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Abstract

This note is a belated critical analysis of [Tsutsui and Mino, 1990], referred to
in the sequel as T&M. We note that while “for each price between a competitive
stationary price and a near collusive stationary price, there exists some stationary
Markov feedback equilibrium which supports it as its stationary price” (T&M, p.
138), this is not true for the infinite horizon linear quadratic differential game, but
only for a family of related, free end-time games which are not state constrained
versions of the infinite horizon game, and whose economic meaning is unclear.
(And not true for any single one of them.) The confusion maintained by the article
has spread in the economic literature.

1 Introduction
The article [Tsutsui and Mino, 1990], hereafter referred to as T&M, has been largely
quoted (e.g [Dockner and Long, 1993, Kossioris et al., 2007, Lambertini, 2018]), most
often ignoring the sufficiency part of the original article. This is a serious lapse on two
counts.

On the one hand, these articles often proceed, as does T&M, by differentiating
the main equation (often Isaacs “main equation”), thus obtaining a derived equation
that they integrate producing a spurious integration constant. Typically, assume that
the main equation is A(x) = 0, differentiating yields a derived equation equivalent to
dA/dx = 0, a necessary condition for the main equation to be satisfied. Integrating
back gives an equivalent of A(x) = C, C an integration constant. This constant is then
treated as being arbitrary, thus yielding an infinite number of solutions. Yet, clearly, C
is arbitrary as far as solving the derived equation is concerned. But with respect to the
main equation, it is unknown, not arbirary.

On the other hand, T&M avoids that criticism by actually providing sufficient con-
ditions associated with a range of values of the integration constant. And it is in the
derivation of these sufficient conditions that the exact nature of the problem actually
solved reveals itself most clearly. A problem rigorously stated at the begining of the
article, but obscured by the ensuing commentaries that wrongly identify it with a state
constrained version of the original infinite horizon problem.

Our objective is, while providing a somewhat simplified derivation of the results
of T&M, to emphasize their difference (and links) with the classical infinite horizon
linear quadratic (LQ) theory.

1Macbes team, INRIA Center of Université Côte d’Azur, France
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2 The setup

2.1 Dynamics and profits
The article discusses the following nonzero-sum two-player differential game, where p
is a price, s the inverse of a time constant, u1 and u2 in quantity by unit of time, produc-
tion rates chosen by two duopolists, r a discount rate. We introduce self explanatory
constant positive parameters a, b, c, and d.2

The dynamics of the price are sticky:

ṗ = s(a− bu1 − bu2 − p) , (1)

and player i’s profit is first stated as (equation (2.4) in T&M):

J i =

∫ ∞
0

e−rt
(
pui − cui −

d

2
u2i

)
dt . (2)

But we will see that this is not the pay-off of the game for which nonlinear equilibrium
strategies are derived. Hence some confusion in the ensuing literature.

T&M looks for a Nash equilibrium in state feedback strategies ui = ui(p), requir-
ing that they be Lipshitz continuous, and defines a Stationary Markov Strategy Space
over a domain L of the state space. We must define more precisely the meaning of this
phrase.

2.2 The games considered
T&M introduces a “domain L of the state space”. To be more precise, we will ask that
L be a compact interval of the real line, L̊ its interior, ∂L its boundary. To each domain
L, it associates a differential game defined as follows:

For any p(0) = p0 ∈ L̊ and any pair of admissible controls (u1(·), u2(·)), let

TL(p0, u1, u2) = sup
t≥0
{t | ∀τ < t , p(τ) ∈ L̊}. (3)

Thus, TL(p0, u1, u2) is the first instant when p(t) reaches ∂L under the action of
(u1, u2), +∞ if it never does3.

The game considered has its pay-off defined as

J iL(p0, u1, u2) =

∫ TL(p0,u1,u2)

0

e−rt
(
p(t)ui(t)− cui(t)−

d

2
u2i (t)

)
dt . (4)

This is a very different game from the one resulting from the definition (2). The fact
that it admits, inter alia, linear state-feedback equilibrium strategies is not obvious.

2T&M set b = d = 1, which we have rather avoid, because these parameters are not dimensionless.
3T&M does not define T very precisely. We interpreted as (3) the sentence “p(t) reaches a boundary of

L at a finite time”, and then the phrasee “a terminal time T of p(t).” An alternate definition would be to
replace L̊ by L in (3), but this requires that the strategies ui(p) be defined in an open neighborhood of L.
And it is less consistent with the statement in T&M.
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2.3 Remarks
Several remarks are in order.

Main remarks

1. While the game (1)(4) is mathematically well defined, it is not the infinite hori-
zon game (1)(2) advertised, nor a state constrained version of it. It is fundamen-
tally a (related) “free end-time” problem. Superficially, it resembles the original
problem, and the confusion with it is nurtured by the article. But, to be clear: the
nonlinear strategies exhibited are not a Nash equilibrium of any infinite horizon
game problem.

2. The economical, meaning of the related free end-time games solved is unclear.
What is the meaning of the assertion that “the game stops” at TL ? In that for-
mulation, no one of the duopolists is held responsible for the violation of the
constraint. The discussion in T&M refers to a possible legal constraint limiting
the admissible price, but fails to explain what happens when that price is reached,
as a legal constraint ought to do. “The game stops. . . ”.

Technical remarks

1. The requirement that the strategies be Lipshitz continuous in the state is there
to ensure existence (and uniqueness, not stated by T&M, but for existence, sim-
ple continuity suffices) of a solution to the state dynamics. However, as is well
known, this defines a set of admissible strategies which is not closed for any
reasonable form of concatenation operation, thus preventing the derivation of
Isaacs’ Tenet of Transition and therefore preventing even sub-game perfectness.
Isaacs’ pioneering book [Isaacs, 1965] has been criticized for its lack of rigor
in that respect. (Yet, it is genial.) Many authors have proposed ways to over-
come that difficulty, including [Fleming, 1961, Roxin, 1969, Friedman, 1971,
Elliot and Kalton, 1972, Krasovskii and Subbotin, 1977], or our less explicit but
simpler setup [Bernhard, 1992], while [Blaquière et al., 1969] used less regular
state feedback strategies and the concept of “playability”.

2. This requirement rules out bang-bang control, or, for that matter, allmost all
known examples of nonlinear differential game solutions.

3. The real, even stronger, requirement used by T&M, quoted in passing but not in
the formal setup, is that the Value function be twice continuously differentiable.
The classical quadratic Value function of the LQ differential game is one of the
scarce (the only ?) instances that we know of such a regularity. A rich literature is
devoted to avoiding even the requirement that the Value function be differentiable
via the notion of viscosity solution, invented by [Fleming, 1964], made into a
powerful theory by [Crandal and Lions, 1983] and applied to differential games
by [Lions and Souganidis, 1985].
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4. T&M essentially avoids the technical difficulties raised above by providing a
sufficient condition, that does satisfy these regularity assumptions for the Value
function and the strategies. One should just check carefully that the equilibrium
strategies exhibited are indeed optimal against more general, namely measurable
(or piecewise continuous) open-loop controls. T&M fails to check that, but it is
true for its construction.

3 The analysis

3.1 Isaacs’ equation
Very quickly, T&M specialises its search for a solution of Isaacs’ equation to the sym-
metric case where both players get the same Value, using the same equilibrium strate-
gies. We restrict our attention to this case. Moreover, the problem is clearly stationary,
therefore we may look for V as a function of p alone (as opposed to a function of t
and p). And we choose here (contrary to T&M) to ignore during the derivation the
constraints ui ≥ 0 and p ≥ 0 which we will consider later on.

Let V (p) be Isaacs’ Value function of the game, and, following T&M, use the
shorthand notation

∂V

∂p
= y ,

∂2V

∂p2
= y′ ,

both functions of p.
Isaacs’ “Main Equation” associated with this problem is

rV = max
u

{(
p− c− d

2
u

)
u+ ys(a− bu− bv − p)

}
.

At this stage, we miss a boundary condition, both on ∂L, and at T = ∞. We refrain
from giving one, as we will see that T&M uses a non-classical one.

The maximum in Isaacs’ equation is reached for

u = u? :=
1

d
(p− c− sby) , (5)

and yields

rdV =
3

2
s2b2y2 + [ad+ 2bc− (2b+ d)p]sy +

1

2
(p− c)2 . (6)

We remind the reader that Isaacs’equation (6) is classically used as a sufficient condi-
tion via Isaacs’ Verification Theorem.

3.2 Necessary condition
From here, we give a slightly more direct form of the theory developped in T&M, and
avoiding to divide by possibly null factors.
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We first find a necessary condition for a twice differentiable function to be a solu-
tion of (6), differentiating both sides with respect to p. Reordering we get

[3sb2y + ad+ 2bc− (2b+ d)p]sy′ − [dr + (2b+ d)s]y + p− c = 0 . (7)

We choose to write this in an homogeneous way as

[3sb2(y − β)− (2b+ d)(p− α)]sy′ − [dr + (2b+ d)s](y − β) + (p− α) = 0 . (8)

which imposes

α =
ad[(dr + (d+ 2b)s] + cb(2dr + (2d+ b)s)

(2b+ d)dr + (b2 + 4bd+ d2)s
,

β =
(a− c)d

(2b+ d)dr + (b2 + 4bd+ d2)s
.

We rewrite once more (8) as

[(y − β)− 2b+ d

3b2s
(p− α)]y′ − dr + (2b+ d)s

3b2s2
(y − β) +

1

3b2s2
(p− α) = 0 . (9)

This allows one to look for a solution of the form4

1. either y − β = K(p− α)

2. or [y − β −K1(p− α)]γ [y − β −K2(p− α)]1−γ = C 6= 0, (10)
with C an integration constant.

We check each of these possibilities.

Case 1 That case corresponds to y = ∂V/∂p affine in p, thus the classical quadratic
Value function. Therefore, placing this into (9), we necessarily get the classical Alge-
braic Riccati equation (ARE) associated to the quadratic solution5. Indeed, identifying
to zero for every p, we obtain:

K2 − 2(2b+ d)s+ dr

3b2s2
K +

1

3b2s2
= 0 , (11)

which has two positive roots. It is well known, and easy to check directly, that the
controls given by placing the smallest of these solutions into equation (5) stabilizes the
dynamics, while the other solution does not.

4T&M uses the variableZ = (y−β)/(p−α), which we have rather avoid to dispense with a discussion,
absent in T&M, of p in a neighborhood of α, and calls za and zb our K1 and K2.

5T&M does not mention the fact that its equation F (z) = 0, our equation (11), is the classical ARE.
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Case 2 Start from equation (10), differentiate with respect to p, multiply by the prod-
uct

[y − β −K1(p− α)][y − β −K2(p− α)]

recognize C, which is assumed non zero, and divide by C to obtain

γ(y′ −K1)[y − β −K2(p− α)] + (1− γ)(y′ −K2)[y − β −K1(p− α)] = 0 .

Reorganize as

y′[y−β−(γK2+(1−γ)K1)(p−α)]−[γK1+(1−γ)K2](y−β)+K1K2(p−α) = 0 .

Identifying with equation (9) yields

(1− γ)K1 + γK2 =
(2b+ d)s

3b2s2
,

γK1 + (1− γ)K2 =
(2b+ d)s+ dr

3b2s2
,

K1K2 =
1

3b2s2
.

Summing the first two equations yields

K1 +K2 =
2(2b+ d)s+ dr

3b2s2
,

so that we see thatK1 andK2 are necessarily the two roots of the ARE (11). We choose
K1 < K2. The power γ is then uniquely defined using either of the first two equations
above, with the help of the notation R = (b2 + 4bd+ d2)s2 + (2b+ d)dsr+ (d2/4)r2

as

γ =
1

2
+

(2b+ d)s

2
√
R

, 1− γ =
1

2
− (2b+ d)s

2
√
R

.

The affine case y = K(p − α) + β has a well known status as a solution of the
infinite horizon problem with no stopping condition at TL(p0, u1, u2) as we have here.
Its relevance to the present problem must still be verified. The other, non-linear, case
yields a family of curves, depending on C, which satisfy a necessary condition to be
solutions of the Hamilton Jacobi Isaacs (HJI) equation, itself written so far for the
infinite time problem, or rather for no precise problem yet since we have not stated a
boundary condition, neither on the boundary of L nor at infinity.

Before we investigate this question, we need to draw a graph of these curves in the
(p, y) plane classically used in the calculus of variations. This is our figure 1, that we
attempted to draw slightly more precisely than in T&M.

The two bold straight lines through the point (α, β), labeled K1 and K2 are the
affine solutions, their slopes are K1 and K2. The line labeled SSL, for Steady State
Line, called “blue line” hereafter, represents the line

2b2sy = (2b+ d)p− (ad+ 2bc) ,

it separates the region ṗ > 0 to its left from the region ṗ < 0 to its right under the action
of both ui = u?, and is therefore the locus of possible dynamic equilibria with both
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ṗ < 0

α

β

C < 0

r
C > 0

c

pH

r

c
pL

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
""










cr
C ∈ C

C ∈ C

c

c

Figure 1: Sketch of the curves solution of equation (7)

controls at u?. We may notice that the slope of this line lies between the slopes K1 and
K2 of the two boldface lines. A simple way to see that is to plug K = (2b + d)/2b2s
into the ARE (11) and see that the result is negative, namely

K2 − 2(2b+ d)s+ dr

3b2s2
K +

1

3b2s2
=
−1

3b4s2

[
bd+

1

4
d2 +

1

2
(2b+ d)d

r

s

]
.

The hyperbolic-like curves are various curves of the type of case 2 above, with various
values of C. (Notice that in the “south-west” and “north-east” regions defined by the
affine solutions, one of the factors is negative. Its non-integer power γ or (1 − γ) is
therefore a complex number.) The light line through the point (α, β), called “green
line” hereafter, is the line

3b2sy + ad+ 2bc− (2b+ d)p = 0
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which joins the points where the curves have vertical tangents. Finally, the line labeled
u? = 0 limits the region u? ≥ 0 in case we want to take that constraint into account.

3.3 Sufficient conditions
3.3.1 A particular form of the verification theorem

On each side of its intersection with the green line, each hyperbolic-like curve defines a
function y = h(p) in some domain of the state space. To any of these, T&M associates
the function

W (p) =
1

rd

{
3

2
b2s2h2(p) + [ad+ 2bc− (2b+ d)p]sh(p) +

1

2
(p− c)2

}
, (12)

copied after equation (6). Differentiate with respect to p and use (7) to recognize
that ∂W/∂p = y, and thus, replacing in the above definition, we see that W satisfies
equation (6). And we have one such solution of (6) per segment of curve where a
function h is defined.

Select one curve, generating a function y = h(p) in a certain domain of the state
space. Consider the dynamics generated by u1 = u2 = (p−c−bsh(p)/d from some p0
in that domain. The point (p, h(p)) of the (p, y) plane moves along the curve selected,
the sign of ṗ being given by the location of this point w.r.t. the blue line. We have
marked with a solid dot the stable dynamic equilibria of such trajectories.

We are only interested in those dynamic evolutions that converge to a stationary
point. We find them either in the “south-west” region, with a domain bounded above
by the intersection with the green line, and in the “north-west” region, with the domain
bounded above by the second intersection of the curve h(p) with the blue line. (Which
has a slope smaller than K2.) All these domains are bounded below if we want to take
the constraint u? ≥ 0 into account, or by p ≥ 0.

Assertion The domain L of the game considered will always be contained into the
domain of the function h(·) used to define W .

Here comes the sufficient condition tailored to the particular game problem (1)(4)
considered by T&M.

Theorem 1 If there exists a continuously differentiable function W from a bounded
interval L ⊂ R into R such that

1. it satisfies the equation (6) in L,

2. the trajectory generated by u1(p) = u2(p) = (p− c− bs ∂W/∂p)/d, from any
p(0) ∈ L converges to a stationary point p∞ ∈ L,

3. ∀p ∈ ∂L, W (p) ≥ 0,

then the srategies ui quoted above form a Nash equilibrium of the differential game
problem with dynamics (1), domain L and pay-off (4), the function W is the Isaacs
Value function of the game.
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Proof We need to prove that, if u2(t) = u?(p(t)), then the strategy u1(t) = u?(p(t))
maximizes player one’s pay-off among all measurable time functions u1(·). Under
these controls, Isaacs equation may be written as a Lagrangian derivative:

d [e−rtW (p(t))]

dt
+ e−rt

[
a− c− d

2
u1(t)

]
u1(t) ≤ 0 ,

equality being reached for u1 = u?. Integrating from 0 to T , we get

e−rTW (p(T ))−W (p0) +

∫ T

0

e−rt
[
a− c− d

2
u1(t)

]
u1(t) dt ≤ 0

equality being obtained for u1 = u?.
If u1(t) = u?(p(t)), then the inequality above is an equality by hypothesis 1, by

hypothesis 2, p(t) → p∞ ∈ L, therefore, on the one hand, T = ∞, and on the other
handW (p(t)) remains bounded as t→∞, and we get that the infinite horizon integral,
then player one’s pay-off J1(u?, u?), is equal to W (p0).

If u1(t) is any control, then the inequality above stands. If for these controls, p
remains in L for all t > 0, L being by hypothesis bounded, W (p(t)) remains bounded,
and we conclude that the infinite horizon integral is less or equal to W (p0), its value
with u1 = u?. On the other hand, if p reaches ∂L at a time T , we have, taking
hypothesis 3 into account:

J1(u1, u
?) =

∫ T

0

e−rt
[
a− c− d

2
u1(t)

]
u1(t) dt ≤W (p0)− e−rTW (p(T ))

≤W (p0) = J1(u?, u?) .

QED.
It is worthwhile to mention that it is because we have this stopping rule p(T ) ∈

∂L that the boundary condition on W is so weak, allowing for an infinite number of
functions W .

3.3.2 Domains L

There remains to define the corresponding allowable domain L for each choice of func-
tion h, each defining a different differential game problem. This domain L must be

1. contained in the domain of the corresponding function h,

2. contained in the attraction basin of a stable dynamic equilibrium for the equilib-
rium dynamics

3. contained in the domain p ≥ 0 and, if we want to take that constraint into ac-
count, u?(p) ≥ 0.

Consider figure 1. Under the equilibrium dynamics, states (p, h(p)) to the left of
the steady-state (blue) line move “to the right” (i.e. ṗ > 0), and states (p, h(p)) to
the right of the same line move “to the left”, i.e. ṗ < 0. This allows us to easily spot
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possible stable stationary points, marked with solid dots on our figure. The (red) square
dot labeled A corresponds to the classical linear (or rather affine) state feedback of the
infinite horizon unconstrained game. Clearly, the set of solid dots fills the open interval
pL < p < pH as indicated on the graphic. It is a simple matter to check that the lower
bound where the steady-state blue line and the green line both intersect the p axis is

pL =
ad+ 2bc

2b+ d
,

the “purely competitive price” where price equals marginal production cost. (T&M
quotes [Fershtman and Kamien, 1987]). It is a somewhat heavier, but still straightfor-
ward calculation to see that the upper bound, where a hyperbolic-like curve is tangent
to the steady-state blue line, is

pH =
a[(2b+ d)s+ 2dr] + 2cb(s+ 2r)

(4b+ d)s+ (4b+ 2d)r
.

The corresponding attraction basins are all limted below by the positivity constraint.
The upper bound is obtained

• for the points on a y = h(p) curve of the “north-west” region, by the limit
of the attraction basin, i.e. the second intersection of that curve with the blue
line (above it, the representative point moves to the left and up, away from the
intersection)

• for the points in the “south-west” region, by the intersection of the curve with
the green line marking the upper bound of the domain of the function h.

There remains to check the boundary condition, i.e. the positivity of W on ∂L. As
a matter of fact, T&M proves that W defined as (12) is positive in the whole domains
as characterized above. This proof is lengthy, and not very enlightning. Instead of
summarizing it, we note the following fact:

The state-affine strategy corresponding to the relation y = K1(p − α) + β and
the steady state labeled A in the graphic, of abscissa pA, is known to be the Nash
equlibrium strategy of the infinite horizon unconstrained game. Hence, for player 1,
say, u? is optimal against the same strategy of player 2. However, player 1 may always
play u1 = 0 and so doing get a zero pay-off. And it can be checked that the unique
optimal strategy does not lead to u1 = 0. Thus the optimum pay-off J1 = W (pA)
is strictly positive. By continuity, there exists a nighborhood of the point A where
W (p) > 0. Therefore, by choosing a small enough neighborhood of pA as domain
L, we define a game, different from the classical infinite horizon LQ game, which
admits an infinite number of non-linear state feedback Nash equilibrium strategies.
Admittedly an unforeseen conclusion.

Finally, notice that to obtain equilibrium strategies with a stationary price that ap-
proaches pL, we need to take domains L with upper bounds that approach pL, but
taking that upper bound as being pL is not admissible, because that point is not stable
for the equilibrium strategies generated. A similar remark holds for the upper station-
ary price. Hence no single game admits the whole open interval (pL, pH) as possible
stationary equilibrium prices.
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4 Conclusion
Some confusion has arisen in the literature as the nature of the results of the article
T&M. It has been understood as proving that the infinite horizon linear quadratic dif-
ferential game defined by (1)(2) admits an infinite number of nonlinear, state feedback
Nash equilibrium strategies, this variety being a consequence of the choice of admissi-
ble strategies, and/or of a constraint on the maximum admissible state (price). Particu-
larily harmful in that respect is the last sentence of its section 3 : “Before we conclude
this section, it is useful to stress that the equilibrium concept discussed above involves
nothing new, but rather it attempts to clarify the meaning of stationary Markov feed-
back equilibrium when the domain of the state space is explicitely taken into account”.
As far as we know, the particular game (1)(4) is “something new” and has never been
investigated in the previous literature.

In this note, we emphasize the fact that it is not just a choice of admissible strategies
or of a constraint on the admissible states (as claimed by the article), but a choice
of game that underlies this state of affairs. As far as we know, the classical infinite
horizon, linear quadratic differential game admits a unique pair of pure state feedback
Nash equilibrium stategies. And these strategies are affine in the state. (This might be
the claim of Corollary 2 of Theorem 3 in T&M, although its statement is ambiguous.
Noticeably, uniqueness is not stated.) The nonlinear strategies of T&M yield a Nash
equilibrium of the free end time game game (1)(4) which is not a state constrained
version of an infinite horizon game.

It has long been known (see [Başar and Olsder, 1982]) that there is, for the infinite
horizon game, an infinite number of closed-loop Nash equilibrium strategies if different
memory-strategies are allowed, an informational non-uniqueness. But this is not what
is at play in T&M which concentrates on pure state feedback or “Markov” strategies.

Many authors using the method of T&M seem unaware of the fact that the nonlinear
strategies that they advocate are not Nash equilibrium strategies of the infinite horizon
game that they mean to investigate, not even with an exogeneously imposed bound on
the state, but of another related free end-time game, which may depend on the particular
nonlinear strategy chosen.

It is difficult to give a reasonable economic interpretation to these related games.
T&M quotes the case where the government imposes a ceiling on allowable prices.
But the model deals with that constraint in an unsatisfactory way: upon reaching it the
game “stops”. But presumably, life does not. Nothing is said of what happens after.
In our opinion, in case a government imposed ceiling pmax applies, a more realistic
model would be to say that the game keeps running for an infinite time, with the price
frozen at pmax as long as its free dynamics (1) would make ṗ ≥ 0. This would indeed
be the infinite horizon game with a state constraint, p obeying the variational inequality
commonly used to modelize an “obstacle”:

max{p− pmax , ṗ− s[a− b(u1 + u2)− p]} = 0 .

Yet, the article offers a new approach to the analysis of the Hamilton Jacobi Isaacs
equation, and does exhibit games with linear dynamics and quadratic running costs (but
not the classical pay-off (2)) that admit an infinite number of nonlinear state feedback
Nash equilibrium strategies. A surprising fact.
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As a “mathematical” explanation for this indeterminacy, T&M cites an “incomplete
transversality condition”, but what it calls “transversality condition” is just the con-
straint that everything becomes constant at the equilibrium point. What plays the role
of transversality conditions of these particular games are that, on the one hand,W (p(t))
remains bounded when t→∞, (guaranteed by the fact that p(t) ∈ L and h(p) remain
bounded) and on the other hand, condition 3 of theorem 1: ∀p ∈ ∂L ,W (p) ≥ 0.
Admittedly rather loose constraints.

T&M also proposes an economic interpretation of what it terms a non uniqueness
of the Markov Nash equilibrium strategies of its game. It first (rightly) discounts an in-
formational non uniqueness, quoting [Başar and Olsder, 1982], and in a footnote writes
“The non uniqueness in this paper is based solely on the game’s infinite time horizon”.
It continues with a discussion by comparison with (infinitely) repeated games and the
Folk theorem. To warrant that comparison, it states “[. . . ] after all, our dynamic game
has an infinite time horizon”. Therefore, this analysis is entirely based upon the false
pretense that the game solved is an infinite horizon game, in spite of the precise defini-
tion (4). Thus strengthening the ambiguity.

As a last question, one wonders what the method of T&M does if applied to a (one
agent) optimal control problem. Indeed, particularizing T&M’s set-up to a simple prob-
lem with only one decision maker yields a perfectly well defined optimization problem.
Yet a maximization problem with “several supremums” would be paradoxical.

The answer to that puzzle is that with a single decision maker, the “blue”, steady
state, line coincides with the “green” line joining the points with “vertical” tangents to
the hyperbolic-like curves. Therefore no intersection exists between this blue line and
a valid y = h(p) graph, except for the affine one.
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