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Abstract
This article studies the issue of sticky prices in the context of a dynamic Cournot oligopoly
model in discrete timewith n asymmetric firms, andwith costs and demand linear.We recover
the somewhat surprising fact of the related continuous time literature that the asymptotic price
is lower than the price of the repeated game. But contrary to the continuous time case, in
discrete time we find (1) that the limit at vanishing viscosity coincides with the non-sticky
case, and, more surprisingly (2) that the equlibrium price trajectory oscillates around the
asymptotic price.

Keywords Sticky price · Cournot oligopoly · Dynamic game · Discrete time

JEL Classification C61 · C72

1 Introduction

Pricing is clearly at the heart of economic analysis. For a long time analyzed from the
viewpoint of price theory, which we now call microeconomics [14], the desire and need
to better microfound macroeconomic models has also led macroeconomists, at least since
Keynes, to question this issue [2, 8].As [11] and [12] point out, the discussions andoppositions
betweenmacroeconomists concerningmoney, inflation and economic fluctuations are largely
centred on the question of price determination by agents.

For some macroeconomists, all nominal prices are perfectly flexible (i.e., all prices cor-
respond to their market equilibrium value), while for others, nominal prices are often sticky
(i.e., adjustment is gradual, so there is a difference between the observed price and its the-
oretical value resulting from market equilibrium). This generally leads the former group to
consider that money is neutral in the short term (i.e., there is a dichotomy between the real
and monetary spheres), which means that an increase or decrease in the quantity of money
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has no impact on real economic activity; whereas for the latter group, money is not neutral
(i.e., money affects the real economy in the short term).

Although these debates continue vigorously on the theoretical level, it is noteworthy that
today, most macroeconomic models of the dynamic stochastic general equilibrium (DSGE)
type are based upon the assumption that firms change their prices only infrequently (see [5,
16, 18]). And thesemodels form the academically dominantmodeling of the new synthesis [7]
and are used daily, as a complement to traditionalmacroeconomicmodeling, by governments,
central banks and international agencies [1].

On the empirical side, beyond older studies (see [9] and [15], for a review of the literature),
recent access to numerous and vast microeconomic databases makes it increasingly possible
to analyze the issue of price stickiness [10]. By way of illustration, a recent European Central
Bank study of eleven eurozone countries [6] concluded that: (1) on average, only 12.3% of
prices change each month (8.5% if we exclude sales periods), (2) differences in terms of
price rigidity are limited when comparing countries, and are much greater across sectors,
(3) the median upward price variation over the period 2000–2019 is 9, 6% and 13% down-
wards (6.7% and 8.7% respectively if sales periods are excluded), and (4) the distribution
of price changes is highly dispersed (14% of price changes are less than 2%, and 10% of
price changes are greater than 20%). Generally speaking, it should also be noted that the
empirical literature distinguishes between countries with high inflation rates and those with
very moderate inflation, the average duration of a price being much shorter in the former than
in the latter.

Despite our own limitations in this field, and the fact that it is not our aim here to provide
an overview of the issue, we feel that these brief elements are sufficient to pursuade the reader
of the theoretical, empirical and political value of studying price stickyness.

The aim of our paper is to contribute to the investigation of the effect of non-continuous
price adjustment in a dynamic Cournot oligopoly, with homogeneous good, n heterogeneous
firms and discrete time. We consider an affine inverse demand function, whose parameters
(a0 and bi ) remain constant. There are no demand or supply shocks. We modelize viscosity
via the following mechanism1: in each period t , a part θ of each firm’s output (fixed in time
and common to all firms) is sold at the price of the previous period t − 1, while the other part
of output (1−θ) is sold at the price of period t . This formalization of stickyness seems to us to
be one of the simplest imaginable, although exogenous and trivial compared to the literature.
In fact, it is like considering that each producer has two warehouses of different sizes (or of
the same size), and that at each new period the first warehouse will label the products and sell
them at the price of the previous period, while the second warehouse will label the products
and sell them at the price of the current period. Alternatively, this assumption could represent
the joint time required by each producer to price and notify consumers of the new price, since
the period t price applies to both the (1 − θ) portion of output in period t and the θ portion
of output in period t + 1. Thus, in our model there is a synchronized price adjustment and
all firms have the same price duration.

At least three articles are close to our own in the continuous-time literature where prices
evolve continuously. In each case, they analyze the dynamic Cournot–Nash equilibrium, first
with open-loop strategies, then with state feedback, the state being the current price. Our
paper recovers their common conclusion that the stationary asymptotic price is lower than
the Cournot repeated game price but, unlike in ours, in these papers the limit at evanescent
stickyness is not the stickiness-free equilibrium. The paper by [4], restricted to the duopoly,

1 We offer in the development another interpretation of the same equations.
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offers a study of the asymptotic regime in a framework where dynamics with first-order
viscosity makes the current price the state variable, with a quadratic term in the production
cost, necessary to avoid a singularity in the continuous time problem. The article by [3] is also
restricted to the duopoly case and the asymptotic regime, but in their framework what leads
to a continuous evolution of prices lies in the fact that the players have for (costly) control
the speed of variation of their production rate, and not the rate itself. Thus, their production
rate becomes a continuously evolving state variable. The inverse affine law of demand thus
produces a continuous variation in price. Finally, the article by [17] considers n players,
and is interested in the time trajectory—and not just the asymptotic regime—of prices and
production. The dynamics and criteria are the same as in the paper by [4], but they offer a
very detailed analysis of trajectories, as well as dependencies in the various parameters.

One work at least considers a discrete time model,2 in [13], pp. 200–204. Its stepwise
profit is the same as ours in terms of previous price and current production. But its model
of price evolution is the natural discrete-time equivalent of the classical continuous-time
model, involving an infinite impulse response, i.e. an infinite memory of past productions,
and of the initial price. In constrast, we have chosen a model with one step memory only,
which the discrete time lets us do, leading to a significantly simpler mathematical analysis.
Whether one model is more realistic than the other one is debatable. Beyond, [13] con-
siders a purely quadratic production cost, while we have a linear one, and is restricted to
two identical producers, while our simpler dynamic model allows us to consider n differ-
ent producers. Finally, its analysis uses a regularity assumption on the equilibrium Markov
strategies allowing it to use a variational approach, leading to a deep analysis of the infor-
mational nonuniqueness of the equilibrium strategies, while we consider only the pure state
feeback time-consistent subgame-perfect strategies, obtained via dynamic programming and
the Carathéodory–Isaacs–Bellman sufficient conditions. The somewhat paradoxical results
we emphasize below are not investigated in [13].

Our article is organized as follows. In Sect. 2 we state our dynamic Cournot oligopoly
problemwith sticky price in discrete time, and explain our assumptions. In Sect. 3 we present
the complete solution to our problem, and discuss the dynamics, exhibiting the oscillatory
nature of the equilibrium solution and the asymptotic regime. In Sect. 4 we propose a numer-
ical analysis to compare the sticky price case with the Cournot repeated game. Section5
analyzes three special cases: the absence of stickiness, monopoly, and Cournot oligopoly
when the number n of producers goes to infinity. Section6 concludes.

2 The Problem

2.1 Cournot Dynamic Oligopoly with Sticky Prices

We consider a typical Cournot n firms oligopoly with an affine inverse demand function. Let
n be the number of producers, producer i’s production be qi , the inverse demand function be
characterized by a price a0 and coefficients bi giving a price P:

P = a0 −
n∑

i=1

bi qi

Each producer i has a linear production cost ci qi .

2 We thank an anonymous reviewer for mentionning it.
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The producers will make an infinite sequence of production decisions qi (t), t ∈ N. But
the specificity of this market is that a proportion θ of their production qi (t) will be sold at
the previous price P(t − 1), while the rest, a proportion (1 − θ) will be sold at the clearing
price P(t) given by the inverse demand function. Therefore, given the appropriate discount
factor ρ, player i’s profit �i will be:

�i =
∞∑

t=1

ρt−1

[
θ P(t − 1) + (1 − θ)

(
a0 −

n∑

k=1

bkqk(t)

)
− ci

]
qi (t) . (1)

We seek a Cournot–Nash (dynamic) equilibrium.
The following hypotheses hold on the parameters of the problem:

a0 > 0, ∀i, ci < (1 − θ)a0

so that the ai defined thereafter, are positive. And as in any Cournot model with an affine
inverse demand function, we assume that the bi are “sufficiently small” so that realistic
productions qi keep P ≥ 0.

Furthermore, we will restrict our analysis to the case θ ≤ 1/2. Two reasons lead to this
restriction:

1. On the one hand, we have a slightly different interpretation of the same mathematical
problem: if the production qi is made at a constant rate qi over the time interval of length
1 between t and t + 1, and the price evolves linearly from P(t) to P(t + 1) during that
period, reaching P(t + 1) at a time t + τ < t + 1 and stays there until the end of the
period, i.e. time t +1, then we have the same profit as expressed by Eq. (1) with θ = τ/2,
as in our discrete time problem. Therefore, in this equivalent continuous-time model,
θ ≤ 1/2.

2. On the other hand, and more importantly, if θ is too large, the problem may have no
solution. To understand this, let us consider the monopoly problem (n = 1) with θ = 1.
Then the monopolist may produce a large quantity Q every odd numbered periods (say,
years), yielding on even numbered periods a negative3 price P(t − 1) which applies
for that period when it produces zero, and hence a price a0 on odd periods. Clearly, its
profit will be � = (a0 − c)Q/(1 − ρ2), hence arbitrarily large. The monopoly problem
has therefore no solution in that case. Similar strategies are possible for the n producer
model.

Notice also that our formulas will only hold if ρθ2/(1 − θ)2 < 1, which is ensured (and
beyond) by the restriction θ ≤ 1/2.

2.2 Notation and Preliminary Analysis

We will use the following notation:

bi qi = ri , δ := θ

1 − θ
, ai := a0 − ci

1 − θ
.

Notice that (1− θ)(1+ δ) = 1, so that, e.g., ai = a0 − (1+ δ)ci . The parameter δ ∈ [0, 1] is
an alternative measure of the stickyness, convenient in the calculations, if difficult to interpret
in economic terms.

3 Or null if we agree that P = max{0, a0 − ∑
i bi qi }.
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To stress the fact that P(t −1) is the state of the problem at time t , we let P(t −1) = x(t).
We may then notice that:

bi

1 − θ
�i =

∞∑

t=1

ρt−1

(
δx(t) + ai −

n∑

k=1

rk(t)

)
ri (t) . (2)

and the state dynamics are very simple:

x(t + 1) = a0 −
n∑

k=1

rk(t) . (3)

We have a dynamic game problem with affine dynamics and quadratic payoff. No surprise
that we will find a quadratic Isaacs Value function Vi (x). We will let

ρWi (x) := ρ
bi

1 − θ
Vi (x) = αx2 + βi x + γi . (4)

The fact that α be independent of i will result from the fact that we will succeed in finding
such Value functions that satisfy Isaacs’ equation.

Further notation used will be:

A =
n∑

k=1

ak, D = 1

1 − θ

n∑

k=1

ck, and therefore A = na0 − D,


 = n + 1 − 2nα, R =
n∑

k=1

r�
k , ηi = ai − βi , H =

n∑

k=1

ηk .

3 Complete Solution

As stated above, we seek an equilibrium with payoffs as in (2) and Value functions as in (4).
Isaacs’ equation reads as follows:

Wi (x) = α

ρ
x2 + βi

ρ
x + γi

ρ
= max

ri

{(
δx + ai −

n∑

k=1

rk

)
ri

+ α

(
a0 −

n∑

k=1

rk

)2

+ βi

(
a0 −

n∑

k=1

rk

)
+ γi

}
.

(5)

Our mathematical analysis hereafter ignores the constraints qi ≥ 0 and P ≥ 0. We take them
for granted, and will only accept the (candidate) solution exhibited if it satisfies them, which
will be left to numerical verification. Accepting these constraints, it is clear that W above is
bounded over the positive real line.

The right hand side of (5) is a concave function of ri . Differentiating and equating to zero,
we obtain the equilibrium production r�

i as:

r�
i = δx − (1 − 2α)R − 2αa0 + ηi .

(This expression is still implicit, since R contains r�
i .) Summing over the i yields, after an

elementary calculation:

R = 1



[n(δx − 2αa0) + H ] , (6)
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and

r�
i = 1



[δx − 2αa0 − (1 − 2α)H ] + ηi . (7)

There remains to place this back into equation (5) and identify like powers of x .

3.1 Investigation of˛ and the Closed-Loop Dynamics

3.1.1 Determination of˛

Begining with terms in x2, we find:

1

ρ
α = δ2


2 (n2α − 2nα + 1) . (8)

We write this equation as:

if δ = 0, α = 0, if δ �= 0,
1

ρδ2
α = fn(α)

with

fn(α) = n2α − 2nα + 1

(n + 1 − 2nα)2
.

We observe that 1/ρδ2 > 1, and furthermore that:

f ′
n(α) = n

2n(n − 2)α + n2 − n + 2

(n + 1 − 2nα)3
,

f "n(α) = 8n2 n(n − 2)α + n2 − n + 1

(n + 1 − 2nα)4
,

so that

fn(0) = 1

(n + 1)2
, fn

(
1

2n

)
= 1

2n
, f ′

n

(
1

2n

)
= 1,

while

∀α ∈
(
0,

1

2n
+ 1

2

)
, f ′

n(α) > 0, f ′′
n (α) > 0.

Therefore, in an (y, z) plane, α may be identified as the abscissa of the intersection point of
the line z = (1/ρδ2)y and the curve z = fn(y). See Fig. 1. We know that the slope of the
line is larger than one, while the curve z = fn(y) is convex, tangent to the first diagonal at
y = 1/2n. There exists therefore one intersection for y < 1/(2n), which is the limit of the
recursion y(t)/(ρδ2) = fn(y(t + 1)) as t → −∞ starting from y = 0, i.e. the solution that
we seek. (Fig. 1 easily illustrates the two solutions for y < (n + 1)/(2n), a third solution is
on the decreasing branch of the graph of fn(·) at y > (n + 1)/2n.)

A consequence of this graphical representation is that α increases from zero to 1/2n as
ρδ2 increases from zero to one, and that for a given ρδ2, α decreases when n increases.
Actually, we can even show that 2nα goes to zero as n goes to infinity. (See appendix)
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Fig. 1 Determination of α (drawing for n = 2, ρδ2 = 2/3)

3.1.2 Qualitative Behavior of the Dynamics

It follows from Eqs. (3) and (6) that the price dynamics under the Cournot–Nash equilibrium
strategies are:

x(t + 1) = −nδ



x(t) + (n + 1)a0 − H



. (9)

It follows from the fact that α < 1/2n that 
 > n. Therefore, nδ/
 < 1. Hence, for almost
all initial conditions, these dynamics oscillate around a long time, asymptotic value x̄ , which
is also the asymptotic price P̄:

P̄ = x̄ = (n + 1)a0 − H


 + nδ
(10)

that we will characterize further later on, when we have calculated H .

Two non-intuitive consequences result from this analysis.

• On the one hand, we insist that this oscillating behaviour is not the result of a trial-and-
error process à laCournot iteration. The actual Cournot–Nash equilibrium strategy yields
an oscillation. Our analysis of the extreme case θ = 1 gives an indication of why this
may be so.

• On the other hand, although once the prices and productions have reached constant
values the stickiness seems to play no role, yet these long term repeated values are not
the repetition of the equilibrum values in a game with no stickiness, i.e. x = (a0 +∑

k ck)/(n + 1).

It may be noticed that, as shown below in Sect. 5.2, these somewhat paradoxical facts hold
even in the simple case of a one-player game, i.e. a monopoly.
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3.2 Investigation ofˇi and �i

3.2.1 Coefficientsˇi and Asymptotic Price

It is usefull, for more legibility, to introduce yet another short hand notation:

 = n2 − 2nα + 1 = 
 − n(n − 1).

Identifying terms in x in Eq. (4) with the ri as in (7) yields:

βi

ρ
= δ


2(1 + δρ)

{
−2αa0 + 2
(1 − nα)ai − 2[2nα2 − (2n + 1)α + 1]H

}
. (11)

Summing in i , recalling that H = A − ∑
i βi , expanding 
2 where it appears without the

coefficient δρ, and regrouping terms, we obtain:
(


2

δρ
+ 

) ∑

i

βi = −2nαa0(n
2 − 2nα + 1) + 2(n2α − 2nα + 1)A.

Using again H = A − ∑
i βi , and recognizing a term 
 which appears in the coefficient of

A, it follows that

H = [
 + δρ(n − 1)]
A + 2δρnαa0

2 + δρ

. (12)

Here, the right hand side contains only data of the problem and α that we know how to
compute, at least numerically. This is an explicit, although unappealing, formula. It can be
placed back into Eq. (11) to get βi and hence ηi = ai − βi and place this in Eq. (7) to get
the equilibrium strategies. The formulas thus obtained are exceedingly complex and of little
interest. If one wants numerical values, the best is to compute H and βi numerically from
their respective formulas above.

Asymptotic equilibrium price At this point, we claim that we are able to compute α from
formula (8), and we have an explicit formula for H (in terms of α). Therefore, we may
compute x̄ with formula (10). We obtain:

P̄ = x̄ = 
2(1 + δρ)a0 + [
 + (n − 1)δρ]
D


2 + δρ
.

See Sect. 3.2 for some numerival values.
The dynamics may be written

x(t + 1) − x̄ = −nδ



(x(t) − x̄).

3.2.2 Coefficient �i and Equilibrium Profits

To compute equilibrium profits, we still need to evaluate the coefficients γi . This is obtained
by equating terms without x in Eq. (4) with the ri as in (7). An explicit expression can be
found, but again of little help. As expected, γi goes to infinity as ρ approaches one.

γi

ρ
= 1


2(1 − ρ)

{ − (2nαa0 + 
ai − H)[2αa0 − 
(ai − βi ) + (1 − 2α)H ]
+ α[(n + 1)a0 − H ]2 + 
βi [(n + 1)a0 − H ] .
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Table 1 P̄ and � as a function of n and θ for a0 = 10, ci = 1, and ρ = .95

n

θ 1 2 3 4 5 10 100 ∞
P̄ .5 5.443 3.297 2.536 2.151 1.920 1.457 1.045 1

P̄ .4 5.454 3.567 2.772 2.346 2.083 1.544 1.054 1

P̄ .3 5.467 3.716 2.924 2.484 2.205 1.619 1.063 1

P̄ .2 5.477 3.829 3.049 2.602 2.313 1.689 1.072 1

P̄ .1 5.489 3.921 3.156 2.706 2.411 1.755 1.080 1

PC 0 5.5 4 3.25 2.8 2.5 1.818 1.089 1

�i .5 810.13 308.96 153.35 90.618 59.613 15.657 0.1618 0

�i .4 675.07 275.74 142.59 86.009 57.250 15.355 0.16131 0

�i .3 578.60 244.04 129.81 79.746 53.741 14.828 0.16088 0

�i .2 506.26 218.29 118.74 74.100 50.498 14.317 0.16 0

�i .1 450.00 197.32 109.31 69.144 47.593 13.836 0.15942 0

�C 0 405.00 180.00 101.25 64.8 45 13.388 0.15881 0

It finishes to prove that indeed, a Value function of the form (4) can be found that satisfies
Isaacs’equation, and therefore that the strategies (7) form a set of a dynamical Cournot–Nash
equilibrium strategies.

Starting from a market price P0, set x(1) = P0, the dynamics (9) gives the sequence of
prices under the equilibrium strategies. The total discounted profit of each player is then
given by:

�i = 1 − θ

ρbi
(αP2

0 + βi P0 + γi ) . (13)

The dependence of the final price and profits on θ (or δ) is difficult to assert from these
formulas. Table 1 of numerical values shows that stickyness decreases the price and increases
the producers’ profits. This is coherent with the rest of the literature on sticky prices.

4 Some Numerical Results

We propose here some numerical values aiming to show the effect of viscosity and compare
with the repeated Cournot game. In Table1, we show on the top part the asymptotic price
P̄ and on the bottom part the profit �, for decreasing values of the stickiness, down to the
Cournot price PC and profit �C corresponding to the non sticky market. Since the profit �i

in the sticky case depends on the initial price at time zero, we take it as the Cournot price.
The values in the table are for a0 = 10, ci = 1, and ρ = .95.

We give in Fig. 2 three price trajectories with the same parameters a0 and ci , n = 3, and
different values of ρ and θ .

We also show in Table2 a nonintuitive phenomenon at very small discount rate. While
we expect that the higher the discount rate 1 − ρ, the more difference we have with the non
sticky case, this is not quite so for δ and ρ sufficiently close to one, as Table2 shows. We
show the asymptotic price P̄ . We have set a0 = 10 and ci = 1 as in Fig. 1, and n = 3. We
have labeled the columns with ρ and the lines with θ :
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Fig. 2 Three price trajectories starting from the Cournot price for n = 3, a0 = 10, ci = 1, and different ρ

and θ

Table 2 x̄ for values of ρ and δ

close to one with n = 3
ρ

θ .8 .85 .9 .95 .99

.48 2.5878 2.5948 2.6002 2.6042 2.6060

.485 2.5764 2.5825 2.5871 2.5898 2.5903

.49 2.5644 2.5997 2.5731 2.5742 2.5725

.495 2.5519 2.5562 2.5581 2.5567 2.5513

.5 2.5389 2.5417 2.5415 2.5358 2.5196

5 Particular Cases

5.1 No Stickyness

With no stickyness, we have θ = δ = 0, and consequently, according to our formulas

α = 0, 
 = n + 1, βi = 0, H = A, ηi = ai = a0 − ci .

Werecover the formulas of the classicalCournot-Nash equilibriumwith affine inverse demand
function. We write them using the shorthand notation

∑n
k=1 ck = C and therefore A =

na0 − C , as:

P = a0 + C

n + 1
, r�

i = a0 + C

n + 1
− ci bi�i = 1

1 − ρ

(
a0 + C

n + 1
− ci

)2

.

In the case where all the production costs coefficients ci are equal, this yields

�i = 1

bi (1 − ρ)

(
ai

n + 1

)2

.

5.2 Monopoly

We now deal with the case n = 1. In that case, α can be calculated exactly. We have

 = 2(1 − α), and Eq. (8) becomes

4α(1 − α) − ρδ2 = 0.

We remember that ρδ2 is less than one, and let ε = √
1 − ρδ2 .
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Then, the smallest root of the above equation yields:

α = 1

2
(1 − ε), 
 = 2(1 − α) = 1 + ε, β = ρδ

a1 − (1 − ε)a0
ρδ + 1 + ε

.

The equilibrium dynamics are now

x(t + 1) = − δ

1 + ε
x(t) + (1 + ρδ)a0 + (1 + δ)c1

ρδ + 1 + ε
.

This oscillates around the long term, asymptotic equilibrium

x̄ = (1 + ε)

(1 + ε + δ)(1 + ε + ρδ)
[(1 + ρδ)a0 + (1 + δ)c1].

And finally, the monopoly profit is given by:

� = 1

1 − ρ

4a0[α(1 + δ)c1 + β] + (a1 − β)2

4b(1 − α)
.

Numerical values are given in Table1 in the column n = 1.

5.3 Large Number of Producers

We may investigate what these formulas say as n goes to infinity. To make things simple, we
concentrate on the symmetric case where ci = c for all i , hence A = n(a0 − (1 + δ)c), and
also bi = b. We have already noticed that nα → 0, therefore 
 ∼ n. It follows that

H ∼ A = n(a0 − (1 + δ)c), hence nβ → 0.

Therefore, R ∼ δx + a and, given that the price x remains bounded, as in the standard
Cournot case, all productions go to zero. It is also a simple matter to check that nγ → 0.
Hence the producers’ profits vanish as well as the cumulative profit of all of them. And finally,
the behavior of the asymptotic price is also as in the repeated Cournot case:

P̄ = x̄ ∼ a0 + n(1 + δ)c

(1 + δ)n
→ c.

6 Conclusion

Our paper presents a simple case of sticky price in a dynamic discrete-timeCournot oligopoly.
In this framework, we find the well-known result in the literature that the long-run price
is lower than the Cournot repeated game price. On the other hand, in comparison with
the continuous case, we establish two new results: (1) with zero stickiness, the long-run
price coincides with the Cournot repeated game price, and (2) when there is stickiness, the
equilibrium solution has an oscillating character. We also show that with a variation in the
number of producers (n) or in the share of production sold at the previous price (θ ) over time,
the optimal solution starts to oscillate again.

It seems clear to us that the discounting of future profits plays an important role in this
oscillating character of price trajectories, favoring an increase in profit at time t at the cost
of a decrease at time t + 1. Numerical simulations confirm that the discount rate also plays a
role in the gap between the asymptotic price and the Cournot price, a gap that increases with
discounting, i.e. as ρ decreases. However, we consider it an open problem that this monotonic
growth is no longer true when ρ is very close to 1 and θ close to 1/2.
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A Investigation of 2n˛

We prove the following theorem:

Theorem 1 For a fixed positive ρδ2 smaller than one, there exists a unique solution α less
than 1/2n of Eq. (8), and 2nα goes to zero as n goes to infinity.

For the sake of clarity, let ω := 2nα, and we call ω� the solution sought. Equation (8) may
be re-written as

1

ρδ2
ω� = n

(n − 2)ω� + 2

(n + 1 − ω�)2
= gn(ω�).

Expectedly, we have gn(1) = 1 and g′
n(1) = 1. We also have gn(0) = 2n/(n + 1)2.

Furthermore, as a simple calculation shows, for all n and all ω ≤ 1, g′′
n (ω) > 0. As a

consequence, gn(·) is a convex function. Hence,

∀ω ∈ [0, 1], gn(ω) ≤ gn(0) + ω(gn(1) − gn(0)).

Thus, gn(·) being strictly convex,

∀ω ∈ (0, 1), gn(ω) < gn(0) + ω(1 − gn(0)) = Gn(ω).

Let

ω1 = ρδ2gn(0)

1 − ρδ2 + gn(0)
.

so that Gn(ω1) = ω1/ρδ2. Now, observe that ω1 < 1 so that

gn(ω1) < Gn(ω1) = ω1

ρδ2
.

The continuous function gn(ω) − ω/ρδ2 is positive for ω = 0 and negative for ω = ω1. It
follows from the intermediate value theorem that it vanishes at some ω = ω� between 0 and
ω1 (and only once because it is convex). We have therefore established that 0 < ω� < ω1,
which goes to zero with gn(0) as n goes to infinity.

The intuition for this proof is pictured in the following graphic, which is an enlargment,
with a magnification factor 2n, of the lower part of Fig. 1.

B Linear Plus Quadratic Production Costs

The question arises4 as to whether the somewhat nonintuitive results remain true if the
production costs include a quadratic term. We would then have

�i =
∞∑

t=1

ρt−1

[
θ P(t − 1) + (1 − θ)

(
a0 −

n∑

k=1

bkqk(t)

)
− ci − di

2
qi (t)

]
qi (t).

A general case with arbitrary coefficients di is much more complex to solve than our calcu-
lations above. But things simplify in the (unrealistic) case where the di/bi are the same for
all producers. This is the case if all producers are identitical.

4 It was asked by an anonymous reviewer.
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Fig. 3 Investigation of the behavior of nα as n → ∞

Let then di/bi = f . Essentially the same calculations as above hold provided that we let


 = 1 + f + n − 2nα, ηi = ai − βi

1 + f
, H =

∑

k

ηk .

We still get formula (7) for r�
i , with

R = n(δx − 2αa0) + (1 + f )H




The price dynamics are now

x(t + 1) = −nδ



x(t) + (n + 1 + f )a0 − H



.

Finally, we can see that α is solution of equation

1

ρδ2
α = fn(α)

with now

fn(α) = n2α − 2nα + 1 + f

(n + 1 + f − 2nα)2
.

It still holds that

f ′
n(α) = n

2n(n − 2)α + n2 − n + 2 + f

(n + 1 + f − 2nα)2
> 0,
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and

fn(0) > 0, fn

(
1

2n

)
= 1

2(n + f )
<

1

2n
.

Therefore, the same analysis as before yields α < 1/(2n), thus 
 > n + f . Hence we see
that the price trajectory generated by the equilibrium strategies oscillates around the limit
price

P̄ = x̄ = (n + 1 + f )a0 − H


 + nδ
.

The detailed calculations to get H are somewhat more complicated.
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