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Abstract

We describe several problems of “robust control” that have a solution
using game theoretical tools. This is by no means a general overview of
robust control theory beyond that specific purpose, nor a general account of
system theory with set-description of uncertaineties.

Keywords Robust control, H∞-optimal control, nonlinear H∞ control, robust
control appraoach to option pricing.

1 Introduction

Control theory is concerned with the design of control mechanisms for dynamic
systems that compensate for (a priori) unknown disturbances acting on the sys-
tem to be controlled. While early servomechanism techniques did not make use of
much modeling, neither of the plant to be controlled nor of the disturbances, the
advent of multi-input multi-output systems and the drive to more stringent speci-
fications led researchers to use mathematical models of both. In that process, and
most prominently with the famous LQG design technique, disturbances were de-
scribed as unknown inputs to a known plant, and usually high frequency inputs.

“Robust control” refers to control mechanisms of dynamic systems that are
designed to counter unknowns in the system equations describing the plant rather
than in the inputs. This is also a very old topic. It might be said that a PID controller
is a “robust” controller, since it makes little assumption on the controlled plant.
Such techniques as gain margin and phase margin guarantees and loop shaping
also belong in that class. However, the gap between “classic” and “robust” control
designs became larger with the advent of “modern” control designs.
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As soon as the mid seventies, some control design techniques appeared, often
based upon some sort of Lyapunov function, to address that concern. A most strik-
ing feature is that they made use of bounded uncertainties rather than the prevailing
Gaussian-Markovian model. One may cite [24], [23], [14]. This was also true with
the introduction of the so-called H∞ control design technique in 1981 [34], and
will become such a systematic feature that “robust control” became in many cases
synonymous to control against bounded uncertainties, usually with no probabilistic
structure on the set of possible disturbances.

We stress that this is not the topic of this chapter. It is not an account of system
theory for systems with set description of the uncertainties. Such comprehensive
theories have been developed using set-valued analysis and/or elliptic approxima-
tions. See e.g. [2] and [26]. We restrict our scope to control problems, thus
ignoring pure state estimation such as developed in the above references, or in [7,
chap. 7] or [28] for instance, and to game theoretic methods in control design, thus
ignoring other approaches of robust control such as the gap metric [33, 21, 27],
an input-output approach in the spirit of the original H∞ approach of [34], using
transfer functions and algebraic methods in the ring of rational matrices, or Linear
Matrix Inequality (LMI) approaches [25], and many other approaches found, e.g.,
in the same Encyclopaedia of Systems and Control [29].

We will first investigate in section 2 the issue of modeling of the disturbances,
show how non-probabilistic set descriptions naturally arise, and describe some spe-
cific tools we will use to deal with them. Subsection 2.1 is an elementary introduc-
tion to these questions, while subsection 2.2 is more technical, introducing typical
control theoretic issues and examples in the discussion. From there on, a good con-
trol of linear systems theory, optimal control —specifically the Hamilton-Jacobi-
Caratheodory-Isaacs-Bellman (HJCIB) theory— and dynamic games theory is re-
quired. Then, in section 3, we will give a rather complete account of the linear
H∞-optimal control design for both continuous time and discrete time systems.
Most of the material of these two sections can be found in more detail in [7]. In
section 4, we will cover in less detail the so called “nonlinearH∞” control design,
mainly addressing engineering problems, and a nonlinear example in the very dif-
ferent domain of mathematical finance.
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2 Min-max problems in robust control

2.1 Decision theoretic formulation

2.1.1 Worst case design

We start this section with a very general set-up in terms of decision theory. Let U
be a decision space, and W a disturbance space. We may think of W as being a
bounded set in some ad hoc norm, but this is not necessary at this level of generality.
Let J : U ×W → R be a performance index, depending on the decision u ∈ U
and on an unknown disturbance w ∈W . The decision maker, choosing u, wants to
make J as small as possible in spite of the a priori unknown disturbance w ∈ W .
(One may think of J as a measure, such as the L2 norm of an error signal.)

The so called worst case design method is as follows. Let us first emphasize
that there is no “malicious adversary” manipulating the disturbance in the follow-
ing description, contrary to many accounts of this method.

The basic concept is that of guaranteed performance of a given decision u ∈ U :
any number g such that

∀w ∈W , J(u,w) ≤ g.

Clearly, the best (smallest) guaranteed performance for a given decision u is

G(u) = sup
w∈W

J(u,w) .

Hence the phrase ”worst case”, which has to do with a guarantee, not any malicious
adversary.

Now, the problem of finding the best possible decision in this context is to find
the smallest guaranteed performance, or

inf
u∈U

G(u) = inf
u∈U

sup
w∈W

J(u,w) . (1)

If the infimum in u is reached, then the minimizing decision u? deserves the name
of optimal decision in that context.

2.1.2 Robust disturbance rejection or gain control

The following approach is mostly justified in the following linear set-up, but can be
extended to a nonlinear one (see [31]). We let U and W be normed vector spaces,
Z be an auxiliary normed vector space, z ∈ Z the output whose norm is to be kept
small in spite of the disturbances w. We assume that for each decision u ∈ U ,
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z depends linearly on w. Therefore, one has a (possibly nonlinear) application
P : U → L(W → Z) and

z = P (u)w .

Clearly, z cannot be kept bounded if w is not. A natural formalization of the
problem of keeping it small is to try and make the operator norm of P (u) as small
as possible. This may be expressed as follows: let B(W ) be the unit ball of W ,
one seeks

inf
u∈U

sup
w∈B(W )

‖P (u)w‖ . (2)

But we will often prefer another formulation, again in terms of guaranteed per-
formance, and which can easily be extended to nonlinear systems. Start from the
problem of ensuring that ‖P (u)‖ ≤ γ for a given positive attenuation level γ. This
is equivalent to

∀w ∈W , ‖z‖ ≤ γ‖w‖ ,

or equivalently (but leading to a smoother problem)

∀w ∈W , ‖z‖2 ≤ γ2‖w‖2 , (3)

or equivalently again

sup
w∈W

[‖P (u)w‖2 − γ2‖w‖2] ≤ 0 .

Now, given a number γ, this has a solution (there exists a decision u ∈ U satisfying
that inequality) if the infimum hereafter is reached or is negative, and only if

inf
u∈U

sup
w∈W

[‖P (u)w‖2 − γ2‖w‖2] ≤ 0 . (4)

This is the method of H∞-optimal control. Notice, however, that equation (3) has
a meaning even for a nonlinear operator P (u), so that the problem (4) is used in
the so-called “nonlinearH∞” control.

We will see a particular use of the control of the operator norm in feedback
control when using the “small gain theorem”. Although this could be set in the
abstract context of nonlinear decision theory (see [32]), we will rather show it in
the more explicit context of control theory.

Remark 2.1 The three problems outlined above as equations (1), (2), and (4) are
all of the form infu supw, and therefore, in a dynamic context, are amenable to
dynamic game machinery. They involve no probabilistic description of the distur-
bances.
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2.1.3 Set description vs probabilistic

Two main reasons have driven robust control towards set theoretic, rather than
probabilistic, descriptions of disturbances. On the one hand, the traditional Gauss-
Markov representation is geared towards high frequency disturbances. When the
main disturbance is, say, a misevaluated parameter in a dynamic equation, it is the
exact opposite of high frequency: zero-frequency. And this is typically the type of
unknowns that robust control is meant to deal with.

On the other hand, concerning the coefficients of a differential equation, using
a probabilistic description requires that one deals with differential equations with
random coefficients, a much more difficult theory than that of differential equations
driven by a stochastic process.

Thus, “robust control approaches” to decision problems involve a description
of the unknown disturbances in terms of a set containing all possible disturbances,
often a bounded set, and hence hard bounds on the possible disturbances. As men-
tioned in the introduction, systematic theories have been developed to deal with set
descriptions of uncertainties under the name of Viability theory [2] —particularly
well suited to deal with non-smooth problems in engineering, environment, econ-
omy, finance [12, part V]—, or Trajectory Tubes which, with the use of Hamil-
tonian formalism and elliptic approximations, recover more regularity, and also
leads to a theory of robust control in the presence of corrupted information [26,
chap. 10]. We emphasize here somewhat different, and more classical, methods,
making explicit use of dynamic game theory.

To practitioners accustomed to Gauss-Markov processes (such as a filtered
“white noise”), hard bounds may seem a rather severe limitation, and providing
the mathematical model with too much information. Yet, a probability law is an
extremely rich information itself; in some sense, much richer than a simple set
description. As an example, note that if we model a disturbance function as an
ergodic stochastic process, then we tell the mathematical model that the long time
average of the disturbance is exactly known. In the case of a Brownian motion, we
say that the total quadratic variation of (almost) all realizations is exactly known.
And these are only instances of the rich information we provide, that the mathe-
matical machinery will use, may be far beyond what was meant by the modeler.

2.2 Control formulation

We want to apply the above ideas to control problems, i.e. problems where the
decision to be taken is a control of a dynamic system. This raises the issues of
causality, and open-loop versus closed-loop control. No control theoretician would
want to rely on open-loop control to overcome uncertainties and disturbances in
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a system. But then, the issue of the available information to form one’s control
becomes crucial.

2.2.1 Closed-loop control

Let a dynamic system be represented by a differential equation in Rn (we will
therefore ignore the existing extensions of these results to infinite-dimensional sys-
tems, see [9] for a game theoretic approach):

ẋ = f(t, x, u, w) (5)

and two outputs; y the observed output and z to be controlled:

z(t) = g(t, x, u) , (6)

y(t) = h(t, x, w) , (7)

Here, as in the sequel, we have x ∈ Rn, u ∈ U ⊂ Rm, w ∈ W ⊂ R`, y ∈ Rp,
z ∈ Rq, and u(·) ∈ U , w(·) ∈ W the sets of measurable time functions into U
and W respectively. Likewise, we let y(·) ∈ Y and z(·) ∈ Z . Moreover, we
assume that f enjoys regularity and growth properties that insure existence and
uniqueness of the solution to (5) for any initial condition and any pair of controls
(u(·), w(·)) ∈ U ×W .

Since we are concerned with causality, we introduce the following notation:
For any time function v(·), let vt denote its restriction [v(s)|s ≤ t]. And if V is the
set of functions v(·), let Vt be the set of their restrictions vt:

V = {v(·) : [t0, t1]→ V : s 7→ v(s)} =⇒
∀t ∈ (t0, t1) , Vt = {vt : [t0, t]→ V : s 7→ v(s)} . (8)

The control u(t) will be synthesized as a closed-loop control

u(t) = φ(t, yt) , (9)

typically by a dynamic compensator driven by the observed output y. Therefore,
the operator infu∈U in equations (1), (2), and (4) must be replaced by infφ∈Φ. But
then, we must specify the class Φ of admissible controllers. However, we postpone
that discussion until after we deal with the disturbance w.

The question arises as to whether one should allow closed-loop “disturbance
laws”, some w(t) = ψ(t, ut), or be content with open-loop disturbances w(·) ∈
W . This question is answered by the following lemma, occasionally attributed to
Leonard Berkowitz [10]:
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Figure 1: Disturbance rejection problem

Lemma 2.1 Let a criterion J(u(·), w(·)) = K(x(·), u(·), w(·)) be given. Let a
control function φ be given, and Ψ be a class of closed-loop disturbance strategies
compatible with φ (i.e. such that the differential equations of the dynamic system
have a solution when u is generated by φ and w by any ψ ∈ Ψ). Then, (with a
transparent abuse of notation)

sup
w(·)∈W

J(φ,w(·)) ≥ sup
ψ∈Ψ

J(φ, ψ) .

Therefore, it is never necessary to consider closed-loop disturbance laws. This
greatly simplifies the discussion of the class Φ of admissible controllers. It only
has to be such that solutions to the differential equations exist against all open-loop
measurable disturbances. This is an important difference with “true” (dynamic)
game theory, arising from the fact that we are not concerned with the existence of
a Value, but only with inf sup operators.

The control form of the disturbance rejection problem of paragraph 2.1.2 may
therefore be stated, for the system G given by (5), (6), (7) and (9) over a time span
T , as follows: let Φ be the class of all causal controllers ensuring the existence in
L2(T ) and uniqueness of the solution of the system equations.

Standard problem of H∞-optimal control with attenuation level γ: Does the
following inequality hold:

inf
φ∈Φ

sup
w∈L2(T )

(
‖z‖2L2 − γ2‖w‖2L2

)
≤ 0 ? (10)

If the infimum is reached or is negative, find an admissible controller φ ensuring
the inequality (3) in L2 norms.

2.2.2 Minimax certainty equivalence principle

The standard problem as formulated above amounts to a min-sup differential game
with a real time minimizer’s information both partial and corrupted by the maxi-
mizer. A non-classical problem. In some favorable cases, including that of linear
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systems, the information problem can be solved via the following certainty equiv-
alence theorem [7, 13]. Let a differential game be specified by (5) and a criterion:

J(x0;u(·), w(·)) = M(x(t1)) +

∫ t1

t0

L(t, x(t), u(t), w(t)) dt+N(x0) . (11)

Assume that the full state information min-sup problem withN ≡ 0 has a state
feedback solution

u(t) = ϕ?(t, x(t)) , (12)

leading to a Value function V (t, x) of class C1.
We now define a partial information mechanism. Since we assume that the

minimizer does not know x(t), it is consistent to assume that he does not know
x0 either. We therefore allow, in the partial information problem, the added cost
N(x0). Let ω ∈ Ω = Rn×W be the complete disturbance, i.e. the pair (x0, w(·)).
Recall notation (8). An observation process is a device that, at each time instant t,
defines a subset Ωt ⊂ Ω function of u(·) and ω, which enjoys the following three
properties:

1. It is consistent: ∀u ∈ U , ∀ω ∈ Ω , ∀t , ω ∈ Ωt.

2. It is perfect recall: ∀u ∈ U , ∀ω ∈ Ω , ∀t′ ≥ t , Ωt′ ⊂ Ωt.

3. It is nonanticipative: ωt ∈ Ωt
t ⇒ ω ∈ Ωt.

In the case of a system (5)-(7),

Ωt(u(·), ω) = {(x0, w(·)) | ∀s ≤ t , h(s, x(s), w(s)) = y(s)}.

We seek a controller
u(t) = φ(t,Ωt) . (13)

Define the auxiliary criterion

Gt(u
t, ωt) = V (t, x(t)) +

∫ t

t0

L(s, x(s), u(s), w(s)) ds+N(x0) ,

and the auxiliary problem:
max
ωt∈Ωt

t

Gt(u
t, ωt) .

Note that in this problem, ut is known, as our own past control.
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Theorem 2.1 If the auxiliary problem admits one or several solutions leading to a
unique state x̂(t) at time t, then, if the controller

u(t) = ϕ?(t, x̂(t))

is admissible, it is a min-sup controller in partial information.
Conversely, if there exists a time t such that supωt∈Ωt

t
Gt = ∞, then the cri-

terion (11) has an infinite supremum in ω for any admissible feedback controller
(13).

Remark 2.2 The state x̂(t) may be considered as the worst possible state given
the available information.

One way to proceed in the case of an information such as (7) is to solve by
forward dynamic programming (forward Hamilton-Jacobi-Caratheodory-Bellman
equation) the constrained problem:

max
ω

[∫ t

t0

L(s, x(s), u(s), w(s)) ds+N(x0)

]
subject to the control constraint w(s) ∈ {w | h(s, x(s), w) = y(s)}, and the
terminal constraint x(t) = ξ. It is convenient to call −W (t, ξ) the corresponding
Value (or Bellman function). Assuming that, under the strategy ϕ?, for every t the
whole space is reachable by some ω ∈ Ω, x̂(t) is obtained via

max
x∈Rn

[V (t, x)−W (t, x)] = V (t, x̂(t))−W (t, x̂(t)) . (14)

If this max is reached at a unique x = x̂(t), then the uniqueness condition of the
theorem is satisfied.

Remark 2.3 In the duality between probability and optimization (see [3, 1]) the
function −W (t, ·) is the conditional cost measure of the state for the measure∫ t
t0
Lds + N(x0) knowing y(·). The left-hand-side of formula (14) is the dual

of a mathematical expectation.

2.2.3 Small gain theorem

We aim to show classical linear control problems that can be cast into a standard
problem ofH∞-optimal control. We develop some preliminary tools.
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Linear operators and norms In the case of linear systems, operator norms have
concrete forms.

Matrix: A p × m matrix M represents a linear operator M : Rm → Rp whose
norm ‖M‖ is the maximum singular value σmax(M) of the matrix.

Dynamic system: A stable stationary linear dynamic system with input u(t) ∈
Rm and output y(t) ∈ Rp will be considered as a linear operator, say G, from
L2(R→ Rm) to L2(R→ Rp). It may be represented by its transfer functionG(s),
always a rational proper matrix since we confine ourselves to finite-dimensional
state systems. Moreover, the system being stable (otherwise it would not map L2

into L2), the transfer function has all its poles in the left half complex plane. Thus
it belongs to the Hardy space H∞ of functions holomorphic in an open set of the
complex plane containing the half-plane Re(s) ≥ 0. In that case, it follows from
Parseval’s equality that

‖G‖ = sup
ω∈R

σmaxG(ω) =: ‖G(·)‖∞ .

The norm ‖G(·)‖∞ (or ‖G‖∞) is the norm of the transfer function inH∞.

Block operator: If the input and output spaces of a linear operator G are represented
as product of two spaces each, the operator takes a block form

G =

(
G11 G12

G21 G22

)
.

We will always consider the norm of product spaces as the Euclidean combination
of the norms in the component spaces. In that case, it holds that ‖Gij‖ ≤ ‖G‖.
Furthermore, whenever the following operators are defined∥∥∥∥(G1

G2

)∥∥∥∥ ≤√‖G1‖2 + ‖G2‖2 , ‖(G1 G2 )‖ ≤
√
‖G1‖2 + ‖G2‖2 .

Hence ∥∥∥∥( G11 G12

G21 G22

)∥∥∥∥ ≤√‖G11‖2 + ‖G12‖2 + ‖G21‖2 + ‖G22‖2 .

We finally notice that for a block operator G = (Gij), its norm is related to the
matrix norm of its matrix of norms (‖Gij‖) by ‖G‖ ≤ ‖(‖Gij‖)‖.
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Figure 2: The perturbed system G∆

Small gain theorem Let a two input-two output linear system G0 be given by(
z
y

)
=

(
G11 G10

G01 G00

)(
w
u

)
. (15)

Assume that it is connected in feedback by a linear operator ∆ according to w =
∆z, leading to a composite system y = G∆u. (See figure 2.) Then, an easy
consequence of Banach’s fixed point theorem is:

Theorem 2.2 (Small gain theorem) If ‖∆G11‖ = α < 1 or ‖G11∆‖ = α < 1,
then the combined system

G∆ = G01(I −∆G11)−1∆G10 + G00 or G∆ = G01∆(I − G11∆)−1G10 + G00

is well defined and is stable. Moreover, it holds that

‖G∆‖ ≤ ‖G00‖+ ‖G01‖ ‖G10‖
‖∆‖
1− α

.

Corollary 2.1 If ‖G11‖ < 1, then G∆ is stable for any ∆ with ‖∆‖ ≤ 1.

This will be a motivation to try and solve the problem of making the norm of an
operator smaller than 1, or smaller than a given number γ.
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2.3 Robust servo-mechanism problem

2.3.1 Model uncertainty

Assume we deal with a linear system

ẋ = Ax+Bu ,

y = Cx+Du .

But the system matrices are not precisely known. We have an estimate or “nominal
system” (A0, B0, C0, D0), and we setA = A0+∆A,B = B0+∆B ,C = C0+∆C ,
D = D0 + ∆D. The four matrices ∆A, ∆B , ∆C , and ∆D are unknown, but we
know bounds δA, δB , δC , and δD on their respective norms. We rewrite the same
system as

ẋ = A0x+B0u+ w1 ,

y = C0x+D0y + w2 ,

z =

(
x
u

)
,

and obviously

w =

(
w1

w2

)
=

(
∆A ∆B

∆C ∆D

)(
x
u

)
= ∆z .

We now have a known system G0 connected in feedback by the unknown system
∆ for which we have a norm bound ‖∆‖ ≤ (δ2

A + δ2
B + δ2

C + δ2
D)1/2 , to which we

can apply the small gain theorem.

2.3.2 Robust stabilization

Indeed, that representation of a partially unknown system can be extended to a
dynamic unknown perturbation ∆. We rename w and z as v and ζ respectively,
and we add a disturbance input w, an output z to be controlled, and a dynamic
compensator u = Ky. From now on, to make things simpler, we assume that the
signals v and ζ are scalar (See below a short discussion of vector signals). Assume
that a frequency dependent bound of the modulus of ∆’s transfer function is known
as |∆(ω)| ≤ δ(ω). Then, in a classical “loop shaping” fashion, we devise a
dynamic filterW1(s) such that |W1(ω)| ≥ δ(ω), and consider the fictitious control
system with output ζ̃ = W1ζ. Stabilization of the system will be guaranteed if we
can keep the transfer function norm from v to ζ̃ less than one. We may also specify
the disturbance rejection objective as keeping a fictitious output z̃ = W0z small
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Figure 3: The perturbed system and its compensator

for some prescribed dynamic filter W0. The control objective of the compensator
K will now be to keep the modulus of the transfer function from v to ζ̃ less than
one at all frequencies, while holding the norm of the transfer function from w to
z̃ as small as possible. This may be cast into a standard problem for instance by
choosing the pair ((1/γ)v, w) as the input, (ζ̃, βz̃) as the output, and finding β
and γ as small as possible while holding inequality (10) true. But more clever
weightings may also be tried.

Some remarks are in order.

Remark 2.4

1. We might as well have placed the shaping filter W1 on the input channel
v. The two resulting control problems are not equivalent. One may have
a solution and the other one none. Furthermore, the weight δ(ω) might be
divided between two filters, one on the input and one on the output. The same
remark applies to the filter W0 and to the added weights β and γ. There is
no known simple way to arbitrate these possibilities.

2. In case of vector signals v and ζ, one can use diagonal filters with the weight
W1 on each channel. But this is often inefficient. There exists a more elabo-
rate way to handle that problem, called “µ-synthesis”. (See [19, 35].)

2.3.3 Robust servomechanism

We describe a particular case of the above problem which was at the inception of
theH∞-optimal control problem in [34]. All signals are scalar.

An uncertain system’s transfer function G is described by a multiplicative un-
certainty: G = (I + ∆)G0. We know G0 and a bound |∆(ω)| ≤ δ(ω). However,
it holds that as ω → ∞, G0(ω) → 0, and because of a possible fixed offset in
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the true plant, δ(ω) → ∞. The aim of the control system is to have the output y
follow an unpredictable, but low frequency, reference signal w thanks to a dynamic
compensator u = K(w − y). We name z the error signal w − y, ζ the (fictitious)
output of the (fictitious) system G0, and v = ∆ζ. (See figure 4.) We can cast

�+ wf� z
K� u

G0
�+f ζ

�∆

?+

v

�y
6−

Figure 4: The servomechanism

this problem as a standard problem with input (v, w) and output (ζ, z). However,
adding frequency dependent weights is now unavoidable. We have

z = −G0u− v + w ,

ζ = G0u ,

u = Kz ,

hence

z = S(w − v) , S = (I +G0K)−1 ,

ζ = T (w − v) , T = G0K(I +G0K)−1 .

The control aim is to keep the sensitivity transfer function S small, while robust
stability requires that the complementary sensitivity transfer function T be small.
However, it holds that S + T = I , and hence, both cannot be kept small simulta-
neously. We need that

∀ω ∈ R , δ(ω)|T (ω)| ≤ 1 .

And if δ(ω) → ∞ as ω → ∞, this imposes that |T (ω)| → 0, and therefore
|S(ω)| → 1. Therefore we cannot follow a high frequency reference input w.
However, it may be possible to keep |S(ω)| small at low frequencies, where δ(ω) is
small. The solution is to work with dynamic filters and fictitious outputs z̃ = W0z,
ζ̃ = W1ζ, with |W1(ω)| ≥ δ(ω) (a generalized differentiator). If we can keep the
transfer function from v to ζ̃ less than one at all frequencies, we ensure stability
of the control system. And we choose a weight W0 large at low frequencies (a
generalized integrator), and investigate the standard problem with the output (z̃, ζ̃).

If W0G0 is strictly proper, as it will usually be, there is no throughput from u
to the output z̃. In that case, it is necessary to add a third component ũ = W3u
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to the regulated output, with W3 proper but not strictly (may be a multiplicative
constant R). This is to satisfy the condition R > 0 of the next section.

3 H∞-optimal control

Given a linear system with inputs u and w and outputs y and z, and a desired
attenuation level γ, we want to know whether there exist causal control laws u(t) =
φ(t, yt) guaranteeing inequality (3), and if yes, find one. This is the standard
problem of H∞-optimal control. We propose here an approach of this problem
based upon dynamic game theory, following [7]. Others exist. See [18, 30, 22].

We denote by an accent the transposition operation.

3.1 Continuous time

We start with a state space description of the system. Here x ∈ Rn, u ∈ Rm, w ∈
R`, y ∈ Rp, z ∈ Rq. This prescribes the dimensions of the various matrices in the
system equations. In the finite horizon problem, they may all be time dependent,
say piecewise continuously. These equations are:

ẋ = Ax+Bu+Dw , x(t0) = x0 , (16)

y = Cx + Ew , (17)

z = Hx+Gu . (18)

We will use the system matrix

S =

 A B D
C 0 E
H G 0

 . (19)

Remark 3.1

1. The fact that “the same” input w drives the dynamics (16) and corrupts the
output y in (17) is not a restriction. Indeed different components of w may
enter the different equations. (Then DE′ = 0.)

2. The fact that we allowed no throughput from u to y is not restrictive. y is the
measured output used to control the system. If there were a term +Fu on
the r.h.s. of (17), we could always use ỹ = y − Fu as measured output.

3. A term +Fw in (18) would create cross terms in wx and wu in the linear
quadratic differential game to be solved. The problem would remain feasible,
but the equations would be more complicated, which we would rather avoid.
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We further let(
H ′

G′

)
(H G ) =

(
Q P
P ′ R

)
and

(
D
E

)
(D′ E′ ) =

(
M L′

L N

)
. (20)

All the sequel makes use of the following hypotheses:

Assumption 3.1

1. G is one to one or, equivalently, R > 0,

2. E is onto or, equivalently, N > 0.

Duality Notice that changing S into its transpose S ′ swaps the two block ma-
trices in (20) and also the above two hypotheses. This operation (together with
reversal of time), that we will encounter again, is called duality.

3.1.1 Finite horizon

As in subsection 2.2.2, we include initial and terminal costs. For any symmetric
nonnegative matrix Z, we write ‖x‖2Z := x′Zx and likewise for other vectors. Let
Q0 be a symmetric positive definite matrix, and Q1 a nonnegative definite one, and

Jγ(x0, u(·), w(·)) = ‖x(t1)‖2Q1
+∫ t1

t0

[
(x′(t) u′(t) )

(
Q P
P ′ R

)(
x(t)
u(t)

)
− γ2‖w(t)‖2

]
dt− γ2‖x0‖2Q0

. (21)

We introduce two Riccati equations for the symmetric matrices S and Σ, where
we use the feedback gain F and the Kalman gain K appearing in the LQG control
problem:

F = −R−1(B′S + P ′) , K = (ΣC ′ + L′)N−1 , (22)

−Ṡ = SA + A′S − F ′RF + γ−2SMS +Q , S(t1) = Q1 , (23)

Σ̇ = ΣA′ +AΣ−KNK ′ + γ−2ΣQΣ +M , Σ(t0) = Q−1
0 . (24)

Theorem 3.1 For a given γ, if both equations (23) and (24) have solutions over
[t0, t1] satisfying

∀t ∈ [t0, t1] , ρ(Σ(t)S(t)) ≤ γ2 , (25)

the finite horizon standard problem has a solution for that value of γ and any larger
one. In that case, a (nonunique) min-sup controller is given by u = u? as defined
by either of the following two systems:

˙̂x = (A+γ−2MS)x̂+Bu? + (I−γ−2ΣS)−1K[y−(C+γ−2LS)x̂], x̂(t0) = 0 ,

u? = Fx̂ ,
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or

˙̌x = (A+ γ−2ΣQ)x̌+ (B + γ−2ΣP )u? +K(y − Cx̌) , x̌(t0) = 0 ,

u? = F (I − γ−2ΣS)−1x̌ .

If any one the of above conditions fails to hold, then, for any smaller γ, the criterion
(21) has an infinite supremum for any causal controller u(t) = φ(t, yt).

Remark 3.2

1. The notation ρ(X) stands for the spectral radius of the matrix X . If condi-
tion (25) holds, then indeed, the matrix (I − γ−2ΣS) is invertible.

2. The two Riccati equations are dual of each other as in the LQG control
problem.

3. The above formulas coincide with the LQG formulas in the limit as γ →∞.

4. The first system above is the “certainty equivalent” form. The second one
follows from placing x̌ = (I − γ−2ΣS)x̂. The symmetry between these two
forms seems interesting.

5. The solution of the H∞-optimal control problem is highly nonunique. The
above one is called the central controller. But use of Başar’s representation
theorem [8] yields a wide family of admissible controllers. See [7].

3.1.2 Infinite horizon stationary problem

In this section, we assume that the matrix S is a constant. The system is then said to
be stationary. The spaces L2 considered are to be understood as L2(R→ Rd) with
the appropriate dimension d. The dynamic equation (16) is to be understood with
zero initial condition at −∞, and we will be interested in asymptotically stable
solutions. There is no room for the terms in Q0 and Q1 of the finite time criterion
(21), and its integral is to be taken from −∞ to∞.

We further invoke a last pair of dual hypotheses:

Assumption 3.2 The pair (A,D) is stabilizable and the pair (A,H) is detectable.

The Riccati equations are replaced by their stationary variants, still using (22):

SA+A′S − F ′RF + γ−2SMS +Q = 0 , (26)

ΣA′ +AΣ−KNK ′ + γ−2ΣQΣ +M = 0 . (27)

17



Theorem 3.2 Under condition 3.2, if the two algebraic Riccati equations (26) and
(27) have positive definite solutions, the minimal such solutions S? and Σ? can be
obtained as the limit of the Riccati equations (23) when integrating from S(0) = 0
backward and, respectively, (24) when integrating from Σ(0) = 0 forward. If
these solutions satisfy the condition ρ(Σ?S?) < γ2, then the same formula as in
Theorem 3.1 replacing S and Σ by S? and Σ? respectively provide a solution to
the stationary standard problem. If moreover the pair (A,B) is stabilizable and
the pair (A,C) is detectable, there exists such a solution for sufficiently small γ.

If the existence or the spectral radius condition fail to hold, there is no solution
to the stationary standard problem for any smaller γ.

The condition of positive definiteness of S? and Σ∗ can be slightly weakened,
leading to a slightly more precise theorem (see [7]). But this does not seem to be
very useful in practice.

3.2 Discrete time

We consider now the discrete-time system where t ∈ N:

xt+1 = Atxt +Btut +Dtwt , xt0 = x0 (28)

yt = Ctxt + Etwt , (29)

zt = Htxt +Gtut . (30)

where the system matrices may depend on the time t. We use notation (20), still
with assumption 3.1 for all t, and

Āt = At −BtR−1
t P ′t , Ãt = At − L′tN−1

t Ct . (31)

We also invoke all along the following two dual hypotheses:

Assumption 3.3

∀t , rank

(
At
Ht

)
= n , rank (At Dt ) = n .

We want to control the system with a strictly causal controller

ut = φt(t, y
t−1) .

(See [7] for a nonstrictly causal controller or delayed information controllers.)
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3.2.1 Finite horizon

We introduce two positive definite symmetric n × n matrices X and Y . The aug-
mented criterion is now

J = ‖xt1‖2X +

t1−1∑
t=t0

(‖zt‖2 − γ2‖wt‖2)− γ2‖x0‖2Y . (32)

We will not attempt to describe here the (nonlinear) discrete-time certainty equiv-
alence theorem used to solve this problem. (See [11, 7].) We go directly to the
solution of the standard problem.

The various equations needed may take quite different forms. We choose one.
We need the following notation (note that Γt and S̄t involve St+1):

Γt = (S−1
t+1 +BtR

−1
t B′t − γ−2Mt)

−1 ,

S̄t = Ā′t(St+1 − γ−2Mt)
−1Āt +Qt − PtR−1

t P ′t ,

∆t = (Σ−1
t + C ′tN

−1
t Ct − γ−2Qt)

−1 .

Σ̃t+1 = Ãt(Σ
−1
t − γ−2Qt)

−1Ã′t +Mt − L′tN−1
t Lt .

(33)

The two discrete Riccati equations may be written as

St = Ā′tΓtĀt +Qt − PtR−1
t P ′t , St1 = X , (34)

Σt+1 = Ãt∆tÃ
′
t +Mt − L′tN−1

t Lt , Σt0 = Y −1 . (35)

Theorem 3.3 Under the hypothesis 3.3, if both discrete Riccati equations (34) and
(35) have solutions satisfying either ρ(MtSt+1) < γ2 and ρ(Σ̃t+1St+1) < γ2 or
ρ(ΣtQt) < γ2 and ρ(ΣtS̄t) < γ2, then the standard problem has a solution for
that value of γ and any larger one, given by

u?t = −R−1
t (B′tΓtĀt + P ′t)(I − γ−2ΣtSt)

−1x̌t , (36)

x̌t+1 =Atx̌t +Btu
?
t + γ−2Ãt∆t(Qtx̌t+Ptu

?
t ) + (Ãt∆tC

′
t+L

′
t)N

−1
t (yt−Ctx̌t),

(37)

x̌t0= 0 . (38)

If any one of the above conditions fails to hold, then for any smaller γ, the criterion
(32) has an infinite supremum for any strictly causal controller.

Remark 3.3

1. Equation (37) is a one-step predictor allowing one to get the worst possible
state x̂t = (I − γ−2ΣtSt)

−1x̌t as a function of past ys up to s ≤ t− 1.

2. Controller (36) is therefore a strictly causal, certainty-equivalent controller.
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3.2.2 Infinite horizon stationary problem

We consider the same system as above, with all system matrices constant and with
the strengthened hypothesis (as compared to assumption 3.2):

Assumption 3.4 The pair (A,D) is controllable and the pair (A,H) is observ-
able.

The dynamics is to be understood with zero initial condition at −∞ and we seek
an asymptotically stable and stabilizing controller. The criterion (32) is replaced
by a sum from −∞ to∞, thus with no initial and terminal terms.

The stationary versions of all the equations in the previous subsection are ob-
tained by removing the index t or t+ 1 to all matrix-valued symbols.

Theorem 3.4 Under assumption 3.4, if the stationary versions of (34) and (35)
have positive definite solutions, the smallest such solutions S? and Σ? are obtained
as, respectively, the limit of St when integrating (34) backward from S0 = 0, and
the limit of Σt when integrating (35) forward from Σ0 = 0. If these limit values sat-
isfy either of the two spectral conditions in Theorem 3.3, the standard problem has
a solution for that value of γ and any larger one, given by the stationary versions
of equations (36) and (37).

If any one of these conditions fails to hold, the supremum of J is infinite for all
strictly causal controllers.

4 Nonlinear problems

4.1 NonlinearH∞ control

There are many different ways to extend H∞-optimal control theory to nonlinear
systems. A driving factor is how much we are willing to parametrize the system and
the controller. If one restricts its scope to a parametrized class of system equations
(see below) and/or to a more or less restricted class of compensators (e.g. finite
dimensional), then some more explicit results may be obtained, e.g. through special
Lyapunov functions and LMI approaches (see [15, 20]), or passivity techniques
(see [4]).

In this section, partial derivatives are denoted by indices.

4.1.1 A finite horizon problem

As an example, we specialize [17] for a problem slightly more natural than the
standard problem (10) in a nonlinear setup (see [31]), i.e. finding a control law
such that the controlled system has finite L2-gain:
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Definition 4.1 A system ω 7→ z is said to have L2-gain less than or equal to γ if
there exists a number β such that,

∀ω ∈ Ω , ‖z‖2 ≤ γ2‖ω‖2 + β2 . (39)

We consider a nonlinear system defined by

ẋ = a(t, x, u) + b(t, x, u)w , x(0) = x0 ,

z(t) = g(t, x, u) ,

y(t) = h(t, x) + v .

We work over the time interval [0, T ]. We use three symmetric matrices,R positive
definite, P and Q nonnegative definite, and take as the norm of the disturbance:

‖ω‖2 =

∫ T

0

(
‖w(t)‖2R + ‖v(t)‖2P

)
dt+ ‖x0‖2Q .

Let also
B(t, x, u) :=

1

4
b(t, x, u)R−1b′(t, x, u) .

We use the following two HJCIB equations, where ϕ̂ : [0, T ]× Rn → U is a state
feedback and û(t) stands for the control actually used:

Vt(t, x) + Vx(t, x)a(t, x, ϕ̂(t, x)) + γ−2Vx(t, x)B(t, x, ϕ̂(t, x))V ′x(t, x)

+‖g(t, x, ϕ̂(t, x))‖2 = −p(t, x) , V (T, x) = 0.
(40)

Wt(t, x) +Wx(t, x)a(t, x, û(t)) + γ−2Wx(t, x)B(t, x, û(t))W ′x(t, x)

+‖g(t, x, û(t))‖2 = γ2‖y(t)− h(t, x)‖2 , W (0, x) = γ2‖x‖2Q.
(41)

Theorem 4.1

1. If there exists an admissible state feedback ϕ̂, a nonnegative C1 function
p and a C1 function V satisfying equation (40), then the strategy u(t) =
ϕ̂(t, x(t)) solves the state feedback finite gain problem (39).

2. If furthermore, V is C2, and there exists for all pairs (û(·), y(·)) a C2 func-
tion W solution of equation (41), and x̂(t) in (14) is always unique, then
the strategy u(t) = ϕ̂(t, x̂(t)) solves the output feedback finite gain problem
(39). Moreover, x̂(t) may be computed recursively according to the equation

˙̂x = a(t, x̂, ϕ̂(t, x̂)) + 2γ−2B(t, x̂, ϕ̂(t, x̂))Vx(t, x̂)′

− [Vxx(t, x̂)−Wxx(t, x̂)]−1
[
2γ2hx(t, x̂)′P (y−h(t, x̂))− px(t, x̂)′

]
,

x̂(0) = Arg min
x

[
V (0, x)− γ2‖x‖2Q

]
.
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Remark 4.1 Although x̂ is given by this ordinary differential equation, yet this is
not a finite-dimensional controller since the partial differential equation (41) must
be integrated in real time.

4.1.2 Stationary problem

We choose to just show a slight extension of the result of subsection 2.2.2 applied
to the investigation of the standard problem (10), for a more general system, and
requiring less regularity, than in the previous subsection. Let therefore a system be
defined as in (5) with x(0) = x0, (6), and (7), but with f , g and h time-independent.
Let also

L(x, u, w) = ‖g(x, u)‖2 − γ2‖w‖2 . (42)

We want to find a nonanticipative control law u(·) = φ̂(y(·)) that would guarantee
that there exists a number β such that the control û(·) and the state trajectory x(·)
generated always satisfy

∀(x0, w(·)) ∈ Ω , J(û(·), w(·)) =

∫ ∞
0
L(x(t), û(t), w(t)) dt ≤ β2 . (43)

We leave it to the reader to specialize the result below to the case (42), and further
to such system equations as used, e.g. in [4, 15].

We need the following two HJCIB equations, using a control feedback ϕ̂(x)
and the control û(t) actually used:

∀x ∈ Rn , inf
w∈W

[−Vx(x)f(x, ϕ̂(x), w)− L(x, ϕ̂(x), w)] = 0 , V (0) = 0 ,

(44)
and, ∀x ∈ Rn,

inf
w|y(t)

[−Wt(t, x)−Wx(t, x)f(t, û(t), w)− L(x, û(t), w)] = 0 , W (0, x) = 0 ,

(45)
(by infw|y(t) we mean infw|h(t,x,w)=y(t)). Let X(t) be the set of reachable states at
time t from any x0 with ϕ̂ and a minimizing w in (45), and x̂(t) defined as

V (x̂(t))−W (t, x̂(t)) = max
x∈X(t)

[V (x)−W (t, x)] . (46)

Theorem 4.2

1. The state feedback problem (43) has a solution if and only if there exists an
admissible stabilizing state feedback ϕ̂(x) and a BUC viscosity supersolu-
tion 1 V (x) of equation (44). Then, u(t) = ϕ̂(x(t)) is a solution.

1See [6, 5] for a definition and fundamental properties.
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2. If furthermore, there exists for every pair (û(·), y(·)) ∈ U × Y , a BUC vis-
cosity solution W (t, x) of equation (45) in [0,∞)×Rn, and if furthermore,
there is for all t ≥ 0 a unique x̂(t) satisfying equation (46), then the con-
troller u(t) = ϕ̂(x̂(t)) solves the output feedback problem (43).

Remark 4.2

1. A supersolution of equation (44) may make the left hand side strictly positive.

2. Equation (45), to be integrated in real time, behaves as an observer. More
precisely, it is the counterpart for the conditional cost measure of Kushner’s
equation of nonlinear filtering (see [16]) for the conditional probability mea-
sure.

If equation (44) has no finite solution, then the full state information H∞ control
problem has no solution, and, not surprisingly, nor does the standard problem with
partial corrupted information considered here. (See [31].) But in sufficiently ex-
treme cases, we may also detect problems where the available information is the
reason why there is no solution:

Theorem 4.3 If equation (44) has no finite solution, or, if V is a viscosity solution
of (44) and, for all (û(·), y(·)), either (45) has no finite solution, or V − W is
unbounded by above, then there is no causal controller that can keep the criterion
bounded against all w(·).

It is due to its special structure that in the linear quadratic problem, either of the
above two theorems applies.

4.2 Option pricing in Finance

As an example of the use of the ideas of subsection 2.1.1 in a very different dynamic
context, we sketch here an application to the emblematic problem of mathematical
finance, the problem of option pricing. The present theory is therefore an alterna-
tive to Black and Scholes’ famous one, using a set description of the disturbances
instead of a stochastic one.2 As compared to the latter, the former allows us to
include in a natural fashion transaction costs , and also discrete time trading.

Many types of options are traded on various markets. As an example, we will
emphasize here European “vanilla” buy options, or Call, and sell options, or Put,
with closure in kind. Many other types are covered by several similar or related
methods in [12].

2See, however, in [12, Chapter 2] a probability-free derivation of Black and Scholes’ formula.
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The treatment here follows [12, Part 3], but it is quite symptomatic that inde-
pendent works using similar ideas emerged around the year 2000, although they
generally appeared in print much later. See the introduction of [12].

4.2.1 The problem

Portfolio For the sake of simplicity, we assume an economy without interest rate
nor inflation. The contract is signed at time 0, and ends at the exercise time T .
It bears upon a single financial security whose price u(t) varies with time in an
unpredictable manner. We take as the disturbance in this problem its relative rate
of growth u̇/u = τ . In the Black and Scholes theory, τ is modelled as a stochastic
process, the sum of a deterministic drift and of a “white noise”. In keeping with
the topic of this chapter, we will not make it a stochastic process. Instead, we
assume that two numbers are known: τ− < 0 and τ+ > 0, and all we assume is
boundedness and measurability:

∀t ∈ [0, T ] , τ(t) ∈ [τ−, τ+] and τ(·) ∈ Ω =M([0, T ]→ [τ−, τ+]) . (47)

A portfolio is made of two components: shares of the security for a monetary
amount v(t) and an amount y(t) of currency, for a total worth v + y = w. Both v
and y may be positive, of course, but also negative through futures for v, a “short”
portfolio, and borrowing for y. All variables may vary continuously.

A trader manages the portfolio in a self-financed fashion, meaning that he buys
or sells shares of the security, withdrawing the money to buy from the currency part
y of the portfolio, or adding to it the proceeds of the sales. In Merton’s “continuous
trading” fiction, the trader may trade at a continuous rate ξ(t), taken positive for a
buy and negative for a sale. But he can also trade a finite block of shares instantly,
resulting in jumps in v(·), represented by impulses in ξ(·). We will therefore allow
a finite sum

ξ(t) = ξc(t) +
∑
k

ξkδ(t− tk) ⇔ ξ(·) ∈ Ξ

with ξc(·) a measurable real function and {tk} ⊂ [0, T ] and {ξk} ⊂ R two finite
sequences, all chosen by the trader. We call Ξ the set of such distributions.

There are transaction costs incurred in any transaction, that we will assume to
be proportional to the amount of the transaction, with proportionality coefficients
C−< 0 for a sale of shares of the security, andC+> 0 for a buy. We will write these
transaction costs as Cε〈ξ〉 with the convention that this means that ε = sign(ξ).
The same convention holds for such notation as τ ε〈X〉, or later qε〈X〉.

This results in the following control system, where the disturbance is τ and the
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control ξ:

u̇ = τu , τ(·) ∈ Ω (48)

v̇ = τv + ξ , ξ(·) ∈ Ξ , (49)

ẇ = τv − Cε〈ξ〉 , (50)

which the trader controls through a nonanticipative strategy ξ(·) = φ(u(·)), which
may in practice take the form of a state feedback ξ(t) = ϕ(t, u(t), v(t)) with an
additional rule saying when to make impulses, i.e. jumps in v, and by what amount.

Hedging A terminal payment by the trader is defined in the contract, in refer-
ence to an exercise price K. Adding to it the closure transactions costs with rates
c− ∈ [C−, 0] and c+ ∈ [0, C+], the total terminal payment can be formulated with
the help of two auxiliary functions v̂(T, u) and ŵ(T, u) depending on the type of
option considered according to the following table:

Closure in kind u ≤ K
1+c+

K
1+c+

≤ u ≤ K
1+c−

K
1+c− ≤ u

Call
v̂(T, u) 0 (1+c+)u−K

c+−c− u

ŵ(T, u) 0 −c−v̂(T, u) u−K

Put
v̂(T, u) −u (1+c−)u−K

c+−c− 0

ŵ(T, u) K − u −c+v̂(u) 0

(51)

And the total terminal payment is M(u(T ), v(T )), with

M(u, v) = ŵ(T, u) + cε〈v̂(T, u)− v〉 . (52)

Definition 4.2 An initial portfolio (v(0), w(0)) and a trading strategy φ constitute
a hedge at u(0) if they ensure

∀τ(·) ∈ Ω , w(T ) ≥M(u(T ), v(T )) , (53)

meaning that the final worth of the portfolio is enough to cover the payment owed
by the trader according to the contract signed. Il follows from (50) that (53) is
equivalent to

∀τ(·) ∈ Ω , M(u(T ), v(T )) +

∫ T

0

(
−τ(t)v(t) + Cε〈ξ(t)〉

)
dt ≤ w(0) ,

a typical guaranteed value according to subsection 2.1.1. Moreover, the trader
wishes to construct the cheapest possible hedge, and hence solve the problem

min
φ∈Φ

sup
τ(·)∈Ω

[
M(u(T ), v(T )) +

∫ T

0

(
−τ(t)v(t) + Cε〈ξ(t)〉

)
dt

]
. (54)
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Let V (t, u, v) be the Value function associated with the differential game defined
by (48), (49) and (54). The premium to be charged to the buyer of the contract, if
u(0) = u0, is

P (u0) = V (0, u0, 0) .

This problem defines the so-called “robust control approach to option pricing”. An
extensive use of differential game theory yields the following results.

4.2.2 The solution

Because of the impulses allowed in the control, Isaacs’ equation is replaced by the
following differential quasi-variational inequality (DQVI):

∀(t, u, v) ∈ [0, T )× R+ × R ,

max
{
−Vt − τ ε〈Vuu+ (Vv − 1)v〉 , −(Vv + C+) , Vv + C−

}
= 0 ,

∀(u, v) ∈ R+ × R , V (T, u, v) = M(u, v) .

 (55)

Theorem 4.4 The Value function associated with the differential game defined by
equations (48) (49), and (54) is the unique Lipshitz continuous viscosity solution
of the differential variational inequality (55).

Solving the DQVI (55) may be done with the help of the following auxiliary
functions. We define

q−(t) = max{(1 + c−) exp[τ−(T − t)]− 1 , C−} ,
q+(t) = min{(1 + c+) exp[τ+(T − t)]− 1 , C+} .

Note that, for ε ∈ {−,+}, qε = Cε for t ≤ tε and increases (ε = +) or decreases
(ε = −) towards cε as t→ T , with

tε = T − 1

τ ε
ln

(
1 + Cε

1 + cε

)
. (56)

We also introduce the constant matrix S and the variable matrix T (t) defined by

S =

(
1 0
1 0

)
, T =

1

q+ − q−

(
τ+q+ − τ−q− τ+ − τ−
−(τ+ − τ−)q+q− τ−q+ − τ+q−

)
.

Finally, we name collectively two functions:

W (t, u) =

(
v̂(t, u)
ŵ(t, u)

)
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involved in the pair of coupled linear partial differential equations

Wt + T (Wuu− SW ) = 0 . (57)

with the boundary conditions (51).

Theorem 4.5

• The partial differential equation (57) with boundary conditions (51) has a
unique solution.

• The Value function of the game (48), (49), (54) (i.e. the unique Lipshitz
continuous viscosity solution of (55)) is given by

V (t, u, v) = ŵ(t, u) + qε(t)〈v̂(t, u)− v〉 . (58)

• The optimal hedging strategy, starting with an initial wealthw(0) = P (u(0)),
is to make an initial jump to v = v̂(0, u(0)) and keep v(t) = v̂(t, u(t)) as
long as t < tε as given by (56), and do nothing for t ≥ tε, with ε =
sign[v̂(t, u(t))− v(t)].

Remark 4.3

• In practice, for classic options, T − tε is very small (typically less than one
day) so that a simplified trading strategy is obtained by choosing qε = Cε,
and if T is not extremely small, P (u0) = ŵ(0, u0) + Cε〈v̂(0, u0)〉.

• The curve P (u) for realistic [τ−, τ+] is qualitatively similar to that of the
Black and Scholes theory, usually larger because of the trading costs not
accounted for in the classic theory.

• The larger the interval [τ−, τ+] chosen, the larger P (u). Hence the choice
of these bounds is a critical step in applying this theory. The hedge has been
found to be very robust against occasional violations of the bounds in (47).

4.2.3 Discrete time trading

One of the advantages to relinquish the traditional “geometric diffusion” stochastic
model for the disturbance τ(·) is to allow for a coherent theory of discrete-time
trading. Let therefore h = T/N be a time step, with N ∈ N. Assume the trader is
allowed to do some trading only at instants tk = kh, k ∈ N. This means that we
keep only the impulsive part of ξ(·), and fix the impulse instants tk. We therefore
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have restricted the available trader’s choices, thus we will end up with a larger
premium.

We need now the parameters

τ εh = ehτ
ε − 1 , ε ∈ {−,+} .

We write uk, vk, wk for u(tk), v(tk), w(tk). An exact discretization of our system
is therefore as follows, with τk ∈ [τ−h , τ

+
h ]:

uk+1 = (1 + τk)uk , (59)

vk+1 = (1 + τk)(vk + ξk) , (60)

wk+1 = wk + τk(vk + ξk)− Cε〈ξk〉 . (61)

The Value function of the restricted game is denoted by V h
k (uk, vk).

Theorem 4.6 The Value function {V h
k } satisfies the Isaacs recurrence equation

V h
k (u, v) = min

ξ
max

τ∈[τ−h ,τ
+
h ]

[
V h
k+1((1+τ)u, (1+τ)(v+ξ))− τ(v+ξ) + Cε〈ξ〉

]
,

∀(u, v) ∈ R+ × R , V h
N (u, v) = M(u, v) .

(62)

Moreover, if one defines V h(t, u, v) as the Value of the game where the trader
(maximizer) is allowed to make one jump at initial time, and then only at times tk
as above, we have:

Theorem 4.7 The function V h interpolates the sequence {V h
k } in the sense that,

for all (u, v), V h(tk, u, v) = V h
k (u, v). As the step size is subdivided and goes to

zero (e.g. h = T/2d, d→∞), the function V h(t, u, v) decreases and converges to
the function V (t, u, v) uniformly on any compact in (u, v).

Finally, one may extend the representation formula (58), just replacing v̂ and ŵ by
v̂hk and ŵhk given collectively by a carefully chosen finite difference approximation
of equation (57) (but the representation formula is then exact) as follows:

Let qεk = qε(tk) be alternatively given by qεN = cε and the recursion

qε
k+ 1

2

= (1 + τ εh)qεk+1 + τ εh ,

q−k = max{q−
k+ 1

2

, C−} , q+
k = min{q+

k+ 1
2

, C+} .

Also, let

Qεk = (qεk 1) , W h
k (u) =

(
v̂hk (u)
ŵhk(u)

)
.
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The following algorithm is derived from a detailed analysis of equation (62):

W h
k (u) = 1

q+
k+1

2

−q−
k+1

2

(
1 −1

−q−
k+ 1

2

q+
k+ 1

2

)(
Q+
k+1W

h
k+1((1 + τ+

h )u)

Q−k+1W
h
k+1((1 + τ−h )u)

)
,

W h
N (u) = W (T, u) .

And as previously,

V h
k (u, v) = ŵhk(u) + qεk

〈
v̂hk (u)− v

〉
,

and for all practical purposes, P (u0) = ŵh0 (u0) + Cε
〈
v̂h0 (u0)

〉
.

5 Conclusion

As stated in the introduction, game theoretic methods are only one part, may be a
prominent one, of modern robust control. They typically cover a wide spectrum of
potential applications, their limitations being in the difficulty to solve a nonlinear
dynamic game, often with imperfect information. Any advances in this area would
instantly translate into advances in robust control.

The powerful theory of linear-quadratic games coupled with the min-max cer-
tainty equivalence principle makes it possible to efficiently solve the linear H∞-
optimal control problem, while the last example above shows that some very non-
linear problems may also receive a rather explicit solution via these game theoretic
methods.
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