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CORNER CONDITIONS FOR DIFFERENTIAL GAMES

Pierre Bernhard
Maitre de Recherches
Centre d'Automatique
de 1'Ecole Nationale Supérieure des Mines/9é/Patis
Fontainebleau, France.

In his historical book '"Differential Games" (4),
Isaacs described a feature which has no counter-—
part in optimal control theory, what he termed the
"equivocal line'". Later on, a new original
phenomenon was dlscovered by Breakwell and Merz(z)
in the study of the same game (the homicidal
chauffeur), again with no counterpart in classical
optimization. They named it "switch envelope".
It appears that these two phenomenons involve
"eorners" of the trajectories, that is, a dis-
continuity of the slope. When the need for some
corner condition was agalg felt, in the game of the
Isotropic Rocket (4 ) that we shall use here
as an example, the t1me seemed to be ready for an
attempt at a more general treatment of that
question.

THE PROBLEM

Differential Game. We are working with a two-
person zero—sum differential game. That is, a
system is acted upon by two players: the "Pursuer"
P, who choses the control u, and the "Evader"
E, who choses the control v. The system
dynamics are given in terms of the state x.

=f(x, u,v) x€eXc R®

ueUcrRP vever®
Both players have perfect knowledge of the model
and of the state. Moreover, a criterion J 1is
given, that the pursuer seeks to minimize, while
the evader wants to maximize it:

th L(x, u, v)dt]
t

min max [J = Q(xg) +

u(.) v(.) o
where xe = x(t.) € C is the first point where the
traJectory penegrates a given "capture set" Cc X.

(It is a well known fact of control theory that
such a problem can always be formulated as time
independant, by adding a state variable if
necessary).

We say that there exists a solution if there
exists a pair of strategies (closed loop control
laws) u¥*(x), v¥(x) such that for every starting
point x, (u¥, v¥) 1leads to a saddle point:

J(u¥, v) s J(u¥*, v¥) < J(u, v¥)
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Sufficient conditions are known for a solution to
exist (see (3>). They involve the existence,
for each state and adjoint A, of a saddle point
in (u, v) for the hamiltonian H, with in
addition:

minmax {H=1L + <\, £>} = 0
u v

In the solution, one must distinguish between two
types of trajectories: "Normal trajectories" are
inbeded in a regular field of extremals. On
such trajectories, the adjoint A 1is the gradient
of the return function V(x). "Abnormal
trajectories" are part of a '"barrier", locus of
discontinuity of V (or of points of infinite
gradient). There, the adjoint has a different
interpretation ('"semi permeability" property) and
is normal to the barrier.

Assumption: We shall make the additional
assumption that the maneuverability domains are

convex. More precisely,

f(x, U, v) convex Vv € V

f(x, u, V) convex VYu € U
or, if the dynamics are "separated" J;
f(x, u, v) = hix, v) - g(x, u)

h(x, V) convex, g(x, U) convex.

Problem and notations. We want to find a condition
that must be satisfied by a manifold S on which
optimal controls have a discontinuity. Let the
guperscripts - and + denote values of the
variables at S before and after switching.

In the case of normal trajectories, S 1is an
hypersurface locally separating the state space
into two half-spaces. Let them be called region -
and region +. We shall assume that S has
everywhere a normal n, chosen pointing into
region +.

In the case of abnormal trajectories, we are
studying the intersection of two barriers, which
are hypersurfaces themselves. S 1is an (n-2)
dimensional manifold. Since the barriers have a
normal, S has a normal plane. (Unless the two
constituing semi-permeable surfaces are tangent
along S, case that we shall rule out).




We have the following very simple result:

- 1
must

Lenma. The difference A - A is normal to
Proof. 1) Normal trajectories: Since V(x)
be uniquely defined on S, 1its directional
derivatives tangent to S are uniquely defined,
and they are the projection of the gradient on the
tangent plane to S. Therefore

A"

+

AN +an a a scalar.

Abnormal trajectories: Both )\ and At

to S, since they are normal to their
semi-permeable surfaces, the inter-
which is S. Thus, the lemma is proved.
on, we are obliged to do two separate
treatments of the two cases: normal or abnormal
trajectories. We begin with the first case and

proceed to establish the "indifference condition".

11)
are normal
respective
section of
Frome here

PERMEABILITY CONDITION

Definition. We shall say that this property is
satisfied if, in a neighborhood of S,

- 4+
<n, f(u ,v)> =20
+ -
<n, f(u ,v)>2 0
namely, none of the players can cause the state to
return in region -, after reaching S, by keeping
his strategy of region -.
Proposition: if the dynamics are separated, one

at most of the above two inequalities can be
violated at a time.

Proof: assume, for instance, that

<n, f(u+, v-)> = <n, h(v_)> - <n, g(u+)> <0
by definition of n, we have

<n, £Qu’, v')> = <n, h(v))> - <n, gu’)> 20
<n, f(u , v )>=<n, h(v )> - <n, g(u )> =20
Then by simple addition:

[<a, h(v')> - <n, g(u)>] +
[<n, h(v)> - <n, g(u')>] 2 0

and the second bracket being negative, the first is
strictly positive.

Theorem |. (Erdman-Weierstrass Corner Condition).
When the permeability condition is satisfied, a
necessary condition is

+

A=A (or a=0).
Proof. Assume, for definiteness, a > 0. Let the
evader decide to switch to the strategy v* on a

surface translated of S by &1 into region -

(he switches before reaching S). Because of the
permeability property, the state will penetrate the
new region +, and the pursuer will have to switch
to u* to play optimally against v*. To first
order, the variation in payoff will be:
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<(N =17), 61> = -a<n, 61> >0

ov
and thus, this new strategy is better than the one
defined by the original S which, therefore, is
not optimal.
For a <0, it is the pursuer who should switch
earlier. The theorem is proved. This situation
is that of classical optimal control theory.
Notice the importance of the permeability condition
in the proof. If, say,

<n, f(u, v))><o0

then when E switches to v+, the state goes
back in region - and the proof does not hold any
more. We must investigate that case.

THE INDIFFERENCE CONDITION
The traversing strategy. Let us, for definiteness,
study the case just envisioned. We must expect
that a switching surface with a > 0 should be
possible. (And conversely, if the other
permeability condition is violated, o < O should
be possible). Because of the difference A\~ - ‘,
the Evader should switch as soon as possible.
Assume that the Pursuer refuses to switch and

keeps his strategy u~. Then, as we said, the
state will go back into region -, where the

optimal strategy for E 1is, by assumption v~.
Therefore E must switch back to v™, causing the

state to reach S again, and so on. We end up
with a chattering strategy for E, between v~
and v*, the state following S. However,

because of our convexity assumption, it is known
that a chattering strategy cannot be better than
the simple strategy giving the same direction of
displacement. Therefore, E should chose the
control V¥ such that the state follows S:

<a, f(u, V)> =0

- .
This pair (u , v) 1is called the "traversing"
strategy. (Notice that without the convexity
assumption, V¥ might be a '"relaxed" control, or

limit of very high frequency chattering controls).
Since we have seen that the pursuer can force the
evader to chose this strategy, a necessary
condition is that it be as ''good" as the optimal
one, that is, optimal itself. This is the
indifference condition.

In that case, P will have the choice between an
infinity of equivalent trajectories, being allowed
to follow the corner surface, or to leave it at
any time (as long as the end of that surface is
not met).

In the case studied: <a, f(u-,v+)> <0,

Theorem 2.
ax>0 and

a necessary condition is

max H(A, u-, v) = H(A , u, 3)
v

We notice first that because of the
V, and with the lemma, we have

Proof.
definition of

AT, £, V> = <, £, V>



-z

Thus
- - N + - A
H(A , u, v) = H(A, u, v)
and the indifference condition can be checked with
either definition of H. This condition requires
that H be zero. But we notice that H(A ,u”,v")
is zero, and moreover, v~ is the argument of the
maximum of H(A",u”,v). Therefore, the theorem is

proved.
The obvious parallel is, for the other case:

<a,f(’, v))><0, a < 0,
and

min H(Af, u, v ) = H(A-, :, v).
u

Discussion. The indifference condition can be
satisfied in two ways:

. ~N
- either v=yv

Arg max H(X—, u-, V) non unique.
v

= or

In the first case, the optimal trajectories of
region - reach the switching locus tangentially,
hence the name given by Breakwell: "switch
envelope'. The second case usually corresponds

to a singular arc in v. If the Lagrangian L is
independant of v, (the minimax time problem, for
instance), and with our assumption on the
convexity of the maneuvarbility domain, f(u™,v)
(or h(v) 1if the dynamics are separated) must
have an affine set as part of its boundary, and

A" must be normal to it.

For a two dimensional game, the classical situa-
tion is that where one of the domains of _
maneuverability is a line segment, and A being
normal to it gives a "switching function" that
remains zero. It is Isaacs' equivocal line. That
is why we shall call this case the (generalized)
equivocal case.

Construction of a solution. Sufficient conditions
always rest on the construction of a complete
field of trajectories, and using Isaacs'
""verification theorem". The previous necessary
condition can be used in an attempt to comstruct
this field. Once S 1is known, the condition

H =0 is sufficient to determine a, and hence
A7, knowing A*. The only problem is to find S.
The corner condition usually gives one condition
on n. It is equivalent to a partial differential
equation on S, that degenerates in an ordinary
differential equation for a two—dimensional game.
However, as soon as the state space is of higher
dimension, this equation may be extremely
difficult to integrate, even numerically, as we
shall see on a very simple example.

A last question is that of the choice of the right
corner condition, and finding the "initial
conditions" to integrate the equations for S.
Although ingenuity in each particular case is
the only answer, a general rule is that these
questions, mainly the second one, are generally
answered by the solution of the ''game of kind",

e

- I“J

which must be investigated first, and gives the
barriers, families of abnormal trajectories.

JUNCTION OF SEMI-PERMEABLE SURFACES

Problem, notations. We recall the definition of
a semi-permeable surface, as a surface (hyper-
surface) B such that, its normal being A, we
have

min max <A, f> = max min <A, £> =0
u v v u

with the interpretation that each player can
prevent crossing of it in a direction. We want to
investigate under which condition two such surfaces
can join, at an angle, and the composite surface
still be a barrier. Let B~ and B* be the two
surfaces, J their line of intersection, the
trajectories of B~ incoming at J, those of B*
leaving J. B~ locally divides the space into two
regions RT and R, similarily for B*. Region
| and 2 are determifned by the direction of A (we
purposely avoid to specify whether A points into
region | or 2). The composite surface B locally
separates the space into two regions R, and R
. 1 2
defined by
- +
Ry =R N R,
- +

Ry =R, URy

and B 1is obtained by deleting the portions of

B~ and B* 1lying in R,. Let u, be the control
of the player who wants éo bring tﬁe state into
region |, and conversly for u,. (We avoid

specifying which is u and which is v).
Assumption. On the trajectories of B~, at J,

the semi-permability condition uniquely defines wu,.
Under this assumption we have the followint result:

Theorem 3. For B to be a barrier, it is
necessary that incoming trajectories do not cross
the junction.

Proof. Let us assume that the paths of B~ cross
J. This can happen only if u # uY. Then, when
the state reaches J, player } will keep his
strategy u,. If player | keeps his strategy uT,
by our currént assumption the state will cross J
and fall in R} c R,. If player I switches to

by the unlcity assumption the state will fall
In both cases B has failed to be

uT,
in R, < R,.
semi—permeagle.

Remark. We do not claim that u7 = ut is
necessary. There can exist a palr (u7, ul)
that is different from (u:, u2) but generates
paths tangent to BY.

Discussion. In the case we just described, J is
an envelope of the trajectories of B~, and we

have an "envelope junction", the counterpart of the
switch envelope. If player 2 decides not to switch
to u!, the two players will use the pair -
corresponding to the local incoming trajectory and
the state will follow the junction, as in the case
of normal trajectories.

The equivalent of the equivocal surface is less
simple. It corresponds to the case where our
unicity assumption is not satisfied. Then assuming

.
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that A points 1into region 2, say (u, = u,
u, = v), there should exist a control ﬁ] such
that

D
<A, f(ul, u2)> =0
S\ £, u))> s 0

but as the last expression is not necessarily zero,
we can have several situations:

. + ~ - ~ . :
i) <\, f(ul, u2)> =0 u is a possible
traversing strategy,
. + N - .
ii) <\, f(ul, u2)> < 0 The evader must switch
to u;.

One also sees that there might exist an infinity

of acceptable ﬁl's.
THE ISOTROPIC ROCKET GAME

The game. To exhibit both a junction of barriers,
and a case where the computation of a switch
envelope involves a partial differential equation,
we are obliged to chose a three dimensional game.
One of the simplest such games that have been
investigated in detail is Isaacs' Isotropic Rocket
Game. It was %rgsented in a Rand report in 1955,
then in (4), 1) contains further, but still
incomplete, developments. We shall, here,
describe results by Isaacs without deriving them.
The reader is refered to (4) or for
derivations.

The game can be described in a three dimensional
space by

F . .
- —% sin ¢ + w sin ¥

%=
y = Eé sin © + wcos & - v
v =F cos ¢
X, ¥y, v are state variables, ¢ and ( the
controls of the pursuer and the evader. Payoff is

capture time, where capture is defined by

x2 + y2 <12 and F, w, and 1 are given
constants.

These equations model, in a moving coordinate
system, attached to the pursuer and the y axis
pointing in the direction of its velocity, the
plane chase of a cat pursuing a mouse on a sliding
floor. The whole chase occurs at a speed well
under the cat's maximum speed, so that the pursuer
is limited only by its sliding, that allows it a
finite acceleration F, the same in every
direction. The mouse on the other hand, is runing
at its maximum speed, w, and its sliding is
negligible. x and y are the mouse's relative
position, v 1is the cat's speed, @ and ( are
the angles of the cat's control (its acceleration)
and the mouse's control (its velocity) with the y
axis.

Smooth trajectories. It is found that a barrier
attaches to the capture cylinder C,

X4 + y4 = 12, along the B.U.P. given by

v cos O w, where x r sin 9, y =r cos
For the limiting case

= = d.
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that we shall be concerned with from now on, this
barrier just tuches the (y, v) symmetry plane
along the straight line y = vw/F, thus
apparently defining a closed capture region.

It was found by Isaacs, however, that for final
conditions at v2< w2 + Fl, the trajectories of
the barrier penetrate C before coming tangent to
it along the B.U.P. He then introduced another
curve, D, on C, tangent to the B.U.P.; at the
critical point, and constructed a barrier: the
"envelope barrier" (because its trajectories come
tangent to D) that provides a smooth extension
to the previous, or "n???ral", barrier.

However, we showed in that the curve D does
not reach the symmetry plane, and that the
envelope barrier does not close on this plane
(fig. 1). Similarily, it was found by Breakwell
that, because the "primary" trajectories penetrate
C before planned capture, part of the field of
trajectories must be constructed allowing for a
state constraint, or '"safe contact" on the
boundary of C. However, this construction does
not fill the whole region of the state space not
accounted for by the primaries.

Envelope junction. (See (l)). Physically, the
two barriers known so far correspond to the
evader's side-stepping in an attempt to out-
maneuver the less agile pursuer. It ceases to
exist in the low v's because there, the pursuer
becomes very agile. But in the region of interest,
the evader is faster than the pursuer, we should
therefore expect that it will take advantage of
this superiority to flee from the pursuer.
In fact if we consider the case of a straight
chase in real space, it gives a parabola in the
(y, v) plane of the state space. Parabolas far
enough from the capture cylinder hit the natural
barrier that closes on the (y, v) plane. Such
parabolas clearly are semi-permeable trajectories.
Consider the parabola that hits the last
trajectory of the natural barrier. Being in the
symmetry plane, it is tangent to the barrier.
From this point, it is possible to construct an
envelope junction J extending on the envelope
barrier, and from this locus a semi-permeable
surface, made of trajectories fleeing from C,
which together with the envelope barrier creates a
composite barrier, with a corner (fig. 2).
Notice that the semi-permeability condition
defines at each point of the state space a cone of
semi-permeable directions. The requirement that
it be tangent to the envelope barrier allows to
isolate one such direction (two in fact) at each
point of the barrier. Thus constructing the
envelope junction amounts to integrating a
differential equation on the surface considered,
suitably parametrized. The main difficulty comes
from the fact that the curve D could only be
integrated numerically itself. It is interesting
to notice that there is a range of marameters,

2

W
2F1

1.056 < < 1.092

where this construction, completed toward the
symmetry plane by an additional barrier of a
different type, actually defines a closed capture




region. The previous barriers only achieve this
for

2
W

2F1

and suffice to define the smallest such capture
region for

> 1.062

2
w
—ZFT > 1.092.

Switch envelope. We expect that the field of
optimal trajectories should be completed with
trajectories qualitatively similar to the last
piece of barrier comnstructed. Actually, the
envelope junction provides the initial conditions
to compute a switch envelope S.

We established the partial differential equation
satisfied by S. It is actually given implicitly
by conceptually eliminating o between the two

equations
H =0
<, f(g ,¢ )>=0
where
A= A+ an
and

- oV
ox
dv
ay

1

The equations are highly nonlinear, and
elimination of o 1is unpracticle. This is not
the main difficulty, it is possible, for instance,
to find the equations of the characteristics
directly from the pair of equations at hand.
However, two forbiding difficulties arise in
trying to numerically integrate these equations.

The first is that At is known, numerically, not

as a function of the state, but parametrized,
together with the state, by a set of three para-

meters (time to go on the three successive legs of

the trajectory until capture).

The second difficulty is that the initial
conditions are given on a line where the A* of
the normal field is infinite. It can be checked
that the information lost on the modulus of A*
is compensated for by the knowledge of the direc-
tion of A~. However using this information
appears hardly feasible in practice.

We were able to derive analytically some results
on the shape of the solution, and they indicate
that it would probably give the desired field of
incoming trajectories.

CONCLUSIONS

We have seen that the Erdman Weierstrass
necessary conditions do not always hold for
differential games. In fact, corners appear to
be much more frequent in games than in classical

optimal control problems. This fact might be
traced back to the less stringent necessary
conditions that prevail in the former case as
compared to the latter.

It must be pointed out, also, that this is one of
the reasons why the Pontryagin Maximum Principle
cannot be directly generalized to differential
games: the adjoints need not be continuous along
an optimal trajectory.

Finally we must emphasize how the interaction
between two players is the critical fact, which
produces novel features with no possible
counterpart in one-player problems.
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