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Linear—Quadratic, Two-Person, Zero-Sum
Differential Games: Necessary and
Sufficient Conditions’
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Abstract. We consider linear—quadratic, two-person, zero-sum per-
fect information differential games, possibly with a linear target set. We
show a necessary and sufficient condition for the existence of a saddle
point, within a wide class of causal strategies (including, but not restrict-
ed to, pure state feedbacks). The main result is that, when they exist, the
optimal strategies are pure feedbacks, given by the classical formulas
suitably extended, and that existence may be obtained even in the
presence of a conjugate point within the time interval, provided it is of a
special type that we call even.
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1. Introduction

It has long been known that, for the two-person, zero-sum differential
game with linear dynamics, quadratic payoff, fixed end-time, and free
end-state (standard LQ game), the existence of a solution to a Riccati
equation is a sufficient condition for the existence of a saddle point within the
class of instantaneous state feedback strategies (Refs. 1-2), and therefore
within any wider class (Ref. 3).

In the simpler case of optimal control theory (one-player game), it is
also known that this constitutes a necessary condition for the existence of a
minimum (Refs. 4-6), and this result can be extended to the case where the
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final state is constrained to lie in a given linear subspace, although this raises
the problem of abnormal trajectories (Refs. 4 and 7).

Up to now, however, the problem remained unsettled for the standard
LQ game. Two main questions were posed: Is the absence of conjugate
points a necessary condition for the existence of a pure feedback solution? Is
the answer any different if one allows greater use of past information in the
elaboration of the controls? The aim of this article is to provide a rather
complete answer to these questions. The answer to both questions is
negative. And we shall provide the necessary and sufficient condition, within
amild positivity hypothesis on some of the data (hypothesis that corresponds
to the standard situation of worst-case design).

It turns out that, to investigate the problem, even with free end-state,
we need to study the linearly constrained end-state game. We thus start out
with that more general situation. As in the one-player case, this obliges us to
look into normality questions. These questions, however, happen to be more
complicated than in the previous case, and we are obliged to introduce a
further distinction between normalizable and unnormalizable problems.

In Section 2, we state the problem and the hypotheses. In Section 3, we
introduce the necessary concepts to state the main theorem, including
normalizability. Section 4 is devoted to the proof of the theorem in the
absence of conjugate points, and Section 5 is devoted to the study of
conjugate points. Many details will be skipped in the proofs; they may be
found in Ref. 3.

2. Problem

We consider a linear system
X =Fx()+Gu()+ E(Ho(t), (1)
x(to) = xo, (2)

where r€[to, 11]CR is the time, f, and 1, are prescribed, x(t)e R" is the
state, the dot means time derivative and u(t)e R™ and v(t)e R” are the
pursuer’s and evader’s controls.

The sets Q, and €, of admissible control functions are made of all
square-integrable functions u(:) and v(:) from [#, ;] to R™ and R,
respectively. F(-), G(+), E(-) are matrix time functions of appropriate
type, piecewise continuous, chosen right continuous everywhere and left
continuous at ;.

A linear rarget set # of dimension m is given in R", as the range of a full
rank m X n matrix M

M=R(M), dimM=m=n—1L
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When necessary, we shall assume that an orthogonal basis has been chosen
in &£ = .#{*, and use the orthogonal projection from R" onto £, whose matrix
I1 is of type ! X n and satisfies’

NM=I-MM", [T = 1. 3)
A payoff or criterion is given by

J(xo, to; u(- ), v(+))=x"(t1)Ax () +J' 1 [x'(HQ()x () +x'()S(H)ulr)
+u'(1)8'(1)x(1) :F’.\"(I)T(t)v(t) +0'()T'()x (1)

+u' (DR (NDu(t)—v'(1)B(t)v(t)] dt 4)
if
x(n)ed or equivalently ITx(#;) =0, 5
and
J(xo, to; u(+),v())=+00 if x(6) €M or I1x(8) #0, (6)

that the pursuer % tries to minimize and the evader ¥ to maximize. Hence,
the final constraint (4) is under the pursuer’s responsibility.

In (4), A, Q(t), R(t), B(t) are symmetric matrices, and S(t), T(¢t) are
any matrices of appropriate type, the last five matrices with the same
regularity as F, G, E as functions of time.

We further make the following positivity assumptions:

Ve[t 11], R(1)>0, B(1)>0, (7N
Q@) S
Vet 1], [S'(r) R(r)]—o’ A=0. (8)

Notice that specifications (6) and (8) are asymmetrical, in that they give
different roles to the two players. We would have a completely analogous
treatment by reversing both, using in (8) the matrix made with Q, T, —B.

It is assumed that both players have perfect instantaneous state
measurement, perfect recall, and (if necessary) perfect knowledge of their
opponent’s past control function. Thus, strategies are functions ¢ and ¢ of
R"XRxQ, into Q, and R" xR xQ, into Q,, respectively, giving the
players’ controls through

u(t) = @(xo, to; 0(+ 1), v(t) = ¢(xo, to; ul - ))(1), 9

3 We use the prime notation for transpose, and t for pseudoinverse.
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with the casuality property: for v( - ), va( * ) in Q,, if v1(2) = v2(¢) for almost
all re(to, 7], <1, then

@ (xq, to; 01)(7) = @(x0, to; L2)(1),

and conversely for ¢.
To each initial phase (x, ty), we associate two sets & and ¥ of
admissible strategies, chosen such that:

(i) they contain open-loop control functions in (), or {},;
(i) they are closed under concatenation;
(iii) any (@,¢) e ® X ¥ generates through (1)-(2) at least one tra-
jectory, generating control functions in , X Q,.

Our main theorem holds tor any such pair of admissible strategy sets
that contains ¢* and ¢* given below.

Remark 2.1. The sets ® and ¥ are chosen a priori for each initial
phase, so that the game always takes place over a product set of strategies.
We omitted writing explicitly the dependence of ® and ¥ on (xo, o). We
shall make use repeatedly of the possibility to concatenate games, using the
value of the game over [, ;] as the final cost of a game on [to, t2]. For the
legitimacy of this, see for instance Ref. 3. For consistency, we must assume
that, for any t, € [to, t;], the restriction to [r,, £1] of a strategy pair (¢, ¢) €
D(x0, to) X W(xo, to) belongs to P(x,, 12) X W(x,, £2), where x, is the state at
time £, on any trajectory generated by (¢, ) from (xo, #9). The converse is
implied by (ii) above: one is allowed to concatenate a strategy pair of
®D(x2, 12) X W(x,, t2) to any trajectory from (xo, to) to (x2, f2).

We are obliged to use this set-up, because we want to allow state
feedbacks with a gain that can be unbounded in the neighborhood of a time
7, such that at that time trajectories exist only through some special states of
interest. In that case, the meaning of (1) is that it must be satisfied for altost
all «. If 7 is the initial time, we state the following definitions.

Definition 2.1. A trajectory generated from x(r) = £ is an absolutely
continuous function x( - ), satisfying (1) for all t > 7 in a right neighborhood
of 7, and such that x(¢) > £ when ¢|.

Definition 2.2. Admissible strategies sets are sets @ and W satisfying
(1)-(iii) above, and such that all admissible strategies are locally bounded,
except at most in the neighborhood of finitely many instants of time.
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Definition 2.3. A solution of the differential game 1s a set of admis-
sible strategies (¢*, ¢*) such that, V(p, ¢¥)e DXV,

J(xo, to; @™*,¢) <J(x0, to; @™, ¥*) = V(xo, to) =J (x0, to; @,¥*), (10)
or equivalently (see Ref. 3 or Ref. 8),
V(u(-), v(+))eQuxQy,
J(x0, to; @, 0(+ ) =J(x0, to; @™, ¥*) = V(x0, to) =J (x0, to; u( - ),¥*), (11)
with a transparent abuse of notations for the arguments of J. If a pair of
admissible strategies generates several trajectories, the inequalities must

hold for J evaluated on any of them, and this, in turn, ensures the unicity of
the value J(¢*, ¢*).

3. Basic Equations

‘We introduce the following canonical equations, involving two square
n X n matrix functions of time X (- ) and A( - ):

X=(F-GR 'S'+EB'T)'X -(GR'G'-EB 'E")A,

X(t))=MM", (12)
A=—(Q-SR™'S'+TB™'T)X - (F'-SR™'G'+ TB™'E")A,
Alty) = AMM +1-MM", (13)
and the definition
P(t)=AMX (1) (14)

We have the following classical lemma (see Ref. 3 or Ref. 7).

Lemma 3.1. On any interval of time where X(¢) is invertible, P(-)
satisfies the following Riccati equation:

P+PF+FP—-(PG+S)R " (G'P+S)+(PE+T)B"(E'P+T)+Q=0;
(15)

conversely, if X(7) is invertible, X (¢) is invertible on any interval [7,, 75]
over which the equation (15), initialized at time 7 with (14) has a solution.

Let W (r) be the subspace of states that can be controlled by u alone to
Aon [t ]

W(t)=d(t, t,)[./ﬂ +%(J‘l ®(ty, s)G(s)G'(s)P' (14, 5) ds)]. (16)

4

®(s, s) is the transition matrix associated with F.
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Proposition 3.1. The subspace #(t) is of piecewise constant
decreasing dimension,

Proof. The range subspace that appears in the definition (16) is a
decreasing set, and therefore piecewise constant and of decreasing dimen-
sion. d

Definition 3.1. The system (1) is said to be G-reducible if
v, R(E(1)CW(1). 17)

As a matter of fact, in that case v cannot by himself drive the state out of ¥,
so that, if the initial state belongs to it, one can, by the classical technique,
restrict the state space to %/, losing no information, and making the system
completely u-controllable modulo / at t,. Hence, the terminology.

We have the following obvious result.

Lemma 3.2. A necessary condition for the existence of a nonde-
generate (i.e., with finite value) saddle point is that the system be G-
reducible and that

xo€ Wi(to). (18)

Proof. It is elementary. ]

Now, we shall study the problem on a time interval 5, f;] on which
W (t) is of constant dimension, so that performing the G -reduction, we shall
have a system differentially completely u-controllable modulo ./ at ¢,
(d.c.u-c mod .#{). We shall show that, if a saddle point exists at all, the set of
initial states for which it does exist is a linear space .#,. For initial states
x(t) € M, v can make J arbitrarily large. Therefore, if on [to, ;] % changes
dimension at some instants t;, i =2, . . ., we can first consider the problem on
[#2, 11], then on [13, 1] with capture set ., at 15, a final cost V(x, ;) (which
will be quadratic in x), and so on up to .. Furthermore, the equations
(12)-(13) for the problem on [#;+1, ;] may be initialized with X (¢;), A(#;) as
given by the system over [#;, t;-;] (see Ref. 3 or Ref. 7). Therefore, there is no
loss of generality in making the following assumption:

Ve[t 1], W(t)=R". (19)
We are obliged to state a further definition.
Definition 3.2. The problem (1)-(6) is said to be normalizable if, for
all ¢ on [, 1,], except possibly at isolated points, called focal points,
R(X (1)) = W(). (20)
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If (20) holds, by performing the G-reduction, one can make the
problem normal according to the classical definition (see Refs. 4 and 7), that
we now recall.

Definition 3.3. The problem is normal if, for all  on 1o, t;], except
possibly at isolated focal points,

det X (1) # 0. (21)

It is a central fact of second-variation theory that, in optimal control
theory, all nonsingular problems are normalizable according to the above
definition. Therefore, the concept is not needed. The new fact is that this is
not true for differential games. As a counterexample, choose

F=0, G=E, Q=0, §$=0, T =0, R=B.

Definition 3.4. A focal point different from ¢, is called a conjugate
point.

We can now state the main theorem.

Theorem 3.1. A necessary and sufficient condition for the existence
of a nondegenerate saddle point to the problem (1)-(6) with the assumptions
(7) and (8), is that:

(i) the system (1) be G-reducible (Definition 3.1);
(i) the problem be normalizable (Definition 3.2);
(iii) xp€ R(X(t0)), X () is defined by (12)-(13);
(iv) Vre[to, 1], P(t)=0, P(t) defined by (14).

Then, the optimal strategies are
u)=@*x(0), 1),  e*(x,)==RNG(PN)+S'()x, (22)
v()=¢*(x(0), 1),  *x, =B (EOPO+T(0)x,  (23)

and the value of the game is
V(xo, to) = xoP(to)xo. (24)

If the above conditions do not hold, v can make the payoff arbitrarily large.

Remark 3.1. In the neighborhood of a focal point, ¢* and ¢* are
unbounded (for some x’s). We must check that these strategies are consis-
tent with the requirements set to define admissible strategies. This is done as
follows.

(i) The strategies ¢* and ¢* generate trajectories from any initial
state satisfying condition (iii) of the theorem, against any opponent’s open-
loop control. This is not trivial only if ¢, is a conjugate point. The fact that it is



58 JOTA: VOL. 27, NO. 1, JANUARY 1979

true for ¢ * will be a consequence of the sufficient condition in Section 4, and
the study of the reverse game in Section 5. For ¢* this has to be proved
independently and is asserted by Lemma 3.3.

(ii) The controls generated by (¢*, v(-)) or (¢*, u(-)) are square
integrable if the opponent’s one is. This again is a consequence of the proof
of the theorem. For *, it holds only if «( - ) ensures (5). We may admit that,
if it does not, v chooses to bound his control once he has made a sufficient
profit, chosen arbitrarily large. He can then play v = 0. Notice, however, that
this is no longer a pure feedback strategy.

Lemma 3.3. For any xoe Z(X (1)), and for any admissible control
function v(-), there exists at least one trajectory generated from x, by

(@*, v(-)).

Proof. It is omitted (see Ref. 3). ]

4. Proof of the Main Theorem: No Conjugate Point

4.1. Simple Game. We first study a particular case of the game
(1)-(6), that we call the simple game. It is defined by
F=0, A ={0}, ie.,M=0, n=1,
A=0, Vielto, ], Q)=0, S =0, T(1)=0.
In this case, assumption (8) is void.

We further assume that the system is d.c.u-cmod 4, i.e., (19) holds.
Equations (10)-(14) now reduce to

"ll

X(t)= J [G(s)R™'(s)G'(s)—E(s)B™'(s)E'(s) ds, A(t)=1,

PO)=X"(t), PWO=X'(1), (25)

if the system is normalizable.

Necessary Condition. The necessity of (i) follows from Lemma 3.2.
The necessity of (iii), (iv) follows from Heymann, Pachter, and Stern (Ref. 9,
Corollary 3.10): they state that, if the conditions

X(t)=0, (26)
x(to) € R(X (to)), (27)
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are not both satisfied, then

sup inf J(xo, fo; u(-), v(+))= +c0.
u(-)ef, v(-)ef,

This means that, even knowing the whole future control function v(-), u
cannot prevent his opponent from making J arbitrarily large. This is a
fortiori true if u is constrained to using causal strategies. And, in that case,
(26) must hold for all re[t, t,], and not only at 7,. Otherwise, if it were
violated at a time ¢, v could wait (say, play v = 0) until that time, and use the
above result from ¢, on.

For the same reason, ¥ must also ensure (27) at all ¢ € [t, #;], from any
admissible initial state. At a conjugate point, this is possible only if ¢ is
allowed to be unbounded in a left neighborhood, and this, together with
Definition 2.2, forbids accumulation points of conjugate points. The neces-
sity of (ii) is then a consequence of the following result.

Lemma 4.1. If X(¢) is positive semidefinite and singular on an inter-
val [t,, t3], no strictly causal strategy ¢ can hold the state in Z(X) for every

control v(-)eQ,.
Proof. It is omitted (see Ref. 3). O
Sufficient Condition. Using (22)-(23) and (25), one sees that, for all u
and v, assuming X (1)>0,
u'Ru—v'Bv=—(d/dt)(x'X "x)+(u—¢@*YRu—¢*)—(v—¢*)B(v—¢*).

Integrating by parts, this yields (using the notation u'Ru = |u||k):

j Ul =olB) ds = xbX ()" xo— x'(NX (1) (0)

o] e ads— | lo-urlhas  28)
I{

(4] to

Assume that the pursuer uses the strategy ¢*. The above relation gives

1 t
| s = [ Dol ds + 26X o)

(] to

—x"(OX ()" x(t) —f lo—w*|5 ds

o

In the right-hand side of this equation, the first two terms are positive and
bounded as long as v( - ) is square integrable on [fo, #;]. The last two terms
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are negative. However, the left-hand side being positive, these last two
terms are both bounded. From this, we can conclude: firstly, he function
u( - ) thus generated is square integrable on [to, 11]; secondly, there exists a
positive real number a such that

XOX@) 'x(=a’, Vi<n,
so that

IxI=IX2NX 2 Ox @) <1X2(0la;

and, since X (f) goes to zero as ¢ goes to t, in the limit

x(t)=0; (29)
thirdly, taking the above fact into account,
J(xo, to; @*, v(+)) = x"(t) X (t0) ' x (£o). (30)

Now, assume that against ¢*, v plays ¢*. With these strategies, we get
(d/dt) (X~ 0)x (1)) =0.

Therefore X 'x is constant along a trajectory; thus, since x(t) goes to zero,

X(OX x(t)»0  ast-1,. (31)
Equations (23) therefore give
J(xo, to; @™, ¢*) = «\‘(')X(to)_lx() (32)

We must now establish the second inequality of the saddle point, i.e., that
J(xo, to; u(+ ), 4*) = x0X (1) xo. (33)

This will be done using the following result.

Lemma 4.2. Against the strategy v =¢*, all L? controls u(-) that
ensure capture (29) result in property (31).

Proof. We now consider the one-player system
¥=EB'E'X 'x+Gu

that we want to control to the origin. A difficulty comes from the fact that its
matrix is unbounded in the neighborhood of ¢, and is undefined at ¢,. Thus,
we cannot use its transition matrix (¢, t). However, using the proof of
Faurre (Ref. 6), which carries over unchanged to the linearly constrained
final state case, we know that there exists a matrix W(¢) such that, for all
capturing controls,

min j "ulz ds = x'(6) Wn)x (D), (34)

u(-)
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and that W satisfies the Riccati equation
W=-WEB'E'X'-X'EB'E'W+ WGR'G'W.
W is positive definite [since u = 0 cannot cause (29) from x,# 0], and thus
(W Y=EBT'E'X'W'+W X 'EBT'E'-GR™'G".  (35)
From classical control theory, and using the fact that, as a product of positive
semidefinite matrices, EB 'E'X " has all its eigenvalues unstable, we see

easily that the coercivity constant y(W) goes to infinity as t goes to 1y;
therefore, W™'() can be extended to t,, by posing

W lr) =0, (36)

which together with (35) uniquely defines W (¢).

We now notice that (25) and (35)-(36) give
(X-W'Y=-EB'E'+EBT'E'X'(X-W H+(X-W )X 'EB'E".
Therefore, for t <s <1,

X() =W~ )X ()= W ()W, s)

=J W(, 0)E(0)B " 0)E0)V' (1, o) dor = 0. 37)

From the nonnegativity of the eigenvalues of EB~'E'X "' and Gronwall’s
inequality, it follows that W(s, s) remains bounded as s goes to ¢,. And since

X(t)=Wt)=0,
(37) yields
X(t)-w (1) =0.
X and W being both positive definite, this implies that
X =sW@), Vi<t

and, using (29), we have, for all r <1t,,
0=x'(0X "(x(O)=x'(OW(t)x(1) < J llu(s)lI ds.

Since u( -) is by hypothesis square integrable, the rightmost term goes to
zero as t goes to t,; therefore, (31) holds, which proves the lemma. O

Now, use v =¢* and (31) in Eq. (28), and (33) follows.

Finally, if the problem is not normal, it must still be normalizable, with
x (1) in R(X(r)) (see necessary condition). Then, X*x coincides with X’”'x,
where X is the restriction of X to AR(X). Therefore the theorem is proved
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for the simple game in the absence of a conjugate point (but with the final
constraint).

4.2. Reduction of the General Game to the Simple Game. We give
here a shortened treatment, that hides some underlying facts. See Ref. 3 for
a more detailed account.

We consider anew the problem (1)—(6), with assumption (7). But up to
and including Lemma 4.3, we are careful not to use hypothesis (8). With this
problem, we associate the same problem, but without the final constraint.
Let X', Y', P! be the matrices X, Y, P for this last problem. By continuity,
X'isinvertible in a left neighborhood of ¢;; therefore, P! satisfies the Riccati
equation (15) in that neighborhood, with

Pl(1)) = A. (38)

We now take that Riccati equation as the definition of P'.
We make the classical change of control variables, possible as long as
the free end-state problem has no conjugate point (P' defined):

u=it—-R NG'P'+8)x, v=0+B YE'P'+T")x; (39)

and, via the same type of calculation as we did to obtain (22), we have, as
long as P exists on [to, £;],

J(xo, to; u(+), v(+))= xéP'(to)xo+J (lall=z— 1611z dt, (40)

to

the state being now governed by

¥ =[(F-(GR'G'-EB'E')P'-GR'S'+ EB™'T'Ix + Gi + Eb.
(41)

The remarkable fact is that now (41) serves only to define the constraint (5)
on 4 and that the criterion does not involve x any more (since we can ignore
the first term, which depends only on the initial condition). We can therefore
replace (41), (5) by any equivalent constraint. This is done using the
transition matrix ® of (41), and the projection IT on ., and using the new
state

(1) =1d(t1, H)x (), (42)

which is governed by the equation
) =GWaw)+E®d), (43)
G()=Td(1,, nG(r), E()=1d(t, NE(), (44)

and the final constraint reads
X(4)=0. (45)
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Now, (40), (43), (45) define a simple game; the only things that remain to be
checked, in the case where P' and X ' (corresponding to this game) exist on
[to, £1], are these: the known saddle point of this game translates back in
o*, ¢* as given by (22)-(23); the value is V as given by (24); and the
necessary conditions on the simple game translate into the same on the
general game.

We first establish the relations that link the various matrices involved.
Introduce

~

X = J ' &1, s)[G(s)R™'G'(s)— E(s)B 'E'(5)]®'(t1, s) ds. (46)

It is a simple matter of tracing back into the proper equations to check that

X()=T1X"()IT, (47)
X()=®@, 1)[X° (T -MM"+MM'], (48)
AW =d'(ty, O[T -MM" +P ()X (1)]. (49)

We now are in a position to prove the following important results,

Lemma 4.3. On an interval [1,, 1] on which P and P' are bounded,
the following results hold.

(i) A necessary and sufficient condition for the problem to have a
nondegenerate saddle point is that it be normalizable, xo€ 22 (X (%)), and
X(t)>0. In that case, the solution is given by (22)-(24). In the absence of
terminal constraint, P and P’ coincide, and their existence suffices as (40)
shows, and it also ensures invertibility of X by Lemma 3.1.

(ii) For the normalized problem, if P is positive semidefinite, X is
positive definite; therefore, the saddle point exists for every initial point.

Proof. We first show that normalizability of the two problems is
equivalent. On the one hand, (x, t) is controllable to ([, ¢;) iff (%, 1) is
controllable to (0, ;). On the other hand, in view of (47),

feRX) (1, )x e RIX ) d(1y, t)x € R(X TITT) + 4.
(50)
We also have the simple fact that

RXII'ID + M = R(X(I -MM"))+RMM")
=R(X°I-MM" )+ MM,

which in view of (43) and (45) gives
feRX)SxeR(X).
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Since normalizability and normality only involve comparison of the
subspace of controllable states with (X)), the first result is proved.
It turns out to be convenient to introduce for the normal game the
matrix:
Z()=9'(t,, NI X ' dD(1y, 1). (51)

By differentiating with respect to time and checking the initial conditions,
one can see that
(PHD+Z ()X (1)=A(),

so that, when these matrices exist and X is invertible,
P(t)=PY 1)+ Z(1). (52)

Placing back the solution of the simple game in £ in (34), and using (46), (47),
(51), (52), one recovers (21)—(24). Again, if the system is not G-reduced, we
can check that we can replace X ~' by X'. Therefore, using the equivalence
between the two games and the results of Section 4.1, we have the first
assertion of the lemma.

Assume now that X is not positive definite in the neighborhood of t;,
but invertible. Then, X "' has eigenvalues that diverge to —o as  goes to 1.
Therefore, for t large enough, there exist vectors ¢ of unit norm such that
&' X7 '¢ is arbitrarily large negative. Since I1d(1y, 1) is surjective, there exist
vectors i of unit norm such that n'Zn is arbitrarily large negative; thus,
according to (52), n'Pn can be made negative. Therefore, if P is positive
semidefinite in a left neighborhood of #;, X is positive definite in that
neighborhood. But X cannot become singular without P of P' diverging.
Therefore, the second assertion of the lemma is proved. ]

We now complete the proof of the main theorem, in the absence of a
conjugate point, with the following lemma, which is the first place where we
use assumption (8).

Lemma 4.4. Under assumption (8) for a normal problem, the follow-
ing results hold.

(i) On any interval on which P is positive semidefinite and bounded,
P exists.

(i1) If,inaneighborhood of ¢,, where P! exists, X is positive definite, P
is positive semidefinite on any interval [¢to, t;] over which it is bounded.

Proof. (i) We introduce the solution P,(¢) of the Riccati equation of
the free end-state control problem, i.e., Eq. (15) with the term (PE +
T)B™'(E'P+ T") deleted, and initialized as P', i.e.,

Py (t)=A.
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We know that P, exists for all t <t, and (see Ref. 11)
0=P,(t)=P'(r) (53)

Now, if P is positive semidefinite, X is positive definite in a neighborhood of
t1; therefore, in this neighborhood, according to (51)-(53);

0=<=P'(t)<P(1).

We have seen that, if P remains bounded, X remains positive definite;
therefore, P' cannot diverge without P doing so.

(i) IfXis positive definite, according to (51)-(53) again, P is positive
definite, and we have just seen that then, as long as it bounded, this situation
prevails. d

Therefore, the condition P =0, instead of P' exists, and X positive
definite is sufficient because of Lemmas 4.3 and 4.4, and necessary because
of Lemmas 4.3 and 4.4, and the fact that there always exists a neighborhood
of t; where P’ exists.

5. Proof of the Main Theorem: Conjugate Point
We shall make use of the following fact (see Ref. 7).

Proposition 5.1. At any time r, <1, the matrices X (2), A(t>) which
are solutions of (12)-(13) can be used to initialize the canonical equations of
the game with the same dynamics and integral payoff, final time ¢,, target set
R(X (t2)), and final cost x'(#2) P(£2)x (t2).

Notice that this proposition allows us to extend our solution beyond an
instant ¢, at which % changes dimension, by concatenating the two games,
after #, and before t,.

5.1. Extension of the Solution to ;. We again assume that the system
has been G-reduced, and consider the case where to =t} is the first rear
conjugate point of ¢,. Let

R(X(t7)) = M*.
By definition,
M*#R",

We assume that the necessary conditions of the previous paragraph hold
over [t, t;], for any t > ¢},
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Assume first that xo€ #*. We consider a new game (referred to as J ),
which is in fact the present one with time reversed, in the neighborhood of
t¥. Let 7 be its time:

dx/dtr =—Fx — Gu— Ebv,

J = —-x’(n)P(t’f)x(n)+J. L(x, u,v)dr if x(7,) e M*,

0

J =—-0 if x(ry) # M*,

where the matrices F, G, E, and the integrand L(x, u, v) are the same as in
(1), (4), evaluated at t = t,— 7. t, is a time larger than ¢¥, that we shall choose
later. Let

T0=0, x(T0) = X2, T =011

This new game is similar to the first one, except for the fact that the roles of %
and 7" have been reversed. The assumption corresponding to (8) is not
satisfied either. We chose ¢, in such a way that the matrix P' corresponding
to this new game exists on (7o, 71). It is straightforward to write the canonical
equations of this game, that can be initialized with X (t§) and —A(t}).
One sees immediately that their solution is X (), A (7):

X (n)=X(t—171), AT (n)=—Alt—171), P (t)=—P(t2—1).

We can apply Lemma 4.3 to this game (with signs suitably reversed),
and we see that

¢ (5, )=—R'(—=G'P +S8)x =*(x, 1,— 1),
Y, ) =B —E'P"+T')x = y*(x, b=7)
are a saddle point. In particular, ¢~ induces the capture against any u( - ),
and produces trajectories through any point of #*, showing that ¢* is an
admissible strategy from xo € .#(*.
Consider a control v( - ) applied to the game J~. According to Lemma
3.2, there exists a trajectory of (1) generated by (¢*, v) through x,. Let

x2 = x(£2) on this trajectory. Applying the above construction with that x,
we obtain:

T (x0, To; @*, v( - )) = —x3P(t)x3.
Thus,

J'* L(x, ¢*, v) dt = xoP(tF)xo— x5P(t2)x5.

1
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Still playing u = ¢* from ¢, to #,, using the results of Section 4, and adding
the saddle-point inequality to the previous one, we get

J(xo, 175 @*, v( ) =xoP(tT)x0.

We proceed in the same way to obtain the other inequality of the saddle
point.

Consider now the case xo€.#*. Assume that there exists an optimal
strategy ¢" that ensures a finite cost against any admissible control v ().

Consider for v( - ), the strategy
v=0 on (t§, t¥ +e), v=y* on [tf +e, 1]

The switch occurs at a point x, that goes to x as € goes to zero. However, we
have the following lemma.

Lemma 5.1. On any sequence (x, f.) converging to (xo, 1), with
e > t¥, xo £ M*, one has

xP(t)xe > ©

Since, with the strategy that we have proposed, the total cost is larger or
equal to x.P(t.)x,, by choosing e sufficiently small, " can make the cost
arbitrarily large.

Therefore, the main theorem is proved for the case o= 7.

5.2. Extension beyond . Assume now that o< ¢}. It is still possible
that P(t)=0 on [t, t;]. When this is the case, ¥ will be called an even
conjugate point. In that case, the game with same dynamics, same integral
part of the payoff, final time ¢7, target set .#*, and final cost x'(¢7)P(+7)x (¢F)
[and +c0 if x(£F) g M*, i.e., still V(x(tF), 1T)] has a nondegenerate saddle
point given by the same formulas (thanks to the proposition above). There-
fore, the global game has a saddle point. But if P fails to be positive
semidefinite for =¥, we know that the game ending at t} has an infinite
value. The theorem is now completely proved.

Example 5.1. The following game has a saddle point that survives a
conjugate point. All variables are scalar, and there is no terminal constraint.

x=Q2-tu+t, M=R,
!=%x(2)2+J (W= ar.
(6]

We leave to the reader to check that r =1 is an even conjugate point:

P()=1/2(1-1).
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Remark 5.1. It is possible that, in a given game, our sufficient condi-
tion will be satisfied and that, still, there exists a strategy ¢ such that, against
any L? control u(- ), we are ensured that x(f,) €., or x(tF)e.#*, an
apparent paradox.

On the one hand, the pair (¢*, &) would generate controls («( - ), v(+)),
none of which is L?; therefore, from the condition (iii) on admissible strategy
sets and the requirement that ¢* € ®, it follows that l/;;é V. Butthisisarather
arbitrary dictum, that lets one player play his capturing strategy, and not his
opponent play his anticapturing one.

On the other hand, this set-up allowed us a clean theory, and is justified
by the remark that Eq. (28) shows that a strategy pair (¢*, ) would cause
the criterion to diverge to —c0 as ¢ 1 1, (or ¢ 1 ¢¥), so that ¥ would be driven
out of the market before the game ends. We could decide a priori that, in
such a case, J = —o0, and relax the constraints on ¥ to include 4/;

6. Conclusions

We have a complete theory with the positivity hypothesis (8), which
corresponds to the worst-case design of a classical positive control problem.
The two remarkable facts are that, if they exist at all, the optimal strategies
are pure feedbacks, and that the saddle point can exist even in the presence
of a conjugate point, provided it is even. It is easy to generalize everything to
a nonhomogeneous problem or to a problem with intermediary costs
x'(t)Ax () +2aix(1;), or both (see Ref. 3).

Lemma 3.3 and the notion of even conjugate point give the basis for a
theory without the positivity assumption. It would also be interesting to
investigate what happens at an accumulation point of conjugate points, a
situation that we have ruled out with the help of Definition 2.2 and then
classified as nonnormalizable.
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TECHNICAL COMMENT

Linear-Quadratic Two-Person Zero-Sum
Differential Games, Necessary and Sufficient
Conditions: Comment

P. BERNHARD'

Communicated by P. L. Yu

Abstract. We give a simpler, easier-to-check, version of the theorem
of the paper referred to, i.e., a necessary and sufficient condition for the
existence of a saddle point to the linear-quadratic two-person zero-sum
perfect information differential game.

Key Words. Linear differential games, conjugate points, saddle
points.

According to the analysis of Ref. 1, it is clear that the subspace W(r) to
be taken into account for the definitions of both G-reducibility and normal-
izability is that of states w-controllable to (*=R(X(t*)) at the next
conjugate point r*. However, the conditions of the theorem are thus
complicated to state and difficult to check, since this requires that conjugate
points be recognized and analyzed and that the corresponding control-
lability matrix be computed.

It is possible to give a simpler form of these conditions.

Theorem. A necessary and sufficient condition for the existence of a
nondegenerate saddle point to the given differential game is that:

(i)  x(to) e R(X (t0));

(ii) rank X(t) is piecewise constant;

(iii) R(E(t)) CR(X (1)), for all t € (1o, t;), except, at most, at isolated
points in time;

(iv) P(t)=0, for all t € (to, 11).
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Proof. Necessity of (iii) follows, as in Lemma 4.1 of Ref. 1, from the
fact that, otherwise, no strictly causal strategy can ensure (i) for 1>t a
necessary condition. Strictly causal strategies have been defined in such a
way that, if ¢ holds C(x, ¢, v)=0, for all v(-), then necessarily 6C/dv =0
along all trajectories.

Sufficiency will first be proved on the simple game. Again along the lines
of Lemma 4.1, it follows from (iv) and (iii) that Z(G (1)) C R (X (t)), and thus
that, on any interval where rank X is constant, (X (¢)) is constant and
contains the wu-controllable and v-controllable state subspaces. But, as
R (X (1)) is trivially contained in the sum of the last two, it is equal to this sum.
Moreover, X (t)=0 immediately implies G-reducibility for the simple
game, so that

R(X ()= W().

We can then apply the earlier theorem.

Finally, translating (iii) for the simple game J into the same condition
for the general game J goes as we did for normalizability at the beginning of
Lemma 4.3 of Ref. 1.
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