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1 Fisher’s fundamental theorem of evolution

1.1 The fundamental theorem

In a population, a given locus may host one of n alleles: A1, A2, . . . , An. The
frequency at birth time of the pair (Ai, Ai) is Pii, and, because the pairs (Ai, Aj)
and (Aj , Ai) are undistiguishable, their frequency is 2Pij . Obviously,

∑
Pij = 1.

The pair (Ai, Aj) causes a viability wij , which measures the probability that
an individual with this pair of alleles reach the age of reproduction. (Alternatively:
a measure of the number of his progeny). The mean fitness and variance of the
population at birth are

w̄ =
∑
ij

Pijwij , and σ2 =
∑
ij

(wij − w̄)2Pij .

The frequency of the pair (Ai, Aj) at the age of reproduction is

P ′ij =
wij
w̄
Pij .

This is also the frequency in the next generation. The new mean fitness is

w̄′ =
∑
ij

P ′ijwij =
∑
ij

w2
ij

w̄
Pij ,

and the variation of mean fitness is therefore

∆w̄ =
1

w̄

∑
ij

w2
ijPij − w̄2

 =
1

w̄

∑
ij

(w2
ij − w̄2)Pij .

This can also be written as

∆w̄ =
1

w̄

∑
ij

(wij − w̄)2Pij + 2
∑
ij

wijw̄Pij − 2w̄2

 .

The last two terms cancel, to leave

∆w̄ =
1

w̄

∑
ij

(wij − w̄)2Pij =
σ2

w̄
. (1)
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1.2 Further remarks

1. In the above calculation, whose result is known as Fisher’s fundamental the-
orem of evolution, the fact that we deal with pairs of alleles and double
indices (ij) plays no role.

2. In that respect, one considers the frequencies of isolated alleles as

pi =
∑
j

Pij ,

and random mating translates into the equality Pij = pipj , which is not
satisfied under preferred mating. The increase in pi during one generation is

δi := p′i − pi =
1

w̄

∑
j

Pij(wij − w̄) .

3. One defines the marginal viability effect of allele i as αi defined as the solu-
tion of the following “least squares” optimisatiom problem (see [1])

min
α

∑
ij

Pij(wij − w̄ − αi − αj)2 ,

which is given in terms of the matrix P = (Pij), its diagonal D and the
vector δ of marginal increases by (caution: δ w̄ is just the product of the
vector δ and the scalar w̄) α = (P +D)−1δ w̄ .

4. The variation of the genetic viability variance may also be evaluated, as

∆σ2 := σ′2 − σ2 =
∑
ij

Pij
wij
w̄

(
wij − w̄ −

σ2

w̄

)
−
∑
ij

Pij(wij − w̄)

=
∑
ij

Pij

(wij
w̄
− 1
)

(wij − w̄)2 − 2
σ2

w̄

∑
ij

Pij
wij
w̄

(wij − w̄) +
σ4

w̄2

=
1

w̄

∑
ij

Pij(wij − w̄)3 − 2
σ2

w̄2

∑
ij

Pij(wij − w̄)2

− 2
σ2

w̄2

∑
ij

Pijw̄(wij − w̄) +
σ4

w̄2

=
1

w̄

∑
ij

Pij(wij − w̄)3 − σ4

w̄2

=
1

w̄

∑
ij

Pij(wij − w̄)3 − (∆w̄)2 . (2)
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2 Quantitative genetics and the breeder’s equation
(Pierre Bernhard, January, 22, 2013)

2.1 Introduction

We consider a population Ω of a given species. Each individual is characterized
by a phenotype (collection of traits) z ∈ Rn. However, the value of each trait may
be partitioned as a mean value ζ, which depends on the genotype of the individual,
and an environmental variability ε, a random variable with zero mean, density π(·),
independant from the distribution of ζ. Our set of hypotheses is therefore: z, ζ, ε
∈ Rn, and

z = ζ + ε ,

Eε =

∫
Rn

επ(ε) dε = 0 =⇒ z̄ := Ez = Eζ =: ζ̄ ,

E
(
ζ − ζ̄
ε

)(
(ζ − ζ̄)t εt

)
=

(
G 0
0 E

)
,

hence also
P := E(z − z̄)(z − z̄)t = G+ E .

(G stands for Genetic, E for Environmental, and P for Population. Notations
borrowed from [2].)

The (misleading ?) notation Eζ refers to the mean over the population Ω. The
total “weight” of Ω is N . There is a difficulty here in the fact that, to simplify the
notation, we shall often do as if Ω were a continuum. Therefore we call “weight”
of the population what should be the number of individuals if it were finite.

The “weight” of individuals with traits in a given subdomain of Rn is a measure
over Rn. We assume that it has a density n(z), and that there is a corresponding
density ν(ζ) of the genotype-induced mean traits. (We shall call ζ the genotype, in
short.)

We shall assume with little loss of generality that π, n and ν have compact
support. All integrals will be over Rn or R×Rn as needed. Hence

N =

∫
ν(ζ) dζ , z̄ = ζ̄ =

1

N

∫
ζν(ζ) dζ .

We shall consider the change in these variables from generation k to generation
k + 1, adding a subscript k or k + 1 as needed to the quantities that change with
them. We assume that the fitness of the individuals is related to z by a functionF (z)
which measures the excess of births over deaths per capita among individuals with
phenotype z.
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2.2 Traits mean value

2.2.1 Asexual reproduction

In this simple model, “likes beget likes”, i.e. the offspring have the same genotype
as their parent. As a result, we get the following simple hereditary mechanism:

νk+1(ζ) =

∫
(1 + F (ζ + ε))νk(ζ)π(ε) dε , (3)

and
Nk+1 =

∫∫
(1 + F (ζ + ε))νk(ζ)π(ε) dε dζ

Let F̄k = (1/Nk)
∫
F (ζ + ε)νk(ζ)π(ε) dζ dε denote the avarage fitness of the

generation k. We get
Nk+1 = (1 + F̄k)Nk .

We aim to compute z̄k+1. We have

z̄k+1 =
1

Nk+1

∫
ζνk+1(ζ) dζ =

1

Nk+1

∫∫
ζ(1 + F (ζ + ε))νk(ζ)π(ε) dεdζ

=
1

Nk+1

∫∫
ζ(1 + F̄k)νk(ζ)π(ε) dεdζ +

1

Nk+1

∫∫
ζ(F (ζ + ε)− F̄k)νk(ζ)π(ε) dε dζ

= z̄k +
1

(1 + F̄k)Nk

∫∫
(ζ − ζ̄k)(F (ζ + ε)− F̄k)νk(ζ)π(ε) dεdζ .

The last equation uses the fact that

1

Nk

∫∫
ζ̄k(F (ζ + ε)− F̄k)νk(ζ)π(ε) dεdζ = 0 .

Let
γk =

1

Nk

∫∫
(ζ − ζ̄k)(F (ζ + ε)− F̄k)νk(ζ)π(ε) dεdζ (4)

denote the covariance between the additive genetic variation and fitness in the pop-
ulation.

We obtain the fundamental theorem:

Theorem 1 The variation in mean phenotype value in one generation is propor-
tional to the covariance between additive genetic variation and fitness in the pop-
ulation:

z̄k+1 = z̄k +
γk

1 + F̄k
. (5)
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Affine approximation Assume that the variations in z are actually sufficiently
small so that in the range considered, F is well approximated by its first order
linear approximation

F (z) = α+ 〈β, z〉 . (6)

The vector β plays the role of ∇F or selection gradient. It follows that F̄ =
α+ 〈β, z̄〉. Hence, the variation in z̄ is

z̄k+1 − z̄k =
1

Nk(1 + F̄k)

∫∫
(ζ − ζ̄k)(ζ + ε− ζ̄k)tβνk(ζ)π(ε) dεdζ

=
1

1 + F̄k
Gkβ +

1

(1 + F̄k)Nk

∫ [∫
(ζ − ζ̄k)νk(ζ) dζ

]
εtβπ(ε) dε .

The last integral is null (it is the product of two null terms), and we obtain the main
equation of natural selection:

z̄k+1 − z̄k =
1

1 + F̄k
Gkβ . (7)

However, the selection gradient β is not directly measurable. What is measur-
able is the covariance S between traits and fitness. Let therefore

Sk :=

∫
(z − z̄k)(F (z)− F̄k)nk(z) dz ,

with the same affine approximation of F , this gives

Sk = Pkβ ,

so that with the main equation (7), we get the breeder’s equation:

z̄k+1 − z̄k =
1

1 + F̄k
GkP

−1
k Sk . (8)

2.2.2 Sexual reproduction

We provide a vastly simplified model of sexual reproduction. Say, for now, that we
are interested in a male character, typically a male “display” such as considered in
sexual selection. Let now n(z) and ν(ζ) be densities of males. We assume that
the genotypes of the offspring of a given male are distributed around the parent’s
genotype, the difference being a random variable η with zero mean, and density
ρ(·). Hence, the offspring of every male with genotype ζ are of the form ζ + η,
with ∫

ηρ(η) dη = 0 .
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Let µk+1(ζ) be the measure density of the offspring of all males with genotype ζ
in population k, i.e.

µk+1(ζ) =

∫
(1 + F (ζ + ε))νk(ζ)π(ε) dε .

Our simplified model of sexual reproduction yields

νk+1(ζ) =

∫
µk+1(ζ − η)ρ(η) dη .

Hence,

νk+1(ζ) =

∫∫
(1 + F (ζ − η + ε))νk(ζ − η)π(ε)ρ(η) dεdη , (9)

and

z̄k+1(ζ) =
1

(1 + F̄k)Nk

∫∫∫
ζ(1 + F (ζ − η + ε))νk(ζ − η)π(ε)ρ(η) dεdη dζ .

Hence

z̄k+1(ζ) =

1

(1 + F̄k)Nk

∫∫∫
(ζ − η)(1 + F (ζ − η + ε))νk(ζ − η)π(ε)ρ(η) dε dη dζ

+
1

(1 + F̄k)Nk

∫∫∫
η(1 + F (ζ − η + ε))νk(ζ − η)π(ε)ρ(η) dεdη dζ .

Using Fubini’s theorem, we integrate first in ζ as the inner integral, then in ε, and
finally in η as the outer integral. Let θ = ζ − η. We get

z̄k+1(ζ) =
1

(1 + F̄k)Nk

∫ [∫∫
θ(1 + F (θ + ε))νk(θ)π(ε) dθ dε

]
ρ(η) dη

+
1

(1 + F̄k)Nk

∫
η

[∫∫
(1 + F (θ + ε))νk(θ)π(ε) dζ dε

]
ρ(η) dη .

In the first line, the inner double integral is exactly the same as for the asexual
reproduction, and is independent from η, it is therefore multiplied by

∫
ρ(η) dη = 1.

In the second line, the inner double integral is again independent from η. It is
therefore just multiplied by

∫
ηρ(η) dη = 0 by hypothesis.

Therefore, for this highly simplified model of sexual reproduction, we recover
the same theorem and equations (7), (8), as in our model of asexual reproduction.

6



2.3 Genetic covariance

In [2], the authors question whether the genetic covariance matrix G changes from
generation to generation, and, based upon statistical laboratory experiments, con-
cludes that indeed, it does. We propose here a investigation of that question based
upon our model.

2.3.1 Asexual reproduction

We start again from equation (3), and get

Gk+1 =
1

(1 + F̄k)Nk

∫∫
(ζ − ζ̄k+1)(ζ − ζ̄k+1)

t(1 + F̄k(ζ + ε))νk(ζ)π(ε) dεdζ .

Replacing as previously 1 + F by (1 + F̄k) + (F − F̄k) and using (5), we get

Gk+1 = A+B

with

A =
1

Nk

∫∫
(ζ − ζ̄k −

γk
1 + F̄k

)(ζ − ζ̄k −
γk

1 + F̄k
)tνk(ζ)π(ε) dε dζ

B =
1

(1 + F̄k)Nk

∫∫
(ζ − ζ̄k −

γk
1 + F̄k

)(ζ − ζ̄k −
γk

1 + F̄k
)t(F (ζ + ε)− F̄k)

νk(ζ)π(ε) dεdζ .

We easily get

A = Gk +
γkγ

t
k

(1 + F̄k)2
.

Concerning B we have

B =
1

(1 + F̄k)Nk

∫∫
(ζ − ζ̄k)(ζ − ζ̄k)t(F (ζ + ε)− F̄k)νk(ζ)π(ε) dε dζ

−
[

1

(1 + F̄k)Nk

∫∫
(ζ − ζ̄k)(F (ζ̄ + ε)− F̄k)νk(ζ)π(ε) dε dζ

]
γtk

1 + F̄k

− γk
1 + F̄k

[
1

(1 + F̄k)Nk

∫∫
(ζ − ζ̄k)t(F (ζ̄ + ε)− F̄k)νk(ζ)π(ε) dε dζ

]
+

1

(1 + F̄k)Nk

γkγ
t
k

(1 + F̄k)2

∫∫
(F (ζ̄ + ε)− F̄k)νk(ζ)π(ε) dεdζ .
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In this expression, the two bracketed integrals are transposed from each other, and
are equal to γk/(1 + F̄k), and the last line is null. The first line, on the other hand,
involves a third moment statistics between ζ twice and fitness

Tk :=
1

Nk

∫∫
(ζ − ζ̄k)(ζ − ζ̄k)t(F (ζ + ε)− F̄k)νk(ζ)π(ε) dεdζ .

Hence

B =
1

1 + F̄k
Tk − 2

γkγ
t
k

(1 + F̄k)2
,

and finally,

Gk+1 = Gk −
γkγ

t
k

(1 + F̄k)2
+

1

1 + F̄k
Tk . (10)

or
Gk+1 −Gk =

1

1 + F̄k
Tk − (z̄k+1 − z̄k)(z̄k+1 − z̄k)t . (11)

The second term in (10) is nonpositive definite. Hence, if the third moment
Tk is small, natural selection tends to lower genetic diversity, as measured by its
covariance matrix G.

Affine approximation If we use the affine approximation (6), we find (we must
insert the term F − F̄k = (ζ+ε− ζ̄k)tβ between the two ζ− ζ̄k to have a correctly
formed matrix product)

Tk =
1

Nk

∫∫
(ζ − ζ̄k)(ζ + ε− ζ̄k)tβ(ζ − ζ̄k)tν(ζ)π(ε) dεdζ

=
1

Nk

∫
(ζ − ζ̄k)(ζ − ζ̄k)tβ(ζ − ζ̄k)tν(ζ) dζ .

As a matter of fact,∫∫
(ζ − ζ̄k)εtβ(ζ − ζ̄k)tν(ζ)π(ε) dε dζ = 0

because each of its terms is of the form∫∫
φ(ζ)νk(ζ) dζεiπ(ε) dε =

∫
φ(ζ)νk(ζ) dζ

∫
εiπ(ε) dε = 0 .

Moreover, Tk can be written as the contracted product of the third order statistics
tensor of ζ. Let

Hk :=
1

Nk

∫
(ζ − ζ̄k)⊗ (ζ − ζ̄k)⊗ (ζ − ζ̄k)π(ε) dζ =

1

Nk

∫
(ζ − ζ̄k)⊗3ν(ζ) dζ,
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we have
Tk = Hk · β .

Using the evaluation of γk made above, we finally have

Gk+1 = Gk −
1

(1 + F̄k)2
Gkββ

tGk +
1

1 + F̄k
Hk · β .

2.3.2 Sexual reproduction

We now extend this analysis to our simple model of sexual reproduction, using (9).
We therefore have

Gk+1 =
1

(1 + F̄k)Nk∫∫∫
(ζ − ζ̄k)(ζ − ζ̄k)t(1 + F (ζ − η + ε))νk(ζ − η)π(ε)ρ(η) dζ dεdη .

We rewrite this equation as

Gk+1 =
1

(1 + F̄k)Nk
(A+B +Bt + C)

with

A=

∫∫∫
(ζ−η−ζ̄k+1)(ζ−η−ζ̄k+1)

t(1+F (ζ−η+ε))νk(ζ−η)π(ε) dζ dερ(η) dη

B =

∫
η

[∫∫
(ζ − η − ζ̄k+1)

t(1 + F (ζ − η + ε))νk(ζ − η)π(ε) dεdη

]
ρ(η) dη

C =

∫
ηηt
[∫∫

(1 + F (ζ − η + ε))νk(ζ − η)π(ε) dζ dε

]
ρ(η) dη .

In each of these three terms, using Fubini’s theorem, we integrate in η as the outer
integral, and in the inner double integral, we make the change of variable ζ − η =
θ. The three inner integrals are independant of η, therefore the integration in η
amounts to a multiplication by 1 and can be ignored.

The term A coincides with the formula of the asexual reproduction case of the
previous subsection. The inner double integral of the term B reads∫

(θ − ζ̄k+1)νk+1(θ) dθ = 0 ,

and the double integral of the term C is just 1 + F̄k. Let therefore the covariance
matrix of η be

D := Eηηt =

∫
ηηtρ(η) dη ,
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we find

Gk+1 = Gk −
γkγ

t
k

(1 + F̄ )2
+

1

1 + F̄k
(Tk +D) . (12)

or in the affine approximation

Gk+1 = Gk −
1

(1 + F̄ )2
Gkββ

tGk +
1

1 + F̄k
(Hk · β +D) .

2.4 Final remarks

• In the above model, let 1 + F = w, and likewise 1 + F̄k = w̄k, be the
ratio of births to deaths and its mean in a population, and notice the striking
similarity between equations (1) and (5) on the one hand, and (2) and (11)
on the other hand.

• Comparison of equations (10) and (12) show that our overly simplified model
suffices to show that sexual reproduction increases the genetic variance.

References

[1] J. W. EWENS AND A. HASTINGS, Aspects of optimality behavior in popula-
tion genetics theory, in Evolution and biocomputation : computational models
of evolution, W. Banzhaf and F. H. Eeckman, eds., Springer, Berlin, 1995,
pp. 7–17.

[2] J. STEPPAN, SCOTT, C. PHILLIPS, PATRICK, AND D. HOULE, Comparative
quantitative genetics: evolution of the g matrix, Trends in Ecology & Evolu-
tion, 17 (2002), pp. 320–327.

10


