k=m;
Proof: Consider the sequence

] -1/2
wmar(50)"
=

If it is bounded, pick b, = b=supc¢,, and take m;=1. If not,

b,=supc;
i<k
and let m; be such that b, =c,,. It readily follows that

miyy =1

2 — a2
> bld=cl
ko= m,

miy =1

o«
2 -
> di <cp, > dc=a,,
k=m; k=m;
hence the first property, and b, being a nondecreasing sequence, that

o ) © 1/2
2 bd»b, 2 a’k=(a,,,' > dk) .

ko=m, k=m k=m

This proves the lemma.

Now, assume that condition (17) of the theorem is not met, but that
the system is L2 capturable. Let £ be a vector for which (17) does not
hold. Choose a sequence of positive numbers ¢, such that 3¢, converges.
There exists a sequence {7} such that

Yk, £C(4)E<af D1k (20)

Furthermore, D(#,) is bounded; therefore, the RHS goes to zero as k
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goes to infinity. Two cases may arise. First, for some &,
EC(1)e=0<ED(1 )t
This implies that
Vi>t, £’G~(t)=0,

while this is not true for E(r). Placing this in (13), we see that v could
ensure that £ x(#,)=0, and therefore x(¢,)+0. [This says that a necessary
condition, but not sufficient, is that R (D(1)) C R(C(r)), which can easily
be shown to be equivalent to R(E(#)) CR(C(2).]

Or second, £ C(4)¢+0, but, by continuity, any accumulation point 7
of the sequence ¢ satisfies £ C(r)¢=0. Furthermore, since R(C(?)) is
continuous from the right, we can assume that we have extracted an
increasing subsequence #,. Finally, as we have already seen that all time
instants where R (C(1)) decreases play the same role, we shall, for
simplicity, assume that f,—/,. (This is the only possible case if the
system is differential u-output controllable at 1,.) Let a = ne,. Let e(7) be
the value of the entry of maximum absolute value of & E(r). One has

§0(= [ "¢ EWE ()i > ["eyds> LeDE (21)
Let

do= [*'e2(s)ds.

Y

To these sequences {a,} and {d,} apply Lemma 2. Then choose for
control v(¢) a vector whose only nonzero coordinate has the same rank
as the entry of maximum absolute value in ¢ E, this coordinate being
equal to

() =e(1)b, for g, <r<i .

This control is square integrable, since

1,12 S 2
[ "ol dt=k20bkdk.

1o

Moreover,
y 2 2\
j EEv|di= Y bod > (am, > dk)
Iy k=m, ko=m,
Recalling the definition of a,,, and (20) and (21),

o - b3
U, '|£’Eo|a't) > 6,8 D (1, )6 3 £ C(1,, )&, (22)

Now, assume that (18) holds with u(-) square integrable. We may take
the square of each side, since both are positive, and majorize the LHS
using Cauchy-Schwarz’ inequality. Using also (22) for the RHS, we
obtain

Vi ["eG(0G (ngd [ MuoiPdr> [ 861G (ngar.

!m, my

Since 1, —1, this constitutes a contradiction, and the theorem is proved.

Remark 6: The form (10b) of condition (10) was provided to point
out the difference with (17). We give in Section IV an example of a
system that satisfies (17) but not (10). However, these two conditions are
equivalent if /=1. We thus have the following result.

Corollary 1: If I=1 (i.e., the dimension m of the capture set is n— 1),
a necessary and sufficient condition for L2 capturability (within the class
of strategies specified in Theorem 2) is that the ratio D(1)/C(f) be
bounded over (1,1,)

Remark 7: Conditions (10) or (17) are formally the same as the
capturability condition of the discrete case (see [1] or [2]), provided we
substitute the standard discrete controllability matrices C and D to (8).
In that case, because a finite number of instants t, have to be consid-
ered, there is no difference between (10) and (17). It is interesting to

recall that in the discrete case, we defined capturability allowing the
current control u(¢) to depend on the current perturbation o(s) (but not
on future v’s).

This similarity will be further pursued in the constant case we investi-
gate now.

C. The Time-Invariant Case

We now specialize our results to the case where the system is autono-
mous: F, G, E, in addition to H, are constant matrices. We need the
following notations:

M =kerH, §=R(G), &=R(E), (23)
k-1 k-1

CUk)=H 2 FIGG'F'H', D¥k)y=H X FEE'F'H'. (24)
i=0 i=0

C% and D¥ are the discrete output controllability matrices.
The following conditions can easily be shown to be equivalent (see [1]
or (2]):

VkeEN, FF&CF*¢+F" 84+ . +8+9M

(25a)

VKkEN, FKe&+F* 16+ - +6+MCFr+FF 18+ .- +8+91
(25b)

VkeN, Feg: CHk)—¢ FF 'EE'F* 150 (25¢)

VkeN, Fe¢: C4k)—e DU k)>0. (25d)

Moreover, from the Cayley-Hamilton theorem, it suffices to check each
of them for 0<k<n—1.

We can now state the theorem of this section.

Theorem 3: Condition (25) is necessary and sufficient for the system
(H,F,G,E) to be L? capturable within the class of strategies specified in
Theorem 2.

Proof: We still write ®(¢; —7) for the transition matrix e 7=, We
know from Theorem 2 that for every nonzero £, there must exist € such
that §'X, ()¢ is positive in a left neighborhood of ¢,. Since X,(#,)=0, this
is equivalent to the fact that there must exist € such that the first nonzero
derivative of £X,” ()¢ at ¢, is negative. It is a simple task to check that
the kth derivative of X,(7) at ¢, is given by

k=1 .
xO(1)=(~ D* _20(ki")HF‘(GG’—:EE’)F”‘“"H’.

Therefore, a first necessary condition is that
V¢ 3e>0:HGG' H'E— e’ HEE'H'E> 0.

This is equivalent to the fact that £ HE =0 whenever £ HG=0, i.e., that

(R(HG)™ C(R(HE)) " =R(HE)CR(HG) (26)
which in turn implies
bcCcg+IM
which is condition (25a) for k=0.
We, moreover, notice that there exists an ¢; such that
VEEHG#0, §HGG H't— e HEE'H'¢>0. @n

It is further necessary that for all £ such that £ HG=0, the second
derivative of £ X, £ be nonpositive for some €. But we have

EX,(1)E=¢ HF(GG' — eEE')H'§+ ¢ H(GG' — ¢EE')FH

and if (26) is satisfied, this is zero for the £’s considered. We therefore
turn to the third derivative,

— X (1 )=t HFY(GG ~eEE'VH'§+ 28 HF(GG' — ¢EE")FH ¢
+¢ H(GG'~ ¢EE)F?H'S.
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Again, for £ in (R(HG))*, only the middle term is nonzero, and there
must therefore exist € such that

sze(@{(HG))i . YHFGG' F'H't— et HFEE'F'H't > 0.
As previously, this is equivalent to
(R(HG) " N(R(HFG))* C(A(HFE))*
or equivalently to
R(HG)+R(HFGYDR(HFE)
or

FoCF8+8+91

which is condition (25a) for k=1.

We must again notice that there exists ¢, such that

V& EHFG+0, YHFGG'F'H'E—e ¢ HFEE'F'H'¢>0. (28)

Going on this way we see that only odd derivatives will come into
play, with only the middle term nonzero on the subspace considered. We
end up with condition (25a). (Notice that with k=n—1, it is trivially
satisfied if the system is completely u-output controllable.)

Conversely, assume condition (25a) is satisfied. Looking at the rela-
tions (27), (28), and similar for higher orders, we see that setting

{&)

€= min
O<k<n—1
we get that the first nonzero derivative of & X,(1)¢ at 1, will be negative
for all nonzero £ in R’; thus, our sufficient condition is satisfied in a left
neighborhood of ¢;, which is sufficient, since in the autonomous case
R(C(N) and R (D(1)) are constant. The theorem is proved.
Remark 8: Condition (25) is identically the capturability condition of
the discrete system

x(k+1)=Fx(k)+ Gu(k) + Ev(k).
y(k)=Hx(k)

as can be seen in {1}, or more explicitly in {2]. It should therefore be
satisfied whenever Wonham’s modified perturbation decoupling problem
[12] has a solution, since then there exists a strategy u(¢)=@(x(?),v(t))
that makes y independent of v for all times. As a matter of fact, it is
known [12] that the corresponding condition is

IVCM: FVCV+4,

bcCV+4. (29)

This clearly implies & C ¢ + 9 and
FECFV+FSCFS+6+VCFS+8+9M

and by induction (25a).

Remark 9: Although Heymann et al. {5] consider noncausal informa-
tion structures, some similarity exists at this level. While their Theorem
2.1 {5} is a modification if [1, Theorem 1.1] (see also the remark after [1,
Theorem I1.1]) and in a very essential way “noncausal,” the condition of
their Proposition 2.3 [5] is Wonham's condition (29) above. In that
situation, our theory shows that the system is capturable to V at any
later time 1, and this is @ fortiori true with noncausal information on wv.
This is essentially their Theorem 2.4 [5].

Remark 10: We provided the forms (25¢) and (25d) of condition (25)
as being probably the most algebraic, and therefore most amenable to
numerical computation.

1. L' CAPTURABILITY

A. Sufficient Condition

We establish the following result, whose main interest lies in the fact
that it uses the strategy g, given by classical least-square control theory.
Theorem 4. If

ranké(t,)+m=n (30)

the system is L' capturable over [fy,7;], and a capturing strategy is P
given by setting =0 in (11):

u(fy=—G'(O'(t;,) H' C =W ()HD(1,,8) x(1). a3n
Proof: The proof uses the following lemma.
Lemma 3: Under condition (30), one has
Ja>0ER: VIE(tt) ICOINC (1) <a< . (32)

Proof of the Lemma: If (30) holds, in a left neighborhood of 1, we
have

T(s)=G(s)G'(s) > yl.

Therefore, if »(4) denotes the smallest eigenvalue of A4, there exists
»(I'(s)) >y, and in this same neighborhood

WC() = Jnt ¢ I['I‘(s)air£> /;IIV(F(s))ds>y(t|-t).

We therefore have

1

-1 =(p -1 .
1C =N ™ < S

But we also have, in that neighborhood, for some I'=sup || T'(s)||
t
IC@i< [T <T(n -0,

Hence the claim (32) of the lemma.
Turning back to the proof of the theorem, we first notice that the
strategy (31) gives for the system (13)

x=-GG'C 5+ Ev
whose explicit solution is

2(6)=C(1)C (1) %o+ C(z)f’c = 1(s) E(s)o(s) ds. (33)

We must therefore prove that for every absolutely integrable v(-), the
second term of the RHS goes to zero as ¢ goes to ¢,. Since the first one
obviously does, this will establish (15).

The positive matrix C ~!(7) is increasing with time for the ordering of
positive definite matrices, thus so is its norm. We therefore have

Jleomsas)< J e @ipeyas

<jcioy f “Iw(s)llds. (34)

Choose a positive number 5 and a positive number € such that for 7 in a
left neighborhood of ¢,, and with a as in Lemma 3,

cr .

af " NE($)o(s)<n. (35)
r~c

Using (34) between tj and 1 - ¢, and between ¢--¢ and ¢, it becomes

IO < ICOIE () Zall I CAINIC (¢ = )l Eoll
HNCONIC O [ I E(s)e(s)) s

The first two terms on the RHS go to zero as 1 goes to ¢, (with € fixed)
and using (32) and (35), we have in the limit

lxCe)il <m.
Since 7 was chosen arbitrary, (15) follows.

We must now prove that u(-) thus generated is absolutely integrable.
Notice that in a neighborhood of ¢;, G is of rank / and that

)Z(tl)=0=£(t0)+f"(f(t)u(r)dt+f"f(z)u(l)dt,
1y I
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so that for any L' perturbation o(-), the control u(-) generated is
integrable. Now, from (31) and (33), it follows that
u(f)=— G'(1)C ~ (1) Xy — é'(z)f ‘C ) E@s)o(s)ds.  (36)
‘o

The first term on the RHS is bounded and creates no problem. In the
neighborhood of ¢, where ¥ may be unbounded, G is of full rank. Thus,

the problem is equivalent to showing that

t —1 ~
w(t)= ['C () E(s)o(s)ds (37

‘o

is absolutely integrable, knowing it is integrable for all absolutely inte-
grable o(-). Let o(-) be a given L! perturbation, and w the corresponding
w by (37). Pick a coordinate w; of w. It is a continuous function, and thus
nonzero on a union, at most countable, of intervals (o,,,), with w,(c,) =

w(1,)=0. To each such interval, associate the perturbation defined over
[t 11):
{6*(r)=6<r)sgn<®i(r>) if1 € (0,070),

o%(1)=0  otherwise.

Notice that since wio,)=0,
VIE(o), W= [ (CTUHE(s)o(s))ids
Ok
and that 6¥ generates via (37) a

k= [ 1(C 7 ) E(s)0(9)) s sgni (1) = [(1)

if 1€(0y,7,), and wX(f)=0 otherwise (since w;(r,)=0). Now, the per-
turbation

o0
6= 2 %)
k=0
is absolutely mtcgrab]e, since {|o(#)||=||6(1)| for all «. By linearity of (37)
it generates a w, given by

o0

wi(1)= > wh(1) =W ().
k=0

Therefore |w,(¢)] is integrable. This being true for all coordinates of w,
the result follows, and the theorem is proved.

Notice that the relation (32) trivially holds if C is scalar, i.e,, /=1. We
therefore have the following corollary.

Corollary 2: If I=1, @, induces capture against any L' perturbation.
However, the control u() generated may not be L' if C(1,)=0.

Remark 11: Theorem 3 and Corollary 2 make no use of E(¢). There-
fore, they ensure capturability even for completely unknown perturba-
tions, i.e., E = I, provided the perturbations remain absolutely integrable.
However, this is also a sign that condition (30) is probably stronger than
necessary.

B. Necessary Condition

We first prove the following result.

Theorem 5: A necessary condition for the system (H,F,G,E) to be
L'-capturable modulo 9 at ¢, with feedback compatible (causal)
strategies, or with compatible pure state feedbacks, is that the following
condition be fulfilled:

VE£0ER!, Fe: £(G(1)G' (1)~ eE()E (1))E>0.  (38)

Proof: Notice that Lemma 1 holds for any class of controls {, and

Q, which are closed under product by —1 and concatenation. We can
therefore use it with L' controls. Assume that £ G(tl) 0and ¢ E(t,)aéO
(and remember we picked G and E left continuous at ¢;). Then it is a
simple matter to check that there exists an L perturbation v(-) such that

f, "¢ E(s)u(s)|ds > sup 1€ G(s)]]

since the RHS goes to zero as r—¢,. Then using (18) we obtain
3 1 ~
sup € G(s)Il [ "u(o)llds > [ & G(s)u(s)ds
s>l t t
> [ "lg E(syo(s)\ds > sup 1€ G(s)|
! s>

and we have the same contradiction as in the proof of Theorem 2.

Remark 12: This result is not very sharp, since we did not attempt to
compare the possible rates of decrease of £’G(t) and §E(t) to zero.
Moreover, we can show that the gap between our necessary and our
sufficient conditions for L! capturability is wider than for L? capturabil-
ity. As a matter of fact, the estimation

WC())>y(6—1)
proved in Lemma 3, and the obvious estimation
I1D()Nl < Aty = 1)

that one can get as in the same lemma, shows that under condition (30)
of Lemma 3, the sufficient condition (10) of Theorem 1 is met.
As for necessity, if the necessary condition (38) of Theorem 5 is not
met, i.e., if there exists £ such that
£G(1,) =0~ E(1))

then, for any e, there exists a § so small that

ViE(-8.1), IEGOI< 5 Ve lEE®)

vie(-a.0), IEEDI> 3 IEEW)

so that, integrating between ¢, —8 and t;, we see that the necessary
condition (17) of Theorem 2 is not met either. We therefore have

sufficient L!'=ssufficient L?=snecessary L?>=snecessary L',

This only points out the various gaps that remain to be filled. It should
be noticed that although L?c L', there is no obvious relationship be-
tween L! capturability and L? capturability, since going from one to the
other places more constraints on both players.
IV. ExaMPLES AND CONJECTURE
A. L? Capturability: Necessity and Sufficiency
Consider the following two matrices with 0 <7< 1:
2 1.2
C(l|—‘r)=e_‘/’( T —rVi-r )
—V1—42 1

D(z,—f)=e~'/*(fo2 ‘1))

It is easy to check that they are positive definite, with negative definite

t-derivatives (#=1, — 1), The square roots of these derivatives may be
taken as being G and E. Consider also the vector § of unit norm

=(\/1:-Tf )

§ODWE) _ 2
ECED (4,0

We have

3 —1-00 as t—t,.

Therefc;re, the sufficient condition (10) is not satisfied. However, let now
¢ be a constant vector (£,,£,)". If §,=0, then £ D(1)i=¢ C(1)§ for all ¢. If
£,#0, then

¢D()E _ g+
FCWE e -na (006 V1-(-0? |

-l asi—.
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Therefore the necessary condition (17) is satisfied. At this point, we do
not know whether the corresponding system is L? capturable or not.

B. The Strategy ¢,

This strategy [given by (31)] is important in that it is the one classically
synthesized to drive a linear system to a linear target. We first show that
it may not be capturing, even against a finite perturbation. We again
pick a two-dimensional system (because of Corollary 2) of the form (13),

with ¢,=0, r <0, and
do-(1). 20=(1)

The condition QR(E YCR(C) is satisfied, since the system is differentially
u-controllable at 1;. However, for xo==0 and v(¢)=1 for all 1, we get, with

%o

X ()= % et ()0 as 10,
(x(r) goes to zero.) Therefore, g, does not generate capture.

Notice however that if a system satisfies (10) for a given ¢, to which
there corresponds through (11) a capturing strategy g,, then (10) is also
satisfied with any positive ¢ <e. Therefore, the corresponding strategies
@ are all L capturing. It can be shown that for a given L? perturbation
o(+), the L2 norm of the u() generated increases when e decreases. But
we always meet (15). We suggest that a limiting process could prove the
following result.

Conjecture: If a system satisfies (10), then ®p is capturing against any
square integrable perturbation, although the control u(-) generated may
not be square integrable.

As for the character L2 of the control generated, formula (29) together
with classical results on Hilbert—Schmidt operators [10] yield the follow-
ing fact. ‘

Proposition: The control generated by @ is square integrable for any
square integrable perturbation if and only if

[[ GWCc\HEEEGs)C Y(s)G(r)dsdr < oo.

ta<3 <1<y

(39)

(Notice that it suffices to look at the trace of this operator.)

While we pointed out in the Remark 11 that the Theorem 4 allows one
to take E'= I, it can be shown [3] that then (31) is never satisfied. We can
further show that, for scalar systems (n=1), this proposition is a weaker
result than the Theorem 1 [or (39) stronger than (10)].

Theorem 6: If n=1, then (39) implies (10), and ®g is L? capturing.

Proof: Assume

ViE(tot), |E(D)]>alG(r)|  for some a >0,

Then,' we get (T(1) is the triangle fo<s <7 <71)

GHNEX(s) az G2(1)G¥(s)
ffr(f) C(s) dsdt > ffr(f)“ﬁcz(s) dsdt

= a*(log C(1o) —log C(r) — 1)
and the last term diverges to + oo as T—>t,. Therefore, if (39) is satisfied,

E(#)/ G(1) goes to zero as t—1, this proves the first claim. As we know,
from the proposition, that ®o generates an L2 control, we also infer that

- E(1)

E(0)C(8)x(1) = 0

(Po(x('):’)

is square integrable. Then, we make a calculation completely analogous
to that of Section II-A, but with C in place of X,, and it comes the
analogous to (16),
f'u2(s)ds=f‘(u+ é'c-'x)zds+2f’uéc-‘xds

o & I

+x°0C T tg)xg~ X' (1) C =1 (1) x( ).

Placing u(f) = go(x(/), 1) annihilates the first term in the RHS. The LHS
is bounded by the proposition, and the second integral in the RHS is
bounded as the integral of the product of two square integrable func-
tions, Therefore, the last term is bounded and we conclude as in Section
II-A.

C. The Autonomous System

We first want to show that for the autonomous system, our condition
(25) is weaker than (29), the condition for the modified perturbation
decoupling problem to have a solution. As a matter of fact consider the

following system:
0 0 1
0) G=(1), E=|o])
0 0 \0

1
0 .
, le, M={qa o)aER].
0 0 1) {(0

Since 9N itself is not (F,G) invariant, the only such subspace of I is
{0}. However, & £ 8 + {0). Therefore, (29) is not satisfied. However, we
easily see that

"ry
It
—

oo
_0 0

=
]
—_—
(==
—

E=MCcG+M, FECFI+8+IM=R> F2% =(0).

Therefore, condition (25) is satisfied. As a matter of fact, a simple
calculation shows that

1
E(tl_’)z

(h-1°

fH—t

a2
5(’1 £ 3

which is positive definite if € < 1/4.

The fact that condition (25) coincides with the capturability condition
of the discrete system, where we allow u(/) to depend on v(#), leads us to
the following.

Conjecture: Our necessary conditions of L2 capturability also hold if
u(f) is allowed to depend explicitly on v(#).

However, this is not clear from our proof, because such a strategy
might not be compatible with . We can only make the following weak
statement.

Proposition. In the autonomous system, if u(t) is allowed to depend
linearly on o(f), with constant coefficients, (25) is still the necessary
condition of L2 capturability.

Proof: Using u(f)=p(v(-)) + Ko(¢) only changes E to E+ GK, and
this leaves condition (25) unchanged.

CoNCLUSION

We believe our definition of capturability is the most natural extension
to perturbed systems of the concept of controllability. It is unfortunate
that at this point there seems to be differing conditions depending on the
classes of admissible perturbations and controls. However, as one might
expect, the L? case gives rise to a rather nice theory, and in particular to
a necessary and sufficient condition for the autonomous system that
turns out to be the same as that for the discrete-time system, that we had
derived in our Ph.D. dissertation in 1970 (see [1]). The curious fact is
that in the continuous case we do not make use of the current value of
the perturbation, while we do in the discrete case. In some sense,
allowing the gain in the feedback to grow to infinity has the same effect
as knowing the perturbation instantaneously. This might be interesting
to pursue further,

We also see as a challenge the gap remaining between our necessary
and our sufficient conditions in the nonstationary nonscalar case. It
would also be interesting to remove the restriction on the admissible
strategies we have in Theorem 2. A possible path might be to generalize
the solution concept of a differential equation as in [8]. We also offer,
two conjectures mainly related to L2 capturability. It might be interest-
ing to investigate them.
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Finally, while we did not attempt to construct a very refined theory
for L' capturability, the few results we have do give some indications.
The interest of this case lies in the fact that L' controls is a natural set
up for linear differential equations. We did not mention some L* results
that appear in [2]. But there clearly is much more to be done in these
areas.
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