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ABSTRACT

The way corners occur in even simple two-
person, zero-sum differential games is
where tae main difference lies b-tween
these problems ani more classical optimal
control problems. An attempt at a general
theory has been reported earlier. However,
new situations arise in the study of spe-
cific games, which regquire a broadening
of the theory. Some of these will be pre-
sented here, together witn a general mean
of computing tie hypersurfaces of discon-
tinuity. Two simple goal keeping problems
will be used ac examples to motivate the
analysis.

INTRODUCTION

Differential Games clearly have much in
common with tihe more classical theory of
Optimal Control,., However, many differences
appear, and almost all of tiiem can be tra-
ced back to one funiamental fact. Namely
the fact that for each player, the trajec-
tory of the system is not a fuaction of his
control only. And this even for determinis-
tic games.

As a consequence of thils, the state x car-
ries some important information. Thus clo-
sed loop or open loop control become
actially different, while for Jdeterminis-
tic optimal control problems with known
initial state they cannot be distinguished.
This, of course, is a feature differential
games sipare with stochastic control. And
it is no surprise that worst case design,
which evolves as one if the main field of
applications of the former, is an alter-
nate way to the later to deal with uncer-
tainties in control systems. Als?, tochas-
tic (2) (11) and game theoretic \i12/ ap-~
rroaches to large scale system optimiza-
tion are developing.

Usually, differential games will not have
an open loop solution. If one exists, for
zero—sum two=person games, it coincides
with the closed loop sol¥t30n ip ne preci-
se meaning developed in ‘8/ or ‘7/, But
even then, the sufficiency proofs based on

2%%riation, and thus open-loop variational
arguments, will prove inadequate and mis-
leading. And, more important, first order
necessary conditions based on variational
arguments or the Pontryagin Minimum Prin-
ciple, do not carry over to differential
games a? was proved by Pontryagin in
1966 (14),

We have alrealy shown (s) how one of the
technical reasons is that the "ad joint
vector" can be discontinuous even in the
absence of a state constraint, generating
various types of corners. We shadl elabo-
rate on this here showing a more compli-
cated kind of corner. Then, we shall give
a general mean of computing the classical
corner hypersurfaces, and show that while
state constraints exibit features unlike
those known in optimal control, they are
not more complicated tiran corners to compute.

2. CORNERS IN THZE GAN N°t ()

2.1 The game

Two players A ani B run at constant speeds,
respectively ve1 and 1, on a planar playing
ground. The game is entirely judged at a
predetermined final time T ; known of bota
players. At that time A must be at a distan-
ce larger or equal to one unit from B. The
payoff is the distance from A to the origin,
at time T, that A seeks to minimize and B to
ma<imize.

The simplest mathematical formulation is as

follows. Iet 2, and A, be the two dimensio-
nal position véctors gf A and B. The dyna-
mics are

Xy =av, Xg=8 (2.1)

where a and B are unit vectors whose direc-
tions are A's and B's control respectively.
Let p(X,, X5y, t) be the value of the game
startiné frgm the state X,, Xy, at time t.
It is constant along an oﬁtimgl trajectory.
the Hamilton Jacobi Isaacs equation reads :

py+ win max [(pA.a)V+(pB.ﬁ)]=O, (2.2)

a
*)A substantial part of the analysis of
hat game was carried out by F. Colleter.
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where p =0f/b‘.\A a1d pp=0ig. The mimmax is
obtaine& for a opposige t0 Py and B parallel
to Pge Whence "3

Pt‘vlpA|+|pB|= 0. (2.3)
Where they avply, the Euler Lagrange equa-
tions give :

py=rpg=0 (2.4)
implying that, away from singular surfaces,
A and B run in a straight line.

It is useful for the sequel to use a lower
dimensional representation where we choose
the x axis aligned with OA. et then (x,y)
be the coordinates of B relative to these
axes, and z the abscissa of A. Let ¢ and

¢ be the angles of A's and B's velocities,
respectively, with the x axis. The dynamics
become ¢

X =cos ¢ + EE%E—Q Y,

§ = sin ¢ - vsin ¢ X, (2.5)
z

2 =V cos ¢.

The H.J.I. equation is as in (2.3), but with

"992 2

|pA| = ZE *t Pz pg=xpy—ypxs
2 2

lpgl =\fpx+py .

Where they hold, tae Euler Lagrange equa-
tions yield
Px Pe J
= ==+ v—— x(T)=p+cos a
IpBI IpAI 2z
p P
g= =L - - —% y(T)=p+sin a
z
IpBl |pAI
p
7= - v z(T)=p
lp,

(p and « parametrize the erd point)
Pg

P
by = v—% . px(T) =2V cos a
z lp,!
P, P
6y= - v4% 5 _ py(T) =2 vy sin «a
2% |p,l
Pa2
p,= - —x 5 p (T) =1-2 v cos a
2z 3 | VA
22 p,

Three simple first integrals are |p,|,|pgl
and p, which remain constant. Isaacé'
“primgries" correspond to the intuitive
solution given below, so that by simple
geometric arguments one is able to compute
p(x,y,2,t) ani its derivatives explicitely,
where this field is optimal. This is of
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great help in actually carrying out the
computations we shall indicate.

2.2, The intuitive solution

The solution of this game is obvious. Draw
tne circle of points A can reach in time T.
Draw the circle (of railius T+1) of points

B can forbid at time T. If the closest
point from A's circle to the origin is out-
side B's circle, then A should run to that
point and ignore B who can do nothing.
Otherwise A should pick the point of inter-
section of the two cicles the closest to the
origin and run at it, while B runs toward
the same end point. This we shall call the
primary strategy. It is depicted in figure 1.

However, a counter example is easy to find.
It may happen that if both players play the
primary strategy, after some time has ela-
psed, if we repeat the above construction
from their present position with time to go
instead of T, we find that the second inter-
section point of the two circles draws nea-
rer to the origin than the one they are
running toward. This is depicted in figure 2,
where the reachability circles at t=§ are
drawn in interrupted lines.

One recognizes that the problem stems from
tlie fact that B has crossed the line OA,
which is a symmetry axis. At this time A
exerts two threats, and somehow B should
take both into account. A typical case for
a focal line. For some time, B should manage
to stay on the x axis, until the primary
strategy is safe. But how this arc is joined
and left is a more complicated matter, and
we must turn to the mathematics of the
problem,

2.3. The focal manifold

The relevant state space is of dimension 4,
since time has to be taken into account.
However, schematically, the field of prima-
ries has the shape shown in figure 3. The
foc:l manifold is the hyperplane y = O . £
is the two-D. manifold given by

(1+7)x=~12=0, & et (2.6)

The requirement for B to stay on OA trans-
lates as }=0 or

y=0,

(2.7)

(2.7) is considered as defining a function
that explicitely depends on ¢ : $=¢(x,2,9)
or ¢(¢2. §ee earlier discussions of focal
lines ‘10’ (18) about this problem.

s X s
sin ¢ = vZ sin ¢

Now we must find the trajectories in the
focal manifold. This manifold is a locus of
high values for p as compared to neighbou-
ring points, and B must not let the state
drift off it, whatever A does. Knowing that,
A will try to make the "ridge" as low as
possible. Thus we place (2.7) in the dyna-
mics and study this new three-D game, with



? as the terminal surface. Let A be the gra-
dient of the value in that game. Let (I

1
£,,%;) be the normal to I and (p,,p,,p.J be
as cgmputed on the primaries. AtXS we Have
A =Py +VEIL s Ag=p,+VE,,  Ag=pi+VEiie (2.8)

v is determined by the three-D H.J.I. equa-
tion, which reads in our case :

sin® ¢]=0

. vx

min[A, v cos ¢ + |A ||/ 1~ =
(2.9)

For * < l, we haye t?e classical situation :
the %olu¥ion of (2.9)is v=0. A's strategy is
to run toward any of the two symmetric inter-
section points. The focal manifold is left
smoothly when B's strategy to stay on it
under A's optimal strategy coincides with
his primary strategy. Tributaries can be
built as usual, and one obtains a complete
field of trajectories defining in that
region a value that satisfies the H.J.I.
equation.

For £ < l, we find that the hamiltonian is
miniftized for ¢=n. And this holds along the
(backward) trajectories. The corresponding
v is non zero. Therefore this is no longer
a standard focal manifold, since A's stra-
tegy is not the primary one, and it is left
with a corner. According to (2.8), the gra-
dient of the cost has a discontinuity at E.
(However, one checks that the two fields
merge smoothly in the hyperlane, with no
void or overlap).

Let us first deal with this corner. ¥ is an
n-2 dimensional manifold. The situation i? \
not accounted for by our previous theory ‘s!
However the main argument holds. It is B
who is not able to chose an earlier commuta-
tion point : if he tries to play earlier the
primary strategy for one side of the focal
plane, he will find himself drifting on the
other side of that plane. Therefore, a dis-
continuity in the graiient is possible if
switohing earlier would have been to B's
advantage. That is, if we take (I,Z,,Z.)
pointing toward tae primary field: vZ0.Fhis
is what we actually find,

A more serious difficulty appears when try-
ing to construct the tributaries to this
second part of the focal hyperplane. Here,
the optimal strategies are ¢=n, ¢=0. But the
corresponding trajectories are a singular
solution of the Euler Lagrange equations in
dimension 4 if one places p_=0 in them.
Which is not the value of pY in the primares
at £, of course). As a cons€quence, when
trying to recover p_ through the 4-~D H.J.I
equation, we find 0Yas the only meaningful
solution, and no tributaries.

There remainsa void between the focal hyper-
plane and the acceptable primaries, and it
must be filled up with trajectories before

ve GE SAFTENS BAYCrA 59 kiR 8L Belore
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optimal for initial points aligned.

2.4, The complete solution

The solution of this problem is as follows.
% is n-2 dimensional. Therefore it has two
in independent normals. The fact that the
value of the gams is known on I translates,
for the gradient A in a field of trajectories
reaching I, into

Ay = PytVidy
(2.11)

= +VA
xy py 2]
A, = pz+v12z
Mg = Pytvyly
And the H.J.I. equation only gives one rela-

tion linking v, and v,, so that from each
point of £ one can coﬁstruct a one-paramneter
family of extremals (trajectories). The pri-
mary and the previous focal both belong to
this family, -and correspond to v,=0 or —p
respectively. (As the cost is pu?ely final
these family constitute semi-perme?b e sur-
ffgﬁs, singular in the meaning of \4/ or

This new field still does not solve the pro-
blem. In fact, the two particular trajecto-
ries quoted are tangent to the symmetry
hyperplane. All the others cut into the field
of primaries. But we can show that at each
point of I, one of these is normal to the
graiient Vp of the value in the primary
field, thus tangent to a hypersurface p=
constant. Equivalently, calling ¢ ,¢ the
controls on this trajectory, we have at L :
H(Yp, 9 ,¢") = 0. This trajectory is a can-
didate to be incoming to a switch envelope
4, that remains to be built from I in the
field of primaries as proposed below.

Schematically, the situation is as shown in
figure 4. Although rather complicated, it is
thought to be typical of what happens where
an envelope junction hits a symmetry hyper-
plaje, It is very similar to one conjectured
in (*J. But here we are able to carry out
the computations.

3. COMPUTATION OF CORNER SURFACES

In (‘), we gave a rather general theory of
corners. Here we propose a general mean of
computing them. We shall deal with a game of
dynamics

X:f(x,(p,q;)

¢ €V cRP (3.1)

and purely final payoff with final time uns-
pecified, If the dynamics are not autonomous
or the final time specified or if the payoff
has an integral part L, we can always put the
game in this form by adding state variables
of derivative unity and L. The Hamiltonian

x € R, ¢ e®cR",



is @n accent on a symbol means "transpose"))

H(Xv}\,(qu)):'\'f(xycP’q»’) (3.2)
It is assumed to have a sadile point
¥ (x,A), ¢*(x,N).£7(x,A) and H(x,A) are
?ptained by placing these in f and H. As in
), we call A~ and A} the limits of the
gradient dV/dx of the value V(x) in the
field before the corner and after it.

3.1. Switch envelope

On a switch envelope 4, we know that

a) the trajectorigs of_g are obtained using
the controls ¢*(x,A7), ¢*(x,A7).

b) the components of the graiient of the
function value tangent to g satisfy the
Euler Lagrange equations while following
8 (the component normal to 4§ is undefined
during that part of the game).

c) the discontinuity in the graiient is nor-
mal to @§.

This leads to the equations (*)

i=f*(x,x;) (3.3)
e R (C N (3.4)
(A" = A (x,07) = 0 (3.5)

(3.5) is equivalent to A 1£™(x,A\7)=0 takig
the following into account. a in (3.4) is
chosen such that (3.5) is satisfied. Or dif-
ferentiating it with respect tg tige :

N * +,0f * +,0f ,OH
£t LA W B-C N W € )
(on;* dx X (5x

- (1)\+"6'F )\+ =0

(it is a classical fact that (3f /OAT)A"=0).
Usually this equation defines a. Otherwise
one must go to higher derivatives2 Itsebad
feature is to involve (dA*/dx)=(a“Vv/adx“)*
which is usually difficult to get. It is
where the explicit kmowledge of p(x,y,2z,t)
has bzen helpful.

It is straight forward “to check that (3.3)-
(3.5) imply, as they should
dH
T (3.6)
We must check that they actually generate a
hypersurface 4 normal to A -AY. Let x=E(s)
be a parametric representation of the ini-
tial manifold (in our case L. s is of di=-
mension 2). (3.3)-(3.5) are considered as
generating functions x(t,s) and A (t,s),
with boundary conditions x(4,s)=£(s), and
A (t,,s) satisfyi 5}.5) and (3.6). Now,
3.5ﬂinsures that 0x/0t remains normal to
A~-Xt). We have to prove that

= 0, hence A" 'f£ (x,A7) = 0

(A=A = 0 (3.7)

By construction, this is satisfied at t,,
on L. We ccmputc its time derivative in%er-

(*) equation (3.4} appears in (,4) in a
s%ightly different context.
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changing the two differentiations in the
evaluation of 9/dt(0x/0s)

d =3, OH ox — oy 1ox L, =tof¥
3T 59)= —ax§s () g
= a(\" - A+)'%%

SO E=2" (G L4t a7

On the other hand, we know that A* £¥(x,A7)

= 0 every where on g. Differentiating it in
s, it comes

SO 7)) =
&' @' 'S A7) = 0

For each coordinate s., the above expressions
are scalar. The first term can thus be re-
placed b§ its_transpose. Using the fact that

dAt /Ax=4°V/dx2 is symmetric, we get
Pe) 1
SO = 0

and combining the two results
) - ) - '
FOT - 'E - aam - aH'E

Since (3.7) is satisfied on %, it is satis-
fied everywhere,,and the proof is complete.

3.2. Equivocal manifolds

At this point, it is not difficult to show
also how to compute an equivocal manifold.
Assume, for simplicity, that is scalar
(what i1s important is that on y one compo-
nent of ¢ appears linearly) and :

£(x,9,¢) = g(x)9 + h(x,¢)

An equivoc?l Junction is to be computed,
with (see 83

AT g(x) = 0
We kriow that
a) the trajectories of the junction are ge-

nerated by a control § that insures (3.8)
b), ¢) as in § 3.1.

(3.8)

Let ¢(x,n¢) be, by definition, such that

n'f(x,¢,4) =0 (3.9)

and introduce

f(xy)\+’ }‘-)=f(xy$(xv>\+")\—’¢*(x;>\-) ) 9¢*(Xs}\—))

(3.10)



(We could equivalently define it using

p(x,A", ¢*(x,A7)), but,the roof is gimpler
the way we do). Also, H(x,A*,A7)=A"'£(x,A",
A~). The equivocal surface is generated by

t = f(x,§+,A_)
.- + 4= ' _
A = _(GH ),'X)\ A ) + (1()\+—}\ )

o chosen such that (3.8) be satisfied. Again,
a is explicitely determined by differentia-

ting (3.8) with respect to tima.

The rest of the proof goes as in the pre-
vious §. The o?%y 3ifficu1ty being in_
checking that (3+8), implies A7'of/drT=0.
Using this and A7'3£/0A =0 as usual, one cean
prove that the hamiltonian remains null, ard
that the hypersurface generated is normal
to (AT-AT).

4. STATE CONSTRAINTS (*)

4.1 The game n°2

We consider a game with the same dynamics
as previously, but now the constraint that
A must stay at a distarce larger or equal
to one from B holds throughout the pursuit.
In addition, we make the game time indepen-
dent by transforming its payoff to minimax
time to reach a finite target : a circle of
radius 1 centecred at the origin.

B's role in the game is through a state

constraint. In the three-D representation it

appears as an oblique circular cylinder S :

(x=2)2 + y2 = 1

and A must keep the state of the game in the
outside, or on the surface of this cylinder.

The primary trajectories can be computed
backward from the terminal surface (which
appears as the hyperyplane z=1 in the 3-D
representation). They correspond to a
straight line race toward the origin for A,
B's strategy being undefined. In the back-
ward construction, some hit the cylinder.
The situation is schematically depicted by
figure 5. The field is tangent to S along
a curve D which, in our case, is the gene-
ratrix of the cylinder defined by

X=2+COS o

wita v cos a_=1. (This defines two symme-
tric generat?ices). At taese points, A can
just escape in a straight line toward the
origin without being captured by B. For
points on the cylinder with a slightly lar-
ger than a_, B can forbid this strategy by
running es8entially toward A. See figure 6.
We assume that the optimal play for some
points not accounted for by the primaries
will include "constrained arcs". Namely

{*) The analysis of game n°2 and smooth
state constraints are mostly due to
J.F. Abramatic

y=sin Ao
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arcs of trajectory lying on S in a "safe
contact" chase. The problem is to find how
to compute these arcs and their tributaries,
and in particular how the trajectories
behave at the junction.

The second point will be dealt with shortly
A classical mean to solve the prgr}e? t?at
fu?ceded in imprevious examples 13

4/, is the following, borrowed from opti-
mal control theory. When the state is on S,
one may find the law ¢=9(x,¢) that main-
tains it on S. It is defined by

n'f(x,9(x,¢),$)=0

where n is the outward normal to S.

(4.1)

One places this in the dynamics, and, para-
metrizing S, obtains a reduced game of di-
mension n-1 on the surface of S, and sol-
ves it with D as final manifold, where the
value of the game is known.

However, in the present game, this method
gives, on D, ¢=a_, meaning that B would run
away from A. Incgdently, this also gives
¢=0, opposite to its optimum value on the
primaries at this point.

In terms of game, the explanation of this
fact is as follows. By placing {4.1) in the
dynamics, we implied that A would keep the
state on S whatever B does. Then, B takes
advantage of this to drag A away from his
target, an absurdity.

In ('), we proposed a way to deal with this
problem within the framework of the reduced
(constrained) game. Here we shall present

a simpler method, also generalized from
standard practice in optimal control. We
first need a mathematical formulation and

a general theory, that plays, for state
constraints, the role played by our corner
conditions for corners.

4,2 Mathematical formulation

Again we must assmume A knows B's control,
ending in a max min rather than a saddle
point. Let

d if S
i x g (4.2)

P (X (l)):
L {o|n'f(x,9,¢)20} if xS

The problem to solve is
max min I(9,¢)

¢ey ¢€¢ad(¢) .

and the corresponding H.J.I1. equation is

max min H(x,dV/dx,9,4)=0 (4.3)

(139 ¢EQad(x’¢)

Tiow, let ¥ be the manifold of the (g,d)
space on which (4.1 holds, and £, be a
section of it at constant ¢. The ¢ me thod
g§oposed above amounts to replacing (4.3)



max min H(x,0V/d, ¢,¢)= 0
b9,

However, this is not equivalent to (4.3),
although we know the maxmin occurs on f. In
optimal control, we look for a minimum, and
then, if we know it occurs on a given sub-
set, we can look for it by minimizing over
this subset.

We now prove a general theorem about the
junction of optimal, unconstrained trajecto-
ries with the constrained arcs.

THEOREM.

If a unique solution exists, then at a juno-
tion point, on an optimal trajectory the
control ¢ i1s continuous. Purther, if at
this point H(x, dV/dx, ¢, ¢") has a strict
unique minimum in ¢, then the control ¢ also
is continuous on the optimal trajectory.

COROLLARY.

If for the given problem, H(x,A,9,¢" (x,)))
has a unique minimum for all A on S, then
optimal trajectories are smooth (have conti-
nuous first derivatives) at the junction
with the constrained arcs.

PROOF of the theorem.

Let us write, here, A for dV/dx. We have by
assumption

O=max min H(x,A,9,0)2

b ged 4 (d)

. « CaFN s *,

$%Ead(¢ ) H(X,k,\,l /Zgé% H(X,X,¢,¢ ) =0

Therefore, *
min ,  H(x,A,¢9,¢ )=0,
ped 3 (4)

and this is the maximum of this minimum as
a function of ¢. Thus this is the solution
sought and thne first assertion is proved.

Then assume the minimum in ¢ is strict. Tren
*
[ €¢ad(x!¢’ )'

Otherwise, the hamiltonian in (4.3) could
not be zero, since the optimal ¢ is ¢*. The
theorem is proved. The corollary follows

at once.

4.3. Computation of constrained arcs.

i) the smooth case.

W2 proceed as we did for corners. We know
that.

a) trajectories on § are generated by the
optimal controls ¢, ¢ ‘on the incoming
trajectories.

the components of gradient of the func-
tion value tangent to S5 satisfy the
Euler Lagrange equations, projected onS.

b)

23.2
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This leads to (n is the normal to 8)
. %
x=f (x,A\)
A OH
= -3 tm
and o is chosen such that

n'f*(x,A)=0

which, differentiated with respect to time
along a trajectory gives a explicitely. It
is easy to check that the field thus gene-
rated satigfies all the above conditions,
and also H =0.

ii) The singular case

Assume the dynamics are as in § (3.2). Then,
if (3.8)holds we are in the case where the
theorem allows for a discontinuous junction.
Here, the manifold from which the computa-
tion is done backward is typically the in-
fersgction of a switching surface (on wh%n?
3.8) holds) with S. See, for inst?gc% o/,
Then we look for a solution where .8)
stands instead of a) above. This leads to
(p is defines by (4.1)
~ * *

i:f(x,¢(§ﬁ,¢ )y & (x,A))

. 0H

A== 3% ton
and o is chosen such that (3.8) holds. Again
a is explicitely given by equating to zero
the time derivative of this expression. It
is interesting to notice that in this case,
the method of the reduced game is indeed
always valid. As a matter of fact, we see
that the trajgctories are generated, of
course, by ¢=¢(x,x,¢) but further, at each
instant, H is independant of ¢. Therefore
looking for the maximin reduces to maximi-
zing in ¢. Then, as we observed earlier,
the technique of the reduced problem is
justified.
5. CONCLUSION
The points where two-person zero-sum dif-
ferential games are now known to differ
from optimal control theory include focal

manifolds, corners and state constraints,
with or without corners.

We did not discuss in detail focal manifolds.
However, we contributed to a general theory
of them, still to be done, by exhibiting a
new type of such surfaces, imbeded in a new
type of singularity, leading to a complica-
ted corner. In short, we may say that this
singularity has to do with envelope junction
meeting a symmetry hyperplane, while focal
manifolds always imply some sort of "local
symmetry".

The other points : corner hypersurfaces and
state constraints have been dealt with in a
very similar set up, so that practicle means
of computing them are available. These



methods were successfully applied by J.F.
Abramatic in the computation of the state
constraint of the second game, and by P.
Colleter in the computationl of the switch
envelope of the first one.

In view of the similitary we brought out,
one might want to simplify and unify the
terminology, which, as it is, is the resuit
of a historical development. We might pro-
pose "regular corner", "singular corner",
and "regular state constraint" and "singular
constraint" for the four types of problems
we investigated.
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figure 1. The primary strategies.
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figure 2. The conterexample.
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figure 3. The field of primaries. figure 4. Singular field and switch envelope.

figure 5. Primaries and state constraint.
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