S A ST e i seiws SRR X S e Tl e T s o S

Singular Surfaces in Differential Games

An intrcduction

Picrre BERNHARD
. Université de Paris IX

and

Centre d'Avtomatique et Informatique
de 1'Ecole Nationale Supérieure

des Mines de Paris

Abstract.

We:give a general set up and a version of Isaacs! Verification
Theorem that allows us to deal with the various singularities we
want to investigate. In particular, we are obliged to allow upper
or lower strategies, leading to uprer or loﬁer saddle points, that may
existg even if the Hamiltonian does not have a saddle point. It is
shown that this is needed even for separated games. Then we give a
general study of junctions of optimal fields with singular surfaces,
*which requires a special investigation of tne situation where this
junction is tangantlal extending Carathéodory's General Envelope
Theorem. We then proceed to study special singular surfaces, and we
end up with an example which shows how a state constraint may appear
in the interior of the game space of a separaied problem posed with

no such constraint to start with.



Introduction '
It can well be said that Isaacs founding work on two person, zero
sum, Differential Games, [1] is mainly a study of singular surfaces
(tegether with the fundamentals of Hamilton Jacobi theory). Wnile this
topic was investigated further by J.V. Breakwell and his students
in particular amorg other works, see [2], most of the following work
has been in the area of existence theory, by refining the concept of
strategy (See, e.g. [3] to [11].) While this later work is highly
significant,and of relevencato'the present one, we wish here to turn
back to the topic of better understanding singular suvrfaces. For
the sake of brevity, we shall omit topics related to existence theory,
- in particular the Justification of our choice of upper and lower stra-
tegies; and the question of their approximation by simple sirategies.

: The main emphasis of this short course will be on giving a more
rlgorous treatment of long used practices, particularily in the case
where optimal trajectories have an envelope, a 51tuat10n that has been -
recognized early by J.V Breakwell in the study of parulcular games

. ﬂ2], [13]. In the process, we hope to contribute to a unification,
thgs a simplification, of the whole topic.

—ﬂ-In part I, we shall give the general set up we use, and the rele-
vant Hamilton Jacobi Isaacs equation for this set up. "In part 2 we

'glve the fundamental lemmas that allow us to deal with the envelope
situation , and general results on Jjunctions of an optimal field with

.é*éfﬁéﬁIéfMEﬁff_ce. In part 3.we investigate various kinds of singulariis

> Part 4 gives a simple ardinteresting exemple : the One Dimensional
Second Order Servomeehanlsm Problem. ) - |

1. General set up
"1.1. The Game .
“ We. shall consider a two player dynamical system governed by the
-- -differential equation

(1) R = f(x, u, v)

<& . - i
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“_where X means dx/&t t ¢ RY is the time,

x(t) ;s’the state, x(t) € X c R%
u(t)'~is the first player's control, u(t) € uc Rl, U closed,
~v(t) is the second player's control, v(t) € v ¢ R®, v closed.

Admissible control functicns are
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u(.) € Q. = piecewise continous functions fromm R into u

piecewise continous functions from R" into v
: !
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£f(., «, .) is a C° function fromm R™ x R" x R™ into R". We
shall assume that £ is such that for every pair of admissible
controls u(.), v(.), (1) has a bounded solution on every finite
interval of the positive real line from any intial state X in X.
Some further assumptions on f{ U and V will be made in a moment.

}

Notice that we have taken an autonomous system. It is a well
known fact that it is always possible to do so, if necessary by
having the last component of X have a constant unit time derivative,
and thus be equal to time. This also allows us to take, thereafter,
an autonomous definition of payoff and -strategies, and to assume
that the game always beginsat time zero. .

We could have generalized slightly by allowing measurable control
functions, or, more significantly, by allowing u and v to vary
with time alone, or with all of x in an upper semi-continucus
fashion. We avoid it here for the sake of simplicity. However,

" since x may contain time as one component, taking X fixed as
we shall do does not imply that the actual capture set (or capture
zongvboundéries such as barriers) is (are) fixed.

The playing space. X will be assumed to be a closed subset of Rn,
with non empty interior, locally on one side of its 02 boundery
oX. ) -

Final time t1 is the last instant of time before x(%) leaves X:

ty=sup [ t €R | v v € [0,t], x(1) € X}.

t1 is -a function of initial state and of the chosen control func-
tions u(.) and +v(.). It may be infinite.

A pay off‘is assbciated to each initial state and pair of control

functions : ' £ :
Ix 5 u(e), V(D= Kax(s)) + [ 1 3x, u, ) a6 6y <o

I(xy 5 ul(s)y v(L)) = + e ' | if ty =

(Therefore we arbitrarily decided that the minimizing player wanis

.fhe game to terminate).
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We shall assume that, for all x in X, and v in ¥, the set
(n(x, u, v), £f(x, u, v)) is convex and bounded in Rn+1, and
similarily in v¥. In fact, the only property we need is'that for
relevant vectors A or RP, L + A'f have a unique minirum in u

or maximum in V. ,
K(x) is a function from R" into R U { - », + w}. That is, a
part OXu of 00X may exist such that . ’

J =:K(x(t1)) =+ if x(t1) € X,

and similary a part OXV where J 1is equal to - o if the game
terminates there. We say that aXu defines a state constraint
under the first players responsability and similarily for GXV.
K(.) is assumed to be of class 02 in the interior of the region
where it is finite. akE -

The first player, or Pursuer P wants to minimize J while the
second player, or Evader E waﬁts to maximize it. However this
statement must now be made more precise by specifying the informa-
tion available to the players in making their choice (strategy
concept) and the solution sought.

1.2. Strategies and saddle points.

"Using an idea of Varaiya and Roxin [5], [6], [7], and a special
form of Isaacs tenet of transition (which he stated as early as
1952 in Rand seminars), one can justify the following definitions,
that we shall take here as part of the statement of the game.

A u - discriminating strategy or u - D - strategy, (the need for
this type of strategy was probably first seen by J.V. Breakwell
[14]) is an application @€ & from X x y into u :

(3a) u = 9(x, v)

such that for e&ery admissible control function v(.) € Qs the

.

differential equation
(42) == £, olx, V) , V) x(0) = x, ,
has a unique solution for every initial state X in X, in the

precise following meaning : there exists an absolutely continuous
function x(t) satisfying (4a) for each t for which x(.)
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is differentiable (i.e. allmost all t), that together with v(.)
generates via (33) an admissible control function wu(.) ¢ Q-
This defines the set @ of admissible u-D-strategies.

A v-onlinary strategy (or vmstrategy) is an application ¢ € V¥

from X ~into u

(3b) v = ¢(x)

such that for every admissible control functlon u(.) € Qs the

dlfferentlal equation

x = f(x, u, ¢(x)) , x(0) = x, >
has a uniqué solution for every initial state X, in X, with the
same -definition as above, that, together with wu(.), generates
‘via (3b) an admissible control function v(.) € Qe This defines
the set ¥ of admissible v-strategies.

A lower saddle point is a pair (¢, ¢ ) of admissible wu-D-
stiategy and v—strategy such that
i) the differential equation

(40) k= 2x, TG, 0TGN, 6TEN), x(0) = x,,

has é solution generating admissible control functions u( )
and v(.). (It suffices to assume that one is admlss1ble, because

then the other is such). .
ii) for every initial state x, €X, there exists a number V“(xo)
~such that, for every admissible control functions uf{.) € Q, and

'V(V.) € QV’

0 3 ¢, v(.)) < V(x,) =3 (xg 5 u(.), ¢'). 

(5a) J(x
. ~ _ _
The notations J(x, ;5 ¢,v(.)) and J(x 5 u(.), ¢) baving an
obvious non ambiguous meaning. )
Iet uw (.) and v (.) be the control functions generated by a

solution of (4c) then necessarily

(50) I(xg 5w (), v () = Vix)



because

\]

J(Xé s u (), vi())=3d(x, 597, v) =dkx,;u, 67,
which together with (5a) implies (5b).

V- is called the lower value, or lower value. funciion, of the game.
Our definition (5a) of a lower saddle point seems restrictive

in that it requires comparison controls to be open loop. However,
as was pointed out by Berkovitz [15], this is not so since for

any 'closed loop v-strategy ¢, if the pair (¢, ¢) generates

a solution x(t) admissible in the sense that ¢(x(.)) is admis-—
sible, then letting v(.) = ¢(x(.)) gives the same payoff and
allows us to use (5a) to evaluate this payoff. On the other hard,
our definition avoids some difficult problems of play ability which
'may end up in the fact that different saddle points exist for the
same game, with different values. [16].

Notice also that since x(t) may have the time as one component
our.strategies include open loop controls. . _

We similary define a u-ordinary strategy as an application

9 €@ of X into U and a y- D- strategy as sn application

¢ € vt from X X w into ¥. An upper saddle voint is a pair
(¢+,.¢+).e ® x Y+, agéin such that the corresponding differential
equafion has a solution generating admissible control functions,

and such that for any admissible control functions u(.) and +v(.),
the inequalities (5a) are satisfied with ¢ , ¢ and 'V~
replaced by ¢+, ¢+ and VY. The upper value vt satisfies the

equivalent of equality (5b).

We define an ordinary saddle point, or daddle point, as a pair
(Qo, ¢°) €@ x ¥ of admissible ordinary strategies, with the same
properties as before, and such that ,(5a) hold with QO, ¢°, and
V in place of ¢ , ¢ and V .

In most examples, the game shall be "separated", i.e., we shall have

£(x, Au,» v) = g(x, u) + h(x, v)

L(x, u, v) = M(x, u) + N(x, v)
In these cases, the~hamiltonian (that we introduce below) has a

saddle point in (u, v), and it turns out that, except on the sin-
gular surfaceswe want to investigate, the optimal D-strategies
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wont use the extra infermation allowed on.the opponents current
control, but will only use the current state. Moreover, on the
singular surfaces, only one of the playerswill need this extra
information in order for us to be able to exhibit a solution of
the gane. v |

Forfthislreason, it shall then make sense to introduce, without
further precautions Dert ining to existence, the concept of a
D-—saddle point where bOuh playerb are allowed to use D-strategies.
A D-saddle point shall be made of the concatenation (in time)
of upper and lower strategy pairs, admissible in the same sense

~ as previously, leading to inequalities of the type (5a).

Of course, we do not imply that all these saddle points, or any
of them, exist. However, we shall investigate the case where one
exists, since we use & theory of sufficiency conditions, the theory
_bf necessary conditions being extremely involved and closely lin-

- ked to existence theory.

1.3 Isaacs Main equation.

We shall now adapt Isaacs Verification Theorem [1] +to the case
of, a lower saddle point with discontinuities of the Value fﬁnctién."
. Ve 1ntroduce a function V (x) which is allowed to have disconti-
nuities of a simple kind. (We shall relax this later on). We

—assume that there exists a partition of X by 02 n-i-dimensional
lﬁanifplds, such that )
: i) V' (x) is of class 2 in the interior of each region
.ii) its restrictions to these manifolds is a2
gl})vv(x) is continuous and continuously dlfferentlable on at
) least one side of each manifold, which means that in at least
—oné of the regions, V  coIncideswith a continuously
_differentiable function defined on an open set containing the

.-

“manifold. _
iv) Upon leaving one of these manifolds on a discontinuous'side,
V™ has a simple jump. We will refer to discontinuity manifolds
as being of positive or hegative jump according to the sign
of this jump (Upon reaching such a manifold on the discontinuous

CEr e = @

side, the jump is of opposite sign).
Remark that for the following theorem, itV suffices to assume for
V}{i)f:thé regﬁlarity C? where Wwe have assumed 2. However,
since we shall construct solutions making use of the characteris—
tics of Isaacs equation (his retrograd path equations or Euler
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Lagrange equations) we shall not make use of any morc generality. This
is not so for the point iii) which is precisely the hybothesis we
even want to relax further later on.

Notice also that at the intersection of discontinuity manifolds
there exists manifolds of lower dimension where both pcsitive and
negative jumps may occur. In our local investigation of disconti-
nuity manifolds, we shall not consider these higher order singula-
rities.For the global theorem we state in this paragraph, this
only translates into intersections of the set we now proceed to

define, and causes no special problem.

For each x ¢ X and ‘v € v, let ﬁ;(x) be the set of controls
u that prevent a positve jump, that is '

fu € ulv'x)f(x, u, v) £ 0} if x ¢ positive jump
manifold, with normal
v(x) pointing toward the

u, (x)

discontinuity.
) ﬁ;(x)_= U otherwise.
Similarily, let ¥(x) be the set of controls v € v that prevent
a negativd jump for all u ¢ u. '

We shall hereafter assume that the property u(t) e ﬁQ(t (x(%))
for all t+ implies that the trajectory does not leave a positive
jump discontinuity manifold on the discontinuous side. This is
not rigorously true, some more care is required, but we shall
not go into this question in any more detail. Similarily for
v € ¥(x) and negative jump manifolds. ‘ '

In order to state our theorem, we introduce the hamiltonian of
-the game : o R o '

H(x, A, U, v) = L(x, u, v) + A'f£(x, u, v)

which is a function from X x RM X U X ¥ into R.

THEOREM 1. Assume there exists a function V (x) defined over X,
with the regularity described above, and a lower strategy pair
(975 ¢7) €@ x ¥ such that '

i) for every admissible control function v(.) € Q,, trajectories



generated by (¢ , v(.)) mnever reach a negatlve Jjump manifold from
the discontinuous 31de, and !

(6a) vxeX, vverv, 9 (x5 v)ei(x)

ii) for every 1n1t1al state Xs in X and every admissible control
functlon v(.) e Q,, the game terminates at a finite time t1(1)

iii) fér-every admissible control function u(.) € Q,» trajectories
generated by (u(.), ¢~) mnever reach a positive jump manifold
from the discontinuous side, and

- (6D) vxeX, ¢7(x) €T

iv) X is treated as a (possible) discontinuity manifold, with
VT (x) = XK(x) in the exterior of X (Thus OX is a positive
jump manifold where V (x) < K(x), and conversely). There ne-
cessarily exists a region of 09X, called the usable pert, where
'V (x) = K(x), otherwise ii) could not hold for the trajectory

oy

’ ‘P—? (l)_.-

v) The following relations hold everywhere in X ;

(7a)  HG, G, 97k, 476D, 0TE)) =
(7v) | v\v € V(x)? ' H(x% %g-f o (x, v)Z v) Srof vz‘ﬁ

. R . - o Bt e o
(7c) . .‘V u € Uq)—(-x): H(X9 '5% ’ u? ¢ (X))?-,O' e )

Then, (9 , ¢ ) is a lower saddle point and V (x) the associe-
ted lower value. w EaE ' g e
PROOF . S

Assumption >i) and diii) dimply that a trajectory generated by
(97, ¢ ) has no jump in V(x(t)) Therefore, noticing that

H(x, %% , U, V) = E? (x, u, v) + L(x, u, v)

where the total time derivative is taken along the trajectory, (7a)

(1) We assume that the game of kind has been dealt with before and
~that X 1is the capture region from where P is able to force the
game to terminate. oX may contain barriers, .that form part of

quu' . e g St e SRR e F e
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yields for a trajectory generated by (¢ , ¢ )

' t
V(s)) + [ 30w, v at = Vi)

o
(Because of ii), t exists). Because of div) and relations (6);

VT (x(t,)) = K(x(t,)) 3
so that the previous relation yields
(=g 59T, ¢7) = Vxg)

which is relation (5b).

Now, consider an arbitrary admissible control function v(.), and the
trajectory generated, from a prescribed initial phase X by tke
pair (¢, v(.)). By assumption it terminates at a finite time

that we again note %,. Because ,of i), any jump in V{(x(%)) will

be negative. However, as V  remains finite, there shall be at
most coﬁntably many such jumﬁs. At these instants, v £ Y ().
However, (7b) will still hold for almost all %, or :

- r

LG, ¢, v, 8) + Lx, ¢7, v, t) s 0 almost all t.

We can therefore integrate, and we get (from the sign of the jumps) :
e £, iom t .
- - 14V 1
VT (x(5,))V(x,) L. .- Jo' L(x, w, v) d%
Now, from iv) and (6 a) results that

' V’(x(ti)) <K (x(t1))
80 that we get
o a(xg 59, v()) B V(x,)
Finally, consider an arbitrary admissible control function u(.),
and the trajectory generated by (u(.), ¢~). Either it does not

terminate, then J = + o, either it does terminate and we have a
similar argument using (7c). In both cases we concluie thati

I(xg 5 ule)y ¢7) 2 Vxy)



ST T SV LA X TS FCTO ISP TSI £ e

10—

and the proof is complete, since the last two in equalities are
identical to (5a). o v

REMARK. VWhile (7a) and (7b) dimply that ¢ (x) yields the
maximum over y(x) of H(x, Y;, ¢ (x, v), v), (7¢) does not imply
that. ¢ (x, v) yields the minimum over ﬁ;(x) of H(x, Y;, u, v)
for all v, but only for v = ¢ (x). However, since

min H(x, g% , u, v) = H(x, g_X’ o (x, v), v) s O
u€uv S
The argument of the minimum then satisfies all the hypothesis in the
theorem, except perhaps ii). In any event, condition v) implies

V?]?%X) 323 (X)H(X, %{' yu, v) = H(x, gX s ¢ 5 ¢7) =
The rather complicated set up used here is devised to allow an opti-
mal trajectory to reach the boundary of the capture set, for ins-
tance, or another particular manifold such as a barrier, and possibly
stay on it for a while. It also takes care, through the requiremers’
(6a) of the case where the game starts from a barrier limiting
thq capture zone and where by-playing the barrier strategy, E may
pfevent P from using his ordinary saddle point strategy (Breakwell's
lunge maneuver. See [17],)

We Jjust noticed that we dot need that H have a saddle point.

- Qur examples shall be separated games, i.e. games where f and L

are such that we have
L, H(x, A, u, v) = Hp(x, A, u) + Hy(x, A, v)

For such games as we said , H as a saddle point and optimal
D-strategies turn out to be ordinary strategies, except, and this

is very important, on discontinuity manifolds because the require-
ment (6a) couples u and v. It is why separated games may not
have ordinary saddle points. The example:- - of part 5 is an instarce
of this fact. (See [18], [19] for special uses of upper saddle point).

. dunction with a sircular surface. e e o

We shall show later on that in genefal, when an optimal trajectcry
reaches a singular manifold, the situation we wish to allow, it does
so tangentially. For reasons we shall make clear in a moment mos?t

of the classical litterature rules out this situation. The aim of
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this part is to show that we can deal with this case as with the

non tangential case.

2.1. Non differentiability of a continuous V

The'following developpement holds for any kind of saddle point.
We note (9%, ¢*) the optimal strategies, and V(x) the correspon-
ding value, and to investigate these junctions."

£x(x) = £(x, 9%, ¢*),  Ix(x) = L(x, ¢¥, ¢*)

Let S be a n-1—dimensional manifold locally paramef&sed by the

02 map

:E)(S), SeeCRn1

By assumption, the restriction of V(x) o0 S is a 02 function :

S (GO

4

A,field of optimal trajectories reaches S. Iet + = 1(s) be the
time at which the trajectory through E£(s) reaches 8.
We have, along that trajectory, and for t < 7(s).

. ' ' ot
(8 x() =ge) v [ ex(x(a))de = 3o,
’ T\S

By assumption, this field is regular, in the precise meaning that
(dy/ds, dy/dt) exists is bounded in the closed half space considered,
and is invertible in the open half space (to allow a tangent contact).

Notice that =

0
3= = £x(y)
Finally, the optlmal trajectories defineg a value functlon by
t(s)
O V(e = UG + [ 1(r(s) 8t = W(s, t)

This last relation gifes, in matrix notations

(10) OV 3y Oy, . (W .
, ox ( 3.5%) = (35 Ot)
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Therefore, at every point where the inverse exists

oV _ oy OW,,0y O
& = (55 s\ 55

However, if the optimal trajectories reach S tangentially, this
implies that dy/dt, which is equal to f£*, is linearly dependent
with 0f/0s which is, by definition, the set of (column) vectors
gencrating the tangent plane to S. In this case, OV/0x need
not exist, and usually does not.

-1

It is interesting to see what (10) gives at t = t(s) when
oV /ox exists there. Assuming <£¥  defines a regular field on S
(i.e., 0f*/ds exists), we differentiate (8) and (9) partially at
t = t(s) it comes, usign y(s, v(s)) = E(s) :

W(s, w(s)) = & - £2(z(s))

T, w(s)) = §E + Lx(2(s))

4

Now, the last column of (10) gives (for all t)

. %‘;YE £%(x) + I*(x) = 0
(which is (7a)), and this together with the first block column of
(10) gives L ' ‘ o -

R S X COME

which is the classical fact that the gradient of V has its projection
on the tangent plane to S equal to the gradient of the restriction
U of V to s.

2.2. The envelove lemma.
We now consider the case of the tangent field. S 1is then the

enveloppe of this field. This means that along a trajectory, o¥
and  ¢* are continuous functions of time with, f*(y(é, t(s))) €

tangent :plane -to S. We make an assumption of regularity on the
field near the contact : - B
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LSSUMPTION. The direction f£* of the optimal trajectories has, 2S
a function of s and %, a continuous partial derivatiyg Of*/%s

-in the closed half space.

REMARK Ve specifically avoid to assume that Of¥/x exisis and
is continuous, since ¢%* and ¢* usually depend on the gradient
V.. Our assumption is that the field of opt%mal'directions in S

X
is regular, and varies smoothly in the neighborhood of S.

LEMMA. TUnder the above conditions, the gradient of V has a limit
xb ax -x - 5 on an optimal trajectory, and this limit satisfies
the relation '

(11b) A OF QU
PROOF. In the open half space, ﬁ¢ =yand ¥V = V. Thus, using
standard techniques of control theory, we have ) )

e ‘gi'(H‘ = %“)I;I (X’ _g_;(f_, (P*(X), (b*(X)),

where H(x, A) = H(x, A, 9*(x), ¢*(x)).

Ry

Therefore, if A has a limit as x -+ S, so does OH/dx.

In the open half space, let A = (dV/0x)' be the gradient of V.
V Dbeing assumed to be of class 02, A satisfies the Euler Lagrange

equation :

A= gL L a8 o, ex, F) - 3R (x, 9%, 9%).

This is a linear differential equation in A with bounded coeffi-
cients. ‘Therefore A remains finite as t - <(s), and has a
limit A' ) given as a function of. A at a previous time T :

by
Mo(s) = A (%) - J:(S) -g%—— (y(s, a)) da.

" (with a transparent abuse of notation).

Consider a particular s and % < v(s). Then by assumption of* /05
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exists from t +to 7, and thus also 0Lx/ds. Differentiate
partially (8) and (9) and place in (10). The first block
column yields : o ' :

t % ‘ .

T [ s, aaosxe(e)dh)- 3L
t(s) ' '

+j %g*(Y(S,a))da-L*(g(s)) %% = 0. E

(s

As previoﬁsly, we use tha last column of (10)_ to cancel the terms
multiplying dt/ds, and using (12) again, we get

ov o ou, ¥ o W g - 0.

9 Os ~ Os T(S)EE g 4% =Y.

We take the limit as t ¢ 1(s). By assumption the integrand remains

bounded since

& (o) = A (v) + j: 3 () ap,

and we obtain the result sought.

4

';;f’ COROLLARY. The theorem 1 still holds if V has the type of sin-
gularity we have described above. ' ‘

PROOF. We just have to check that for all trajectories a%oiding a

Jump,

- t
- V() = V() = [T s,
’ _ » 7 %
where A'(t) is either OV/0x where it exists, or At on an
envelope. If an arc of trajectory lies on S, then this is a conse-
quence of 11b). If an arc has a point x(tz) not belonging
to | S, then, by continuity, this is true in an open interval of
time., If at an end point t3 of this interval, X(t3) belongs

to S, then
| t e(t,, ) V(x(t)) - V(x(t,)) Jt A(t) dt
’ s X - V(x(T = '

and as V is continuous at S, we take the limit of both sides and
have the result. 3 ‘ - ‘
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Thus we have extended theorem 1 to a very common type of disconti-
nuity, broadening the applicability of Hamilton Jacobi Isaacs
theory, as compared to previous papers attempting to apply it 4o

state constraints for instance.

2.3.Generalized Euler Lagrange equations.
We now need a differential equation for Xo along an otpimal _
trajectory lying on S. We have assumed that U(s) is of class 02.
We shall further assume that h is of class C1 in s.
Let H (resp HO) be H (resp H) with A replaced by h .
Since H(x) = 0 for +t < 7, we.have in the limit Ho C. ALSO,
(12) gives, in the limit, differentiating ﬁo partially with

respect to sf :

'5;(‘0(}% o » 9%, ¢*) %g.'k %‘2‘86 £* = 0.
. i i

Now, along such a trajectory, we have

-

' n-1
0f ds d ds.
0s J 1 j dﬁ

Fprther, from (11,b) we derive

. 2 N 3
N OF 97U _ oAy 9
3%; dsj 5315sj ?Ej 3%i
1Placing the last two equations in the previous one, and using the
fact that the scalar dsj/at commutes with vectors, we obtain

(122) @ +FIE -0 e

This is a first form of the relation sought. Noticing that Og/Bsi
generate the tangent plane to S, we can rewrite it in the follo-
wing form, where v(£) is a normal to S and a(t) an unknowm
scalar function :

0H

(12p) ié =" 550 + av

If S is given by an equation S(x) = 0, then one possible choice
of "v(x) is 0S/%x, and (12b) has a familiar form.

Remark that equations (12) have been established only as a
consequence of (7a) and (11b). If a field of optimal trajectories
reaches S +transversally and then follows S, (with a discontinuity
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of f¥ wupon reaching S), then 0V/d0x is defined in the closed
half space, (11a) replaces (11b), and our generalized Euler lagrange

equations hold.

2.4, Conditions at the jurnction.
Still in the context of a field of optimal trajectories reaching

and then traversing a surface S, and generating a function V A
satisfying the enlarged theorem 1, we investigate the behaviour of
the optimal straﬁégies at the junction with S.

Iet o¢*(x, v) and ¢*(x) be the limits of the lower saddle
point strategies as x reaches S, and §(x, v), §(x) the "traver-
‘sing" optimal lower strategies on S. Applying (7a) and (7b)
with &, §, and using the fact that V(x) = vy, it comes (we omitt

unnecessary arguments on the functions)

(13a) 0 = H(3(d), &) = H(§(¢*), ¢*).

Now, in the open halfspace, ﬁ;(x) = {4, therefore applying (7c) and

(30)  E(R(), ¢%) = H(gx(e®), ¢%) = 0.
. Therefore (13a) gives

H(p(4%), &%) = 0 = max H(p(v),v) = H(3(8), 0).
. - ver - -

We therefore have,

THEOREM 2. If the maximum of H($(v),v) is unique, the cptimal
strategy ¢ is continuous at the junction. o

The geometry of the set (£(&(v), v), L(§(v),v)) is somewhat diffi-
cult to investigate. We shall not attempt nere to understand better
the unici{y assumption of Theorem 2.

Relation™ (13b) gives similarily :

H($(¢%), ¢%) = O = min H(u, ¢*) = H(g*(¢*), ¢*)
. ueu : .

We therefore have the interesting result :

~

THEOREM %. If the minimum of H(u, ¢*) is unique, then the
optimal trajectories reach S +‘tangentially. If furthermore the
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optimal strategy ¢ is continuous (see theorem 2) then so is
the optimal D-strategy ¢. 7 . "

PROOF. Under the assumption of theorem 3, we have

§(4%) = g*(4%)
‘and thus *(¢*) € U, . Therefore the field generated by (o*, &*)
¢ ¥ O™y

cannot be transverse to S.

Under our assumption of convexity of (f(u,v), L(u, v)), the mini-
munm is guaranteed to be unique if this set is strictly convex.
Otherwise, part of its boundary is linear (a hyperplane, o an inter-
section of), and we have the following situation : h

COROILARY. Under the convexity assumption, if an optimal field of

a lower saddle point reaches a singular surface transversally and
then follows it; the hamiltonian is linear with respect +to at least
one-component'of u, and is singular at the ;unction.

Theorém 3 explains why we -were interested in allow1ng ervelopes

in the field of optlmal trajectories.

3. Particular singular surfaces.

. Here, we shall study in more details the various situafions that
may arise according to the shape of the field on both sides of the
singular surface. We shall not consider surfaces that are left on
both sides by the optimal field (dispersal lines), as they pose no
particular problem in the preéent set up. (This may not be so if
we do not allow D-strategies). Neither shall we consider surfaces
that are the limit of a field, but not reached by its trajectories.
- Those are barriers and we purposedly avoid them here.
In thé three types we consider, there is a regular case and a

singular case according to whether conditions of theorem 3 or of

the corollary prevail.
In order to give formulas to actually compute singular surfaces

- of various_kinds,,wefneed the following notations : S

Ll o(x x, v), ¢(x, X) : arguments of max min H(X,.A u, v)
. VeV veu
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f(x, A), H(x, A), H(x, A) are obtained by placing ¢ for u

and ¢ for y in f and H.

o(x, A\, V) argument
f and X are as
With

(14)

L]

of the constrained min : H(x, », u, v)
uEwu,

T and T but with ¢ in place of T .

~

v(x) +the normal to the singular surface, we always have

Q’(x)?%x; A) =0

and we have know that $(® differs from,'@(ip_) only in the singular case.

In that case, also, we have

Wheré
singularity condition reads:

(15)

3.17. State constraints.

b

H(x, A, u, v) = a(x, A, u,, V) ug + b(x, A, Usy V)

is one component of u,

and u2

all the others. The

g(x’ A) = alx, A, $Z(X, A, 9), W(x, }\)) = 0.

This is the case where optimal trajectories exist only on one side
Actually, a completely similar situation arises if, on the

of S.
other side, an optimal field leaves
> has a jump on S.

S, but that in addition’ v(x)
Then S has to be a barrier, of course, but

it further plays the role of a local state constraint. We shall

give below an example of this

- T e e

very interesting phenomenon.
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Typically, the field of optimal trajectories constructed backwards
hits S along a n-2-dimensional manifold D. Notice that theorem 3
and its corollary apply as well to the point, on D, where an optimal
trajectory leaves S. The two typical cituations are as depicted
in figures (1a) (regular) and (1b) (singular). In the second case,

D is the interscction of S with a switching surface for p¥.

iﬁ both cases, the value of ko on the incomirg trajectory is
assumed known, as this trajectory belongs to the previously computed
unconstrained field. Then, the field of optimal trajectories can be
computed with the following equations.
Regular case : 2

X = f(x, A),

o
i

where « is given by the following equation, obtained by differen-—
tiation of ‘ T ) '

with respect to time :
ds 0 ;.08 =
5 on U )t v I el v
Singular case :

X=f(x, A)

>
I

S8 ) &

Now, (14) is automatically satisfied, but « is chosen in such
_away as to insure (15), which, differentiating with resrect to time,

yields :

See [20] for a more detailed investigation of state constraints.

—

-
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%.2. Universal surfaces.

Isaacs called universal surfaces singular surfaces:that are
reached on both sides by the optimal trajectories.
Let indices 1 and 2 refer to various quantities in the two

half spaces, and v be a normal to S pointing toward region 2.
Our lemma shows that :

By assumption, we have, on S
_v'f(Qf? ¢%) = 0 ) v'f(cp-§Z ¢%)=< 0.
Assume, for instance, that
v'f(¢§, ¢§) = 0.
By assumption also, both fields satisfy (7), hence,
H(rAps 93, ¢8) = Llof, ¢8) + (M'prav')f(eY, ¢5) < O
H(Ay, 9%, ¢%) = L(o¥, ¢3) + AXf(g¥, ¢%) = O
Hence & ' ' ' .
a v'f (g%, ¢§) < 0, « < 0.
Now, looking at H(xi, ?%) ¢7), with i =1, 2, it comes similarily :
o v'f(¢§, ¢§) =0 ' : )
and therefore finally
v'E(e%, %) s‘O.

. (¢ .
So, we see that, when the two players chose different strategies,

the state always drifts in the half space where E's strategy is
optimal. Therefore he cen stick to his choice, ¢7 in region 1,

¢5 in region 2, either of the two on S. P will be unable to
keep ¢? or ¢§ since both lead the state in a region where tacy
are not optimal. This situation ends wup in a "chatter" for P, or,
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in our formalism, a sirategy ¢* which is not admissible. The only
solution for P is to chose, on S, a strategy g(x, v), that will
insure that the state remains on S, for all v's. Notice that the
situation is different from the state constraint in that, now, P
will not let the state drifton either side of S. For that reason,
the pairs (o9(x, v), ¢§) can be regarded as giving the optimal T{ield
of the "reduced game" which is the game where P is obliged to keep
the state on x, that is where u ¢ u (x) of all controls that
satisfy v!'f = 0. Now, except perhaps on exceptional dispersal lines,
this game has under our assumptions of convex1ty, a unique field of
extremals. Therefore -

f(x, cp(x, () 5(x)) = £(x, 9, ¢5(x)), e5(x)).
(But this does not imply that. ¢¥ = ¢§).

Again, two situations arise regular and singular. In the first
case, we have A. Merz's focal line [14], [17]. The fields come in
tangentially. In the second case there is a corner at the junction.
We have the equivalent of singﬁlar arcs of optimal control theory.
The typical situations are described in figures (2a) and (2b)

S S et e

T = E
¢ — =T ) .
e
n . . 4

respectively. . 0 © el e

i;% i;;:f .- Fig.2a.. - .. .. oo oo ig- B e el

M - o e

Here, D has to be found és a 1oéﬁs of p01nts where the traaectorles
of two flelds are tangent, or as a switching point on a surface
otherwise joined by the trajectories. Again, A on the incoming
tragectory at D is thus known. (See, however, a more oompllcaued
s1tuau10n in [20]). o Taeda i s

-In- the present case: we do not know~ S a priori, but we know

that A2 - h1v_must be normal to it. We can therefore proceed as

e
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follows, from D :
Regular case : ’ ' ' \

2= 1(x, h )
. oH ' ~
A, = = 2+a(x'—x')
2 Ox 2 2

a1(t) and az(t) being chosen in such a way that
(A1 APTE, A, =

» O - xé)f(x,i.xz)_ -0

We leave to the reader to carry out the tlme dlfferentlatlons to

get a system for ay and Uoe

:Slngular case : same equations as above, excepdt that the bars must
be replaced by tildas and uv is defined using k2—h1 for wv.
,pri q1 and o, are chosen to insure (15) with both K1 and x2,
and are still expllcltely given by differentiation of these two
formulas with respect to time.

--What remains to be checked at this p01nt is that the above cons-
trucflon actually leads to a hamiltonian that remains null, and,
more difficult, %o a surface §. normal to (A -xz). To do this,
one must parametrlze the final conditions on D with a. (n-2)
dimensional parameter s, and show that the above equatlono lead

to a surface x(t) = &(%,s) satlsfjlng :

. (A'-A') Ffa o s ) 55 = 0

< - -~

e -

- The f1r3u of these relatlons w1ll be satisfied by contruction.

- Checking the second is more difficult. It can be done using the
samevergﬁment es fef~the corner surfacee of the next paragraph.
The details can be fourd in [20] and [21].

—_ . -~

3.3. éorner surfaces.
= HeTe we are interested in surfaces that are reached by the optimal

————

tragectorles on side 1 and left on side 2. Hence, V(x) will
again be continuous on both sides, but, as previcusly will be joined

e i ok TR B SERR L R TP Rt SR L R S TP SR LR S e
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tangentialy in the regular case. Vv is again pointing toward
region 2.(17) still holds. )
By assumption, we have |
viIE(e%, ¢%) =0, v'f(e%, ¢%) = O.

We distinguish two cases, depending on whether the following

permesbility condition is met or not

CONDITION

viE(efs %) > 0, viE(e%s ¢f) > 0.

This condition says that meither of the two players can,by refusing
to switch to the strategy 2 upon reachlng S, prevent the other from

,d01ng so and be right to.
. Wé then have the equivalent of Weierstrass' corner condlulon :

.THEOREM 4. If the permeability condition is met, the gradient must
-be - continuous across S. S ' ) '
;?ROOF As previously, we use (7b) and (7c) “in both fiéldgiusing

f(17) ‘ sws as ’ | % .r S0 5

—

H(}\1, CP19 (1’5) = I’((P19 4)2)’*’ (}\2 + av! )f((?19 4’2) 5 O |

| ~H(,\2, 9%, 8) = L(cp1, %) + }\‘f((P1, ¢2) =0

shepee il i . A
f:.:f—:"":-a»\*'.f.(;cp*,,¢*)' =0 T L it o

:S; Warlly, u31ng (¢§, ¢ ), we get

;3 f(q)g’, ¢%) = O -

4 . .
This together with the permeability condition implies

a =0 ‘ 8 o ' ol
_and ‘the thqqrem_is.pQOQed. | ‘ : e A meom )
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Therefore, a corner can occur only if a continuous gradient

causes a switch in the optimal controls, which happens with a sin-
[} ]

gular hamiltonian, a classical situation, met in the
Dolichobrachistochrone problem for 1nstance [1], and in the example

below.
Now, let us assume that

v'f(q;§, ¢¥) =< 0.

Prom the proof of the above theorem, we infer .that

o« < 0,

v'E (g%, 4,5) = 0.

As in the case of the universal surfaces, if E decides %o keep
his strategy ¢*, on S, the sirategy ¢* is not -admissible for P,

" . nor any other that does not keep x on- S.

Therefore, against (¥, P must play a strategy $ that makes the
state transverse S, .and we are in the situation of our generzl
theory of junction of singular surfaces. Notice Hhat here, at any
time while -traversing S, E may chose to switch to ¢§,'and then
the state will leave S on side 2. P must then switch %o g¢%.

The regular case corresponds to J.V. Breakwell's switch envelope
[13], [17], and the singular case to R. Isaac's equivocal surface [1]
See [22] or [23] for a more detailed discussion. »

Now, as far as constructing S is concerned, the situation is
somewhat different. We assume that the field 2 has been constructed .
previously, and a singularity D is known. It can be a corner of
the game of kind, or a more complex situation. (See [20]). The
equations used are the same as the first two we wrote above for
universal surfaces. A difficulty appears in differentiating the

relation

(M AT(x, A) =
or relation (15) in the singular case, with respect to time. It
occurs because ' 6A2/bt is not directly known along the trajectories
we construct. We must then assume that, in the field 2, we know

A2 = dV/0x as a function of x, and are able to compute

1 s B T AR DN e P T s Wi
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M, _ dh, = .
—-'E2 - BEQ f(X, 7\'2) '

As previously, to have a satisfactory theory, we must still check
that Séoa constructed is actually normal to (k1—12). See [20]
for a complete proof. ‘

4. The second order servomechanism problem.

4.1, Statement of the problem ‘
" A simple second order plant, with state y, is governed by

Y=V v € ¥, a bounded set.

It is to match a set point 2z that may drift in an impredictizble
fashion, but with bounded speed :

2 =u u € U, a bounded set.
The specification of the servomechanism is its precision :
Zz-y € %, a bounded set.

We consider the simpler case where y and 2z are scalars, all
data sets are symetrical. By normalizing, and setting '
x, = z-y, we get the following equations :

X, =u - X, lul < 1,

(18) 2, =-‘2£ lv] < 1, P a parameter

b _

The playing space is

(19) x| s 1.
The real problem is to know whether we can, with v, insure (19)
whatever u does. We formulate this as a game, with P +trying
to escare (vioiate (19)), E +rying to forbid it. When escape
occurs (thesituation we shall consider), the payoff will be escare

time
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by
J = J at,,

(o]
\

The hemiltonian of this game is

H=1+ A (uex ) + 9 2p

~

Away from singular surfaces, the optimal controls shall be

u = - sgﬁ Al, vV = sgn sz

so that optlmal tragectorles will be arcs of parabolao in the x

pace.

“We readlly find that the useable part of the capture set is made
of two symetrlcal pleces : - I

; ' - x, =1, X, < 1,

R P il

From.these;poinfé two pieces-of barriers can be built. They are
arcs of parabolas tangent to [xil = 1. To go further, ore mst
consider the relative position of these parabolas.

-We consider the case where p is smaller than 1, but not by
mucﬁ;_ééy 0.8 < p < 1. Then the two pieces of barrier_are as shown
on fiéure 3. _(Wé;use»reversé axes for the bene{%t of space).

: dr, vi- IMLTTR ":,'.‘,(‘f:i‘g] ‘B ’ A D DT
% V: zlzo: S L L
i £izl: - - 5?3

;_.-'_,..Q__,_,.. e e g e e LIS .

T - - Pig.3. Barrier and primeries.
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It seems that they define a closed region 2 where the state is
trapped, if E wants. However it is not so, because at points B
and B' where the two pieces of barrier cut each other, E is not
able to prevent the state to cross the two pieces at the same tire.
(In that respect, see [20] or [23] for a theory of junction of
barriers). But before we completely solve the question thus

raised, we must investigate more closély what happens outside cf Z.

4.2. Lunge mareuver and equivocal line

The two pieces of barrier are the limits of two fields of primaries,
one withA u=v=1, ends on Xy = 1y one with u =v = -1 ends on
Xy = -1« Let B +the point where the two pieces cut each other, in
the region Xy > 0, Xy > 0. (The same things happen, by symmetry,
on the other side). - .

The arc BA 1is a surface of discontinuity of the wvalue function
corresponding to these fields, continuous on the side of the field
(-1, -1), and thus with negative jump. We therefore look for an
upper strategic pair ¢(x), ¢(x, u) that avoids the jump.

The direction of the barrier and its normal (continuous side) are

) 1 - iz _ %f

barrier : ; normal -P
1 1—=x
2p , @

Thus,

:_‘P;ﬁx) = {v|- %p(u+x2)+(1—x2)%b > 0} = ?v = %;;g}.

As, with the proposed value, in this region Kz < 0, it comes

- ,  u=X
¢(x, u) = max (- {, T:;g)-

We place this in fH. and minimize in wuw. If we parametrize tke
field (-1, -1) with s = x,(%,), it finally comes

9=¢ =+ 1, H=2-7"2, if 1 +s5-%,20,
=¢.=-1’ H=0’. if 1+S—X2201

=1

Therefore this field does not satisfy our sufficient conditions.
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In the part of the arc BA where 1+sex2 is negative, P can, by
playing his barrier strategy, oblige E +to do so, and let time

to go decrease at a rate less than one in the prccess. The limit
point C on the arc BA can be computed easily. At thid point,

we have
0 = H(E"s E(“(E)) = H((P*’ ‘(_l;((?'x)) s H(‘«P*’ 4)*) =0.

Hence, it can be the starting point of an equivocal line, with
singularity in Ve The theory gives us the equations of this line :

" ® o - -
X1 = 1.'-X2, K1 = CC(}\1 - A-‘l)}

- =Y.
4
(we have used superscipt + and . —= for outgoing ard incoming
trajectories) Equations (15) and (14) read

.. +

NV
!

_x - _
X2—2p’ ) k )\1

.

\p =0,

: + 4= V o4+ -y _
-(1+x2)(k1-h1) + §p(x2 f h2) = Q_,_

We can also use the first integral H(x, Af, ¢, ) = 0, which gives

- 1
Ay = .
1 X2-1.

The condition i; = 0 would have given «, but we do not need it
here . o ' T ' o
We therefore have the differential equation for the equivocal line :

p 4

1 +
2 = - F [K1(1-X2) +1'].

. 2 . =

It turns out that, in the field (-1, -1), XT and A; are easy 1o
obtain as functions of the.state, so that we can readily compute
this line. It is a commutatia1line, with the incoming field having
the same controls as the barrier (+1, +1), the outgoing field
being (-1, -1). . |

-As we integrate backward from C, the equivocal line cuts trajec-
tories of the outgoing field with decreasing s. As the state.
approaches the barrier of that field, the magnitude of the gradientg
At tends to infinity. Therefore the equivocal line tends o tecome
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normal to it, and thus it reaches the barrier (-1, -1) tangentially
at a point D. ' '

The 1imit outgoing trajectory is the barrier DA'. However, with
our definition of an open capture set, the barrier itself is not a
capture trajectbry. Therefore, from~ D, P should choose to keep
u = +1 for awhile before switching.

4.%. The state constraint.

Consider a point on the barrier DA';close'to D. If capture should
occur by first following the barrier, then the optimal strategy
would be to switch to (+1, +1) at C', symmetric point to C, and
then follow the new parabola until capture. This takes much more
time than the optimal strategies we have proposed from D. Therefore
P would rather try to reach D._ Now, by playing u = +1 he can

actually insure that }E1 be positive.
If the state must actually reach D Dbefore leaving the zone 7,

along the equivocal line, then the barrier is a surface of discon-
tinuity of the valuve, discontinuous on the outside of 2 as we
have seen, with a negative jump. Therefore, E must prevent the

 state from'brossingfthe barrier, which in that region will act as a

state constraint. ;
Yie can apply the prev1ous theory, with

~ u—x
- ¥, (x) = (vl s =2} -

and, as in that reglon, by continuity with the incoming field of the

equivocal line, hz —~is pos1t1ve, we find : _— .

S~
~ -
~

u—xz) : el

E(x,'u) = min (1, T;;g - .

~\Start1ng from D, we’ can ea511y ﬂntegrate a tragectory that traverses

the barrier in the opp051te direction from the "natural" one. The

theory shows~that we must stlll‘have, on the barrier
- -~ . .

S~ -

~L

X2=0
and again, the first integral H=0 gives h1 as previously.
The state constraint is joined by the same incoming field
(+1, +1) as the equivocal line. :
This strategy is optimal, along the barrier, as long as it yields
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a shorter capture time than following the barrier in its natural
direction, and switching at C'. This defines a point Q where
from the two strategies yield the same iime to go. For the range-
of parameter values we have set here, Q is the starting point of
a simple dispersal line separating the field (+1, +1) from the
field (-1, -1), and readily computed using *the requirement that it
be normal to (AT-AT). ' o

For smaller values of p the situationr is more complicated,
Q being the starting point of a new equivocal line, itself followed
smoothly by a dispersion line. Then, this extremely simple game
may have a seven-stage optimal capture trajectory.
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