Quantitative natural selection

Pierre Bernhard

January and March, 2013

1 Fisher's fundamental theorem of evolution

1.1 The fundamental theorem

In a population, a given locus may host one of n alleles: $A_{1}, A_{2}, \ldots, A_{n}$. The frequency at birth time of the pair $\left(A_{i}, A_{i}\right)$ is $P_{i i}$, and, because the pairs $\left(A_{i}, A_{j}\right)$ and $\left(A_{j}, A_{i}\right)$ are undistiguishable, their frequency is $2 P_{i j}$. Obviously, $\sum P_{i j}=1$.

The pair $\left(A_{i}, A_{j}\right)$ causes a viability $w_{i j}$, which measures the probability that an individual with this pair of alleles reach the age of reproduction. (Alternatively: a measure of the number of his progeny). The mean fitness and variance of the population at birth are

$$
\bar{w}=\sum_{i j} P_{i j} w_{i j}, \quad \text { and } \quad \sigma^{2}=\sum_{i j}\left(w_{i j}-\bar{w}\right)^{2} P_{i j} .
$$

The frequency of the pair $\left(A_{i}, A_{j}\right)$ at the age of reproduction is

$$
P_{i j}^{\prime}=\frac{w_{i j}}{\bar{w}} P_{i j} .
$$

This is also the frequency in the next generation. The new mean fitness is

$$
\bar{w}^{\prime}=\sum_{i j} P_{i j}^{\prime} w_{i j}=\sum_{i j} \frac{w_{i j}^{2}}{\bar{w}} P_{i j},
$$

and the variation of mean fitness is therefore

$$
\Delta \bar{w}=\frac{1}{\bar{w}}\left(\sum_{i j} w_{i j}^{2} P_{i j}-\bar{w}^{2}\right)=\frac{1}{\bar{w}} \sum_{i j}\left(w_{i j}^{2}-\bar{w}^{2}\right) P_{i j}
$$

This can also be written as

$$
\Delta \bar{w}=\frac{1}{\bar{w}}\left(\sum_{i j}\left(w_{i j}-\bar{w}\right)^{2} P_{i j}+2 \sum_{i j} w_{i j} \bar{w} P_{i j}-2 \bar{w}^{2}\right)
$$

The last two terms cancel, to leave

$$
\begin{equation*}
\Delta \bar{w}=\frac{1}{\bar{w}} \sum_{i j}\left(w_{i j}-\bar{w}\right)^{2} P_{i j}=\frac{\sigma^{2}}{\bar{w}} . \tag{1}
\end{equation*}
$$

1.2 Further remarks

1. In the above calculation, whose result is known as Fisher's fundamental theorem of evolution, the fact that we deal with pairs of alleles and double indices $(i j$) plays no role.
2. In that respect, one considers the frequencies of isolated alleles as

$$
p_{i}=\sum_{j} P_{i j},
$$

and random mating translates into the equality $P_{i j}=p_{i} p_{j}$, which is not satisfied under preferred mating. The increase in p_{i} during one generation is

$$
\delta_{i}:=p_{i}^{\prime}-p_{i}=\frac{1}{\bar{w}} \sum_{j} P_{i j}\left(w_{i j}-\bar{w}\right) .
$$

3. One defines the marginal viability effect of allele i as α_{i} defined as the solution of the following "least squares" optimisatiom problem (see [1])

$$
\min _{\alpha} \sum_{i j} P_{i j}\left(w_{i j}-\bar{w}-\alpha_{i}-\alpha_{j}\right)^{2},
$$

which is given in terms of the matrix $P=\left(P_{i j}\right)$, its diagonal D and the vector δ of marginal increases by (caution: $\delta \bar{w}$ is just the product of the vector δ and the scalar $\bar{w}) \alpha=(P+D)^{-1} \delta \bar{w}$.
4. The variation of the genetic viability variance may also be evaluated, as

$$
\begin{align*}
\Delta \sigma^{2} & :=\sigma^{2}-\sigma^{2}=\sum_{i j} P_{i j} \frac{w_{i j}}{\bar{w}}\left(w_{i j}-\bar{w}-\frac{\sigma^{2}}{\bar{w}}\right)-\sum_{i j} P_{i j}\left(w_{i j}-\bar{w}\right) \\
= & \sum_{i j} P_{i j}\left(\frac{w_{i j}}{\bar{w}}-1\right)\left(w_{i j}-\bar{w}\right)^{2}-2 \frac{\sigma^{2}}{\bar{w}} \sum_{i j} P_{i j} \frac{w_{i j}}{\bar{w}}\left(w_{i j}-\bar{w}\right)+\frac{\sigma^{4}}{\bar{w}^{2}} \\
= & \frac{1}{\bar{w}} \sum_{i j} P_{i j}\left(w_{i j}-\bar{w}\right)^{3}-2 \frac{\sigma^{2}}{\bar{w}^{2}} \sum_{i j} P_{i j}\left(w_{i j}-\bar{w}\right)^{2} \\
& -2 \frac{\sigma^{2}}{\bar{w}^{2}} \sum_{i j} P_{i j} \bar{w}\left(w_{i j}-\bar{w}\right)+\frac{\sigma^{4}}{\bar{w}^{2}} \\
= & \frac{1}{\bar{w}} \sum_{i j} P_{i j}\left(w_{i j}-\bar{w}\right)^{3}-\frac{\sigma^{4}}{\bar{w}^{2}} \\
= & \frac{1}{\bar{w}} \sum_{i j} P_{i j}\left(w_{i j}-\bar{w}\right)^{3}-(\Delta \bar{w})^{2} . \tag{2}
\end{align*}
$$

2 Quantitative genetics and the breeder's equation

(Pierre Bernhard, January, 22, 2013)

2.1 Introduction

We consider a population Ω of a given species. Each individual is characterized by a phenotype (collection of traits) $z \in \mathbb{R}^{n}$. However, the value of each trait may be partitioned as a mean value ζ, which depends on the genotype of the individual, and an environmental variability ε, a random variable with zero mean, density $\pi(\cdot)$, independant from the distribution of ζ. Our set of hypotheses is therefore: z, ζ, ε $\in \mathbb{R}^{n}$, and

$$
\begin{aligned}
& z=\zeta+\varepsilon \\
& \mathbb{E} \varepsilon=\int_{\mathbb{R}^{n}} \varepsilon \pi(\varepsilon) \mathrm{d} \varepsilon=0 \quad \Longrightarrow \quad \bar{z}:=\mathbb{E} z=\mathbb{E} \zeta=: \bar{\zeta} \\
& \mathbb{E}\binom{\zeta-\bar{\zeta}}{\varepsilon}\left((\zeta-\bar{\zeta})^{t} \quad \varepsilon^{t}\right)=\left(\begin{array}{cc}
G & 0 \\
0 & E
\end{array}\right),
\end{aligned}
$$

hence also

$$
P:=\mathbb{E}(z-\bar{z})(z-\bar{z})^{t}=G+E
$$

$(G$ stands for Genetic, E for Environmental, and P for Population. Notations borrowed from [2].)

The (misleading ?) notation $\mathbb{E} \zeta$ refers to the mean over the population Ω. The total "weight" of Ω is N. There is a difficulty here in the fact that, to simplify the notation, we shall often do as if Ω were a continuum. Therefore we call "weight" of the population what should be the number of individuals if it were finite.

The "weight" of individuals with traits in a given subdomain of \mathbb{R}^{n} is a measure over \mathbb{R}^{n}. We assume that it has a density $n(z)$, and that there is a corresponding density $\nu(\zeta)$ of the genotype-induced mean traits. (We shall call ζ the genotype, in short.)

We shall assume with little loss of generality that π, n and ν have compact support. All integrals will be over \mathbb{R}^{n} or $\mathbb{R}^{\times} \mathbb{R}^{n}$ as needed. Hence

$$
N=\int \nu(\zeta) \mathrm{d} \zeta, \quad \bar{z}=\bar{\zeta}=\frac{1}{N} \int \zeta \nu(\zeta) \mathrm{d} \zeta
$$

We shall consider the change in these variables from generation k to generation $k+1$, adding a subscript k or $k+1$ as needed to the quantities that change with them. We assume that the fitness of the individuals is related to z by a function $F(z)$ which measures the excess of births over deaths per capita among individuals with phenotype z.

2.2 Traits mean value

2.2.1 Asexual reproduction

In this simple model, "likes beget likes", i.e. the offspring have the same genotype as their parent. As a result, we get the following simple hereditary mechanism:

$$
\begin{equation*}
\nu_{k+1}(\zeta)=\int(1+F(\zeta+\varepsilon)) \nu_{k}(\zeta) \pi(\varepsilon) \mathrm{d} \varepsilon \tag{3}
\end{equation*}
$$

and

$$
N_{k+1}=\iint(1+F(\zeta+\varepsilon)) \nu_{k}(\zeta) \pi(\varepsilon) \mathrm{d} \varepsilon \mathrm{~d} \zeta
$$

Let $\bar{F}_{k}=\left(1 / N_{k}\right) \int F(\zeta+\varepsilon) \nu_{k}(\zeta) \pi(\varepsilon) \mathrm{d} \zeta \mathrm{d} \varepsilon$ denote the avarage fitness of the generation k. We get

$$
N_{k+1}=\left(1+\bar{F}_{k}\right) N_{k}
$$

We aim to compute \bar{z}_{k+1}. We have

$$
\begin{aligned}
\bar{z}_{k+1}= & \frac{1}{N_{k+1}} \int \zeta \nu_{k+1}(\zeta) \mathrm{d} \zeta=\frac{1}{N_{k+1}} \iint \zeta(1+F(\zeta+\varepsilon)) \nu_{k}(\zeta) \pi(\varepsilon) \mathrm{d} \varepsilon \mathrm{~d} \zeta \\
= & \frac{1}{N_{k+1}} \iint \zeta\left(1+\bar{F}_{k}\right) \nu_{k}(\zeta) \pi(\varepsilon) \mathrm{d} \varepsilon \mathrm{~d} \zeta+ \\
& \frac{1}{N_{k+1}} \iint \zeta\left(F(\zeta+\varepsilon)-\bar{F}_{k}\right) \nu_{k}(\zeta) \pi(\varepsilon) \mathrm{d} \varepsilon \mathrm{~d} \zeta \\
= & \bar{z}_{k}+\frac{1}{\left(1+\bar{F}_{k}\right) N_{k}} \iint\left(\zeta-\bar{\zeta}_{k}\right)\left(F(\zeta+\varepsilon)-\bar{F}_{k}\right) \nu_{k}(\zeta) \pi(\varepsilon) \mathrm{d} \varepsilon \mathrm{~d} \zeta .
\end{aligned}
$$

The last equation uses the fact that

$$
\frac{1}{N_{k}} \iint \bar{\zeta}_{k}\left(F(\zeta+\varepsilon)-\bar{F}_{k}\right) \nu_{k}(\zeta) \pi(\varepsilon) \mathrm{d} \varepsilon \mathrm{~d} \zeta=0
$$

Let

$$
\begin{equation*}
\gamma_{k}=\frac{1}{N_{k}} \iint\left(\zeta-\bar{\zeta}_{k}\right)\left(F(\zeta+\varepsilon)-\bar{F}_{k}\right) \nu_{k}(\zeta) \pi(\varepsilon) \mathrm{d} \varepsilon \mathrm{~d} \zeta \tag{4}
\end{equation*}
$$

denote the covariance between the additive genetic variation and fitness in the population.

We obtain the fundamental theorem:
Theorem 1 The variation in mean phenotype value in one generation is proportional to the covariance between additive genetic variation and fitness in the population:

$$
\begin{equation*}
\bar{z}_{k+1}=\bar{z}_{k}+\frac{\gamma_{k}}{1+\bar{F}_{k}} . \tag{5}
\end{equation*}
$$

Affine approximation Assume that the variations in z are actually sufficiently small so that in the range considered, F is well approximated by its first order linear approximation

$$
\begin{equation*}
F(z)=\alpha+\langle\beta, z\rangle \tag{6}
\end{equation*}
$$

The vector β plays the role of ∇F or selection gradient. It follows that $\bar{F}=$ $\alpha+\langle\beta, \bar{z}\rangle$. Hence, the variation in \bar{z} is

$$
\begin{aligned}
\bar{z}_{k+1}-\bar{z}_{k} & =\frac{1}{N_{k}\left(1+\bar{F}_{k}\right)} \iint\left(\zeta-\bar{\zeta}_{k}\right)\left(\zeta+\varepsilon-\bar{\zeta}_{k}\right)^{t} \beta \nu_{k}(\zeta) \pi(\varepsilon) \mathrm{d} \varepsilon \mathrm{~d} \zeta \\
& =\frac{1}{1+\bar{F}_{k}} G_{k} \beta+\frac{1}{\left(1+\bar{F}_{k}\right) N_{k}} \int\left[\int\left(\zeta-\bar{\zeta}_{k}\right) \nu_{k}(\zeta) \mathrm{d} \zeta\right] \varepsilon^{t} \beta \pi(\varepsilon) \mathrm{d} \varepsilon
\end{aligned}
$$

The last integral is null (it is the product of two null terms), and we obtain the main equation of natural selection:

$$
\begin{equation*}
\bar{z}_{k+1}-\bar{z}_{k}=\frac{1}{1+\bar{F}_{k}} G_{k} \beta \tag{7}
\end{equation*}
$$

However, the selection gradient β is not directly measurable. What is measurable is the covariance S between traits and fitness. Let therefore

$$
S_{k}:=\int\left(z-\bar{z}_{k}\right)\left(F(z)-\bar{F}_{k}\right) n_{k}(z) \mathrm{d} z
$$

with the same affine approximation of F, this gives

$$
S_{k}=P_{k} \beta
$$

so that with the main equation (7), we get the breeder's equation:

$$
\begin{equation*}
\bar{z}_{k+1}-\bar{z}_{k}=\frac{1}{1+\bar{F}_{k}} G_{k} P_{k}^{-1} S_{k} \tag{8}
\end{equation*}
$$

2.2.2 Sexual reproduction

We provide a vastly simplified model of sexual reproduction. Say, for now, that we are interested in a male character, typically a male "display" such as considered in sexual selection. Let now $n(z)$ and $\nu(\zeta)$ be densities of males. We assume that the genotypes of the offspring of a given male are distributed around the parent's genotype, the difference being a random variable η with zero mean, and density $\rho(\cdot)$. Hence, the offspring of every male with genotype ζ are of the form $\zeta+\eta$, with

$$
\int \eta \rho(\eta) \mathrm{d} \eta=0
$$

Let $\mu_{k+1}(\zeta)$ be the measure density of the offspring of all males with genotype ζ in population k, i.e.

$$
\mu_{k+1}(\zeta)=\int(1+F(\zeta+\varepsilon)) \nu_{k}(\zeta) \pi(\varepsilon) \mathrm{d} \varepsilon
$$

Our simplified model of sexual reproduction yields

$$
\nu_{k+1}(\zeta)=\int \mu_{k+1}(\zeta-\eta) \rho(\eta) \mathrm{d} \eta
$$

Hence,

$$
\begin{equation*}
\nu_{k+1}(\zeta)=\iint(1+F(\zeta-\eta+\varepsilon)) \nu_{k}(\zeta-\eta) \pi(\varepsilon) \rho(\eta) \mathrm{d} \varepsilon \mathrm{~d} \eta \tag{9}
\end{equation*}
$$

and

$$
\bar{z}_{k+1}(\zeta)=\frac{1}{\left(1+\bar{F}_{k}\right) N_{k}} \iiint \zeta(1+F(\zeta-\eta+\varepsilon)) \nu_{k}(\zeta-\eta) \pi(\varepsilon) \rho(\eta) \mathrm{d} \varepsilon \mathrm{~d} \eta \mathrm{~d} \zeta
$$

Hence

$$
\begin{aligned}
& \bar{z}_{k+1}(\zeta)= \\
& \quad \frac{1}{\left(1+\bar{F}_{k}\right) N_{k}} \iiint(\zeta-\eta)(1+F(\zeta-\eta+\varepsilon)) \nu_{k}(\zeta-\eta) \pi(\varepsilon) \rho(\eta) \mathrm{d} \varepsilon \mathrm{~d} \eta \mathrm{~d} \zeta \\
& +\frac{1}{\left(1+\bar{F}_{k}\right) N_{k}} \iiint \eta(1+F(\zeta-\eta+\varepsilon)) \nu_{k}(\zeta-\eta) \pi(\varepsilon) \rho(\eta) \mathrm{d} \varepsilon \mathrm{~d} \eta \mathrm{~d} \zeta
\end{aligned}
$$

Using Fubini's theorem, we integrate first in ζ as the inner integral, then in ε, and finally in η as the outer integral. Let $\theta=\zeta-\eta$. We get

$$
\begin{aligned}
\bar{z}_{k+1}(\zeta) & =\frac{1}{\left(1+\bar{F}_{k}\right) N_{k}} \int\left[\iint \theta(1+F(\theta+\varepsilon)) \nu_{k}(\theta) \pi(\varepsilon) \mathrm{d} \theta \mathrm{~d} \varepsilon\right] \rho(\eta) \mathrm{d} \eta \\
& +\frac{1}{\left(1+\bar{F}_{k}\right) N_{k}} \int \eta\left[\iint(1+F(\theta+\varepsilon)) \nu_{k}(\theta) \pi(\varepsilon) \mathrm{d} \zeta \mathrm{~d} \varepsilon\right] \rho(\eta) \mathrm{d} \eta
\end{aligned}
$$

In the first line, the inner double integral is exactly the same as for the asexual reproduction, and is independent from η, it is therefore multiplied by $\int \rho(\eta) \mathrm{d} \eta=1$. In the second line, the inner double integral is again independent from η. It is therefore just multiplied by $\int \eta \rho(\eta) \mathrm{d} \eta=0$ by hypothesis.

Therefore, for this highly simplified model of sexual reproduction, we recover the same theorem and equations (7), (8), as in our model of asexual reproduction.

2.3 Genetic covariance

In [2], the authors question whether the genetic covariance matrix G changes from generation to generation, and, based upon statistical laboratory experiments, concludes that indeed, it does. We propose here a investigation of that question based upon our model.

2.3.1 Asexual reproduction

We start again from equation (3), and get

$$
G_{k+1}=\frac{1}{\left(1+\bar{F}_{k}\right) N_{k}} \iint\left(\zeta-\bar{\zeta}_{k+1}\right)\left(\zeta-\bar{\zeta}_{k+1}\right)^{t}\left(1+\bar{F}_{k}(\zeta+\varepsilon)\right) \nu_{k}(\zeta) \pi(\varepsilon) \mathrm{d} \varepsilon \mathrm{~d} \zeta
$$

Replacing as previously $1+F$ by $\left(1+\bar{F}_{k}\right)+\left(F-\bar{F}_{k}\right)$ and using (5), we get

$$
G_{k+1}=A+B
$$

with

$$
\begin{array}{r}
A=\frac{1}{N_{k}} \iint\left(\zeta-\bar{\zeta}_{k}-\frac{\gamma_{k}}{1+\bar{F}_{k}}\right)\left(\zeta-\bar{\zeta}_{k}-\frac{\gamma_{k}}{1+\bar{F}_{k}}\right)^{t} \nu_{k}(\zeta) \pi(\varepsilon) \mathrm{d} \varepsilon \mathrm{~d} \zeta \\
B=\frac{1}{\left(1+\bar{F}_{k}\right) N_{k}} \iint\left(\zeta-\bar{\zeta}_{k}-\frac{\gamma_{k}}{1+\bar{F}_{k}}\right)\left(\zeta-\bar{\zeta}_{k}-\frac{\gamma_{k}}{1+\bar{F}_{k}}\right)^{t}\left(F(\zeta+\varepsilon)-\bar{F}_{k}\right) \\
\nu_{k}(\zeta) \pi(\varepsilon) \mathrm{d} \varepsilon \mathrm{~d} \zeta .
\end{array}
$$

We easily get

$$
A=G_{k}+\frac{\gamma_{k} \gamma_{k}^{t}}{\left(1+\bar{F}_{k}\right)^{2}}
$$

Concerning B we have

$$
\begin{aligned}
B & =\frac{1}{\left(1+\bar{F}_{k}\right) N_{k}} \iint\left(\zeta-\bar{\zeta}_{k}\right)\left(\zeta-\bar{\zeta}_{k}\right)^{t}\left(F(\zeta+\varepsilon)-\bar{F}_{k}\right) \nu_{k}(\zeta) \pi(\varepsilon) \mathrm{d} \varepsilon \mathrm{~d} \zeta \\
& -\left[\frac{1}{\left(1+\bar{F}_{k}\right) N_{k}} \iint\left(\zeta-\bar{\zeta}_{k}\right)\left(F(\bar{\zeta}+\varepsilon)-\bar{F}_{k}\right) \nu_{k}(\zeta) \pi(\varepsilon) \mathrm{d} \varepsilon \mathrm{~d} \zeta\right] \frac{\gamma_{k}^{t}}{1+\bar{F}_{k}} \\
& -\frac{\gamma_{k}}{1+\bar{F}_{k}}\left[\frac{1}{\left(1+\bar{F}_{k}\right) N_{k}} \iint\left(\zeta-\bar{\zeta}_{k}\right)^{t}\left(F(\bar{\zeta}+\varepsilon)-\bar{F}_{k}\right) \nu_{k}(\zeta) \pi(\varepsilon) \mathrm{d} \varepsilon \mathrm{~d} \zeta\right] \\
& +\frac{1}{\left(1+\bar{F}_{k}\right) N_{k}} \frac{\gamma_{k} \gamma_{k}^{t}}{\left(1+\bar{F}_{k}\right)^{2}} \iint\left(F(\bar{\zeta}+\varepsilon)-\bar{F}_{k}\right) \nu_{k}(\zeta) \pi(\varepsilon) \mathrm{d} \varepsilon \mathrm{~d} \zeta .
\end{aligned}
$$

In this expression, the two bracketed integrals are transposed from each other, and are equal to $\gamma_{k} /\left(1+\bar{F}_{k}\right)$, and the last line is null. The first line, on the other hand, involves a third moment statistics between ζ twice and fitness

$$
T_{k}:=\frac{1}{N_{k}} \iint\left(\zeta-\bar{\zeta}_{k}\right)\left(\zeta-\bar{\zeta}_{k}\right)^{t}\left(F(\zeta+\varepsilon)-\bar{F}_{k}\right) \nu_{k}(\zeta) \pi(\varepsilon) \mathrm{d} \varepsilon \mathrm{~d} \zeta
$$

Hence

$$
B=\frac{1}{1+\bar{F}_{k}} T_{k}-2 \frac{\gamma_{k} \gamma_{k}^{t}}{\left(1+\bar{F}_{k}\right)^{2}}
$$

and finally,

$$
\begin{equation*}
G_{k+1}=G_{k}-\frac{\gamma_{k} \gamma_{k}^{t}}{\left(1+\bar{F}_{k}\right)^{2}}+\frac{1}{1+\bar{F}_{k}} T_{k} \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
G_{k+1}-G_{k}=\frac{1}{1+\bar{F}_{k}} T_{k}-\left(\bar{z}_{k+1}-\bar{z}_{k}\right)\left(\bar{z}_{k+1}-\bar{z}_{k}\right)^{t} \tag{11}
\end{equation*}
$$

The second term in (10) is nonpositive definite. Hence, if the third moment T_{k} is small, natural selection tends to lower genetic diversity, as measured by its covariance matrix G.

Affine approximation If we use the affine approximation (6), we find (we must insert the term $F-\bar{F}_{k}=\left(\zeta+\varepsilon-\bar{\zeta}_{k}\right)^{t} \beta$ between the two $\zeta-\bar{\zeta}_{k}$ to have a correctly formed matrix product)

$$
\begin{aligned}
T_{k} & =\frac{1}{N_{k}} \iint\left(\zeta-\bar{\zeta}_{k}\right)\left(\zeta+\varepsilon-\bar{\zeta}_{k}\right)^{t} \beta\left(\zeta-\bar{\zeta}_{k}\right)^{t} \nu(\zeta) \pi(\varepsilon) \mathrm{d} \varepsilon \mathrm{~d} \zeta \\
& =\frac{1}{N_{k}} \int\left(\zeta-\bar{\zeta}_{k}\right)\left(\zeta-\bar{\zeta}_{k}\right)^{t} \beta\left(\zeta-\bar{\zeta}_{k}\right)^{t} \nu(\zeta) \mathrm{d} \zeta
\end{aligned}
$$

As a matter of fact,

$$
\iint\left(\zeta-\bar{\zeta}_{k}\right) \varepsilon^{t} \beta\left(\zeta-\bar{\zeta}_{k}\right)^{t} \nu(\zeta) \pi(\varepsilon) \mathrm{d} \varepsilon \mathrm{~d} \zeta=0
$$

because each of its terms is of the form

$$
\iint \phi(\zeta) \nu_{k}(\zeta) \mathrm{d} \zeta \varepsilon_{i} \pi(\varepsilon) \mathrm{d} \varepsilon=\int \phi(\zeta) \nu_{k}(\zeta) \mathrm{d} \zeta \int \varepsilon_{i} \pi(\varepsilon) \mathrm{d} \varepsilon=0
$$

Moreover, T_{k} can be written as the contracted product of the third order statistics tensor of ζ. Let
$H_{k}:=\frac{1}{N_{k}} \int\left(\zeta-\bar{\zeta}_{k}\right) \otimes\left(\zeta-\bar{\zeta}_{k}\right) \otimes\left(\zeta-\bar{\zeta}_{k}\right) \pi(\varepsilon) \mathrm{d} \zeta=\frac{1}{N_{k}} \int\left(\zeta-\bar{\zeta}_{k}\right)^{\otimes 3} \nu(\zeta) \mathrm{d} \zeta$,
we have

$$
T_{k}=H_{k} \cdot \beta
$$

Using the evaluation of γ_{k} made above, we finally have

$$
G_{k+1}=G_{k}-\frac{1}{\left(1+\bar{F}_{k}\right)^{2}} G_{k} \beta \beta^{t} G_{k}+\frac{1}{1+\bar{F}_{k}} H_{k} \cdot \beta
$$

2.3.2 Sexual reproduction

We now extend this analysis to our simple model of sexual reproduction, using (9).
We therefore have

$$
\begin{aligned}
G_{k+1}= & \frac{1}{\left(1+\bar{F}_{k}\right) N_{k}} \\
& \iiint\left(\zeta-\bar{\zeta}_{k}\right)\left(\zeta-\bar{\zeta}_{k}\right)^{t}(1+F(\zeta-\eta+\varepsilon)) \nu_{k}(\zeta-\eta) \pi(\varepsilon) \rho(\eta) \mathrm{d} \zeta \mathrm{~d} \varepsilon \mathrm{~d} \eta
\end{aligned}
$$

We rewrite this equation as

$$
G_{k+1}=\frac{1}{\left(1+\bar{F}_{k}\right) N_{k}}\left(A+B+B^{t}+C\right)
$$

with

$$
\begin{aligned}
& A=\iiint\left(\zeta-\eta-\bar{\zeta}_{k+1}\right)\left(\zeta-\eta-\bar{\zeta}_{k+1}\right)^{t}(1+F(\zeta-\eta+\varepsilon)) \nu_{k}(\zeta-\eta) \pi(\varepsilon) \mathrm{d} \zeta \mathrm{~d} \varepsilon \rho(\eta) \mathrm{d} \eta \\
& B=\int \eta\left[\iint\left(\zeta-\eta-\bar{\zeta}_{k+1}\right)^{t}(1+F(\zeta-\eta+\varepsilon)) \nu_{k}(\zeta-\eta) \pi(\varepsilon) \mathrm{d} \varepsilon \mathrm{~d} \eta\right] \rho(\eta) \mathrm{d} \eta \\
& C=\int \eta \eta^{t}\left[\iint(1+F(\zeta-\eta+\varepsilon)) \nu_{k}(\zeta-\eta) \pi(\varepsilon) \mathrm{d} \zeta \mathrm{~d} \varepsilon\right] \rho(\eta) \mathrm{d} \eta
\end{aligned}
$$

In each of these three terms, using Fubini's theorem, we integrate in η as the outer integral, and in the inner double integral, we make the change of variable $\zeta-\eta=$ θ. The three inner integrals are independant of η, therefore the integration in η amounts to a multiplication by 1 and can be ignored.

The term A coincides with the formula of the asexual reproduction case of the previous subsection. The inner double integral of the term B reads

$$
\int\left(\theta-\bar{\zeta}_{k+1}\right) \nu_{k+1}(\theta) \mathrm{d} \theta=0
$$

and the double integral of the term C is just $1+\bar{F}_{k}$. Let therefore the covariance matrix of η be

$$
D:=\mathbb{E} \eta \eta^{t}=\int \eta \eta^{t} \rho(\eta) \mathrm{d} \eta
$$

we find

$$
\begin{equation*}
G_{k+1}=G_{k}-\frac{\gamma_{k} \gamma_{k}^{t}}{(1+\bar{F})^{2}}+\frac{1}{1+\bar{F}_{k}}\left(T_{k}+D\right) \tag{12}
\end{equation*}
$$

or in the affine approximation

$$
G_{k+1}=G_{k}-\frac{1}{(1+\bar{F})^{2}} G_{k} \beta \beta^{t} G_{k}+\frac{1}{1+\bar{F}_{k}}\left(H_{k} \cdot \beta+D\right) .
$$

2.4 Final remarks

- In the above model, let $1+F=w$, and likewise $1+\bar{F}_{k}=\bar{w}_{k}$, be the ratio of births to deaths and its mean in a population, and notice the striking similarity between equations (1) and (5) on the one hand, and (2) and (11) on the other hand.
- Comparison of equations (10) and (12) show that our overly simplified model suffices to show that sexual reproduction increases the genetic variance.

References

[1] J. W. Ewens and A. Hastings, Aspects of optimality behavior in population genetics theory, in Evolution and biocomputation : computational models of evolution, W. Banzhaf and F. H. Eeckman, eds., Springer, Berlin, 1995, pp. 7-17.
[2] J. Steppan, Scott, C. Phillips, Patrick, and D. Houle, Comparative quantitative genetics: evolution of the g matrix, Trends in Ecology \& Evolution, 17 (2002), pp. 320-327.

