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Abstract

We give an overview of our work since 2000 on an alternate theory of op-
tion pricing and contingent claim hedging based upon the so-called “interval
model” of security prices, which let us develop a consistent theory in dis-
crete and continuous trading within the same model, taking transaction costs
into account from the start. The interval model rules out crises on the stock
market. While Samuelson’s model does not, so does in practice Black and
Scholes’ theory in its assumption of instantaneous, continuous trading. Our
theory does not make use of any probabilisticknowledge(or ratherassump-
tion) on market prices. But we show that Black and Scholes theory does not
either.

1 Introduction

If a mathematical model can be termed “good” only relatively to a purpose, the
classical Samuelson (geometric diffusion) model of stock prices on the market is
not good for the purpose of deriving a hedging method and pricing rule for options
in the presence of transaction costs (see [20]), nor in discrete trading. For that
reason, new approaches have appeared in the work of various authors ([15, 16,
17, 1, 14, 18, 19]) all based upon the ideas of robust control, and most of them
somehow assuming some bounds on how fast prices may evolve.

In these approaches, the critical part of the market model is the setΩ of ad-
missible trajectories. In spite of the choice of name, aimed at recalling that there
lie the uncertainties, in these approaches there is no need to endow this set with
a probabilistic structure, thus greatly simplifying the model. The intuitive notion
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of “‘causal” strategy (“adapted” in the parlance of stochastic theories) will be ren-
dered by the technical apparatus ofnon-anticipative strategies, classical in the the-
ory of differential games and robust control. This lets one formalize the fact that
future stock prices are not known by the trader. In some sense, we even give the
trader less information on future prices than any stochastic theory, since we do not
even let it know a probability law governing future prices.

We review here our own work, most of which uses the so called “interval
model” of the market, independently introduced around 1999 by Aubin and Pujal,
ourselves and Roorda, Engwerda, and Schumacher, the latter being the inventors of
the name we use. This work has sometimes been criticized on the basis of the fact
that since it does not make use of any probabilistic knowledge (orassumptions) on
the market, it cannot capture the essence of the problem. Hence we review also
here an earlier work of ours which shows that the celebrated Black and Scholes
theory does not either.

On our way, and in particular in subsection 4.1 and in the conclusion, we
provide some discussions of the relative merits and weaknesses of these two ap-
proaches.

2 Dynamics and hedging

2.1 Notations and Dynamics

Our notations will be as follows. All the problems we consider will be on a fixed
time interval[0, T ]. There exists a riskless interest rateρ per unit time, and we
shall use the end-value factor

R(t) = eρ(t−T )

which can equivalently be thought of as the value of a riskless bound worth one
at timeT . All monetary values will be expressed in end-time value, so that the
riskless rate will disappear from most of the theory.

We shall letS(t) be the price at timet of a specifiedunderlyingsecurity, and
let

u(t) =
S(t)
R(t)

.

We shall consider ahedging portfoliocontaining an amountv(t) (in end-time mon-
etary value) of the underlying security, the rest beingy(t) riskless bounds, for a
total worth (in end-time value) ofw(t) = v(t) + y(t).

Transaction amounts will be denotedξ (see more details below). When trans-
action costs are present, we shall take them proportional to the amount of the trans-
action, the proportionality coefficient beingC+ for a buy of the underlying, and
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−C− for a sale. We shall letε be the sign of the transaction, so that its cost will be
Cεξ. Closing transactions at exercize timeT will bear costs at possibly different
ratesc+ andc−, of absolute value no more than their counterpartsC+ andC−

respectively.

2.1.1 Continuous trading

In the case of continuous trading, in all of our developments but one (section 3.1.2),
u(·) will be absolutely continuous, and we shall let

τ(t) =
u̇(t)
u(t)

.

It is defined for almost allt and measurable, andu(·) is the unique (according to
Gronwal’s inequality) continuous solution ofu(t) = u(0) +

∫ t
0 τ(s)u(s) ds. So

that we may alternatively representu(·) via u(0) andτ(·).
We shall letξ(t) be our rate (in end-time value) of trading, a buy ifξ(t) > 0,

a sale ifξ(t) < 0. We shall also allow for impulsions inξ(·) at a finite number of
time instantstk, of amplitudeξk, all chosen by the trader as part of its control.

We summarize the dynamics as

u̇ = τu , (1)

v̇ = τv + ξ , (2)

v(t+k ) = v(tk) + ξk , (3)

ẇ = τv − Cεξ , (4)

w(t+k ) = w(tk)− Cεkξk . (5)

We shall use the fact that the last two equations integrate explicitly as

w(t) = w(0) +
∫ t

0
(τ(s)v(s)− Cεξ(s)) ds−

∑
k|tk<t

Cεkξk . (6)

2.1.2 Discrete trading

In the case of discrete trading, a time steph is fixed. The trader is constrained to
use impulses only, at fixed time instantstk = kh. We writeu(kh) = u(tk) = uk,
and similarly forv andw. Let alsoτk be the relative variation ofu during the time
step[tk, tk+1]:

τk =
uk+1 − uk

uk
,

3



so that again,u0 and the sequence{τk} together define the sequence{uk}. No-
tice however that a non anticipative strategy must make use of strictly pastτj ’s to
determineξk (j < k).

The dynamics are now

uk+1 = (1 + τk)uk , (7)

vk+1 = (1 + τk)(vk + ξk) , (8)

wk+1 = wk + τk(vk + ξk)− Cεξk , (9)

Again, the last equation integrates as

wk = w0 +
k−1∑
`=0

[τ`(v` + ξ`)− Cεξ`] . (10)

2.2 Hedging portfolio

2.2.1 Closure

In most of the paper, except subsection 5.4.1, we consider European claims, valued
at exercize timeT . Let M(u(T )) be the amount due by the writer to the buyer
according to the contingent claim. It is known to beM(u) = max{0, u−K} for a
Call of strikeK, andM(u) = max{K − u, 0} for a Put. But other claims may be
considered, such as a digital call worthM(u) = Υ(u−K), the Heaviside echelon.
Notice however that convexity ofM on the one hand, continuity on the other, do
make a difference, so that digital calls or puts yield a more complex theory that we
shall only allude to here.

The total expense incurred by the writer may be different fromM(u(T )) due
to transaction costs, themselves function of whether the final transaction is in cash
or in kind. We discuss here the case of a call, and we consider only positivev’s.
(We would consider negativev’s for a put.)

The auxiliary functionšv(u) and w̌(u) that we introduce now will serve in
subsection 4.3 as the final valuesv̌(T, u) andw̌(T, u) of the functionšv(t, u) and
w̌(t, u).

Closure in cash We give some details for a call option. The situation for a put
is entirely similar. In the case of a closure in cash, the trader will have to trade in
all of its underlying stocks, resulting in an added cost of−c−v(T ). (Recall that
c− ≤ 0.) Hence its total closure costs will beN(u(T ), v(T )) with

N(u, v) = M(u)− c−v .
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It will be useful to write this in terms of two auxiliary functionšv(u) andw̌(u),
according to the following tables

Call u ≤ K u ≥ K

v̌(u) 0 u
1+c−

w̌(u) 0 u
1+c− −K

N(u, v) = w̌(u) + c−(v̌(u)− v)

Put u ≤ K u ≥ K

v̌(u) − u
1+c+

0

w̌(u) K − u
1+c+

0

N(u, v) = w̌(u) + c+(v̌(u)− v)
(11)

Closure in kind Again we discuss the case of a call. In the case of a closure
in kind, if the buyer exerts the option, the trader will have to bring its underlying
content in its portfolio tov(T ) = u(T ) before giving one share of it to the buyer
in exchange forK in cash. Letη := sign(u− v). Hence we now get

N(u, v) = max{u(T )−K + cη(u− v) ,−c−v} .

A simple analysis shows that this can be described as follows. Let

Call u ≤ K
1+c+

K
1+c+

≤ u ≤ K
1+c−

K
1+c− ≤ u

v̌(u) 0 (1+c+)u−K
c+−c− u

w̌(u) 0 −c−v̌(u) u−K

(12)

Put u ≤ K
1+c+

K
1+c+

≤ u ≤ K
1+c−

K
1+c− ≤ u

v̌(u) −u K−(1+c−)u
c−−c+

0

w̌(u) K − u −c+v̌(u) 0

(12)

N is now given in both cases by the unique formula

N(u, v) = w̌(u) + cε(v̌(u)− v) , ε = sign(v̌(u)− v) . (13)

2.2.2 Non-anticipative strategies

Let ω ∈ Ω represent a realization of an uncertain time function, (say the price
history of a security),ω(t) be the information available to the trader from timet
on, andξ(t) be the trader’s decision at timet (a transaction level) withξ(·) ∈ Ξ. A
non-anticipative strategyis an application fromΩ to Ξ such that, if the restrictions
of ω1 and ofω2 to [0, t] coincide, so do those ofϕ(ω1) and ofϕ(ω2). In discrete
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time, we may distinguish strictly non anticipative strategies for which the condition
is thatω1(s) andω2(s) coincide fors < t. In continuous time, where we shall
allow Dirac impulses inξ(·), we must specify that if it contains an impulse at time
t, then the impulse is present in the restriction ofξ(·) to [0, t].

Let Ψ be the set of admissible relative rate of change historiesτ(·). We can as
well decide that the admissible strategies are non-anticipative maps fromR+ ×Ψ
intoΞ, but now, we must request that if the restrictions ofτ1(·) andτ2(·) to the half-
open set[0, t) coincide, thenϕ(u0, τ1(·))(t) = ϕ(u0, τ2(·))(t). This is the right
definition both in discrete time, because thenτ(t) is an information onu(t + h),
and in continuous time becauseτ(·) may be discontinuous, and it can be checked
that allowing a strategyξ(t) = ϕ(τ(t)) is not only not feasible in practice, it is also
no longer a non anticipative strategy inu(·). (It does no longer forbid arbitrages.)

We shall callΦ the set of admissible (non-anticipative) strategies, the context
will decide whether fromΩ into Ξ or fromR+ ×Ψ into Ξ.

2.2.3 Hedging

The aim of a hedging portfolio is to insure that, for all admissible price trajectories,

w(T ) ≥ N(u(T ), v(T )) . (14)

Equivalently, this can be written as

sup
u(·)∈Ω

[N(u(T ), v(T ))− w(T )] ≤ 0 ,

We reformulate this using (6). Use the representation(u(0), τ(·)) of u(·), and fix
u(0). We get

sup
τ(·)∈Ψ

[
N(u(T ), v(T )) +

∫ T

0
(−τ(s)v(s) + Cεξ(s)) ds +

∑
k

Cεkξk

]
≤ w(0) ,

or equivalently with the discrete formula (10). We wishw(0) to be as small as
possible, so we are lead to the investigation of

P (u0) = inf
ϕ∈Φ

sup
τ∈Ψ

[
N(u(T ), v(T )) +

∫ T

0
(−τ(s)v(s) + Cεξ(s)) ds +

∑
k

Cεkξk

]
.

(15)
As a matter of fact, the left hand side still depends onu(0). We shall therefore get
a price (orpremium) w(0) = P (u0), function ofu(0) = u0.

In the case of discrete trading, the equivalent formula is (withKh = T )

P (u0) = min
ϕ∈Φ

sup
τ∈Ψ

[
N(u(T ), v(T )) +

K−1∑
k=0

[−τk(vk + ξk) + Cεkξk]

]
(16)
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3 Continuous trading, no transaction costs

This section is based upon [3, 5].

3.1 A simple theory

The framework here is that of the classical theory. We haveC+ = C− = 0, and
closure expenses are justM(u(T )). In this case, there is no expense in moving
money from stocks (i.e.v) to bounds (y), and we may usev as our control and
disregardξ.

In this framework, we achieve (14) via the classical device ofreplication for
two different modelsΩ. We find a portfolio and a trading strategy insuring

∀u(·) ∈ Ω , w(T ) = M(u(T )).

A simple way of doing this is to exhibit a functionW (t, u) such that

∀u ∈ R+ , W (T, u) = M(u) , (17)

together with a strategyv = ϕ(t, u) such that if one actually implements that
strategy with an initial portfolio worthw(0) = W (0, u(0)), it results in

∀τ(·) ∈ Ψ , ∀t ∈ [0, T ] , w(t) = W (t, u(t)) .

The way to obtain this is to chooseϕ in such a way that

∀t ∈ [0, T ] , ∀u ∈ R+ , ẇ(t) =
dW (t, u(t))

dt
.

3.1.1 Prices with bounded total variation

Let us choose forΩ continuous functions with bounded total variation. We use the
notations of the Stieltjes calculus to get

∀u ∈ R+ , τv dt =
∂W

∂t
dt +

∂W

∂u
τu dt

which is achieved choosing

∂W

∂t
= 0 , v = u

∂W

∂u
.

Hence,W (t, u) = W (T, u) = M(u).
For a simple call, this means thatv = 0 if u < K, v = 1 if u > K. This is the

so called “stop loss” strategy. In that model, the premium is just the parity value
P (u) = M(u). (Recall that interest rates have been factored out via the use of end-
time values. In current value, this givesP (u(0)) = exp(−ρT )M(exp(ρT )u)).
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3.1.2 Prices with fixed relative quadratic total variation

Let σ be a fixed positive number. We now choose forΩ the setΩσ of continuous
functions such that

∀t ∈ [0, T ] , lim
h→0

t/h−1∑
k=0

(
u((k + 1)h)− u(kh)

u(kh)

)2

= σ2t .

(It should be noticed that the trajectories of the classical Samuelson geometric
diffusion model belong almost surely to that set.) These functions have infinite
total variation and are nowhere differentiable. But we make use of the following
simple form (independently proved in [5]) of a lemma of Föllmer :

Lemma 1 Let a twice continuously differentiable functionV (t, u) : [0, T ]×R+ →
R andu ∈ Ωσ be such that∀t ∈ [0, T ], it holds that(∂V/∂u)(t, u(t)) = 0, then
t 7→ V (t, u(t)) is differentiable and satisfies

d
dt

V (t, u(t)) =
∂V

∂t
(t, u(t)) +

σ2

2
u(t)2

∂2V

∂u2
(t, u(t)) .

We setv = xu, so thatw = xu+ y, and letV (t, u) = W (t, u)−x(t)u− y(t).
We insure the condition∂V/∂u = 0 by choosingx(t) = (∂W/∂u)(t, u(t)), and
use the fact thatdw = xdu thusdxu + dy = 0 (theself-financing condition) to
obtain that the conditiondV/dt = 0 is equivalent to

∂W

∂t
+

σ2

2
u2 ∂2W

∂u2
= 0 .

Thus, ifW satisfies the above equation and the boundary condition (17), which to-
gether form the celebrated “Black and Scholes equation” [10], the strategyv(t) =
u(t)(∂W/∂u)(t, u(t)) insures that the hedging condition (14) be met.

This yields a “light” Black and Scholes theory (see [5] for more details), and
mainly serves the purpose of showing that the said theory does not really make use
of any probabilistic assumption on the price trajectories, but only on their regu-
larity. Incidentally, it also answers the question “why is the drift absent from the
solution?”. Our answer is “because it is absent from the problem statement”.

4 Interval model: continuous trading

This section is based upon [8, 9].
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4.1 The interval model

We now introduce the market model that we shall use from now on, in both the
continuous trading and the discrete trading theories, which shall merge in a single
one.

Let two numbersτ− < 0 andτ+ > 0 be given. We chooseΩ as follows:

Ω = {u(·) absolutely continuous|
∀t1, t2 ∈ [0, T ] , eτ−(t2−t1) ≤ u(t2)

u(t1) ≤ eτ+(t2−t1)} .
(18)

An equivalent characterization we shall use in the continuous trading theory is (1)
together with the conditionτ ∈ [τ−, τ+].

Hence we assume that the relative rate of variation of the underlying’s price is
bounded by a priori bounds. This is a weakness of our theory, since fast variations
of the prices are ruled out from the start by the very model we work with, while we
know that they do happen in real life.

The geometric diffusion model used by the theory of Black and Scholes does
not have that drawback. But it cannot be used to derive a theory of hedging with
proportional transaction costs (see [20]) because its trajectories are of unbounded
total variation, yielding infinite transaction costs, nor in discrete time, whether with
or without transaction costs, because the possible price variation in any finite time
interval is unbounded. The fact that the continuous trajectory be of unbounded
total variation may be a desirable feature. Anyhow, it is difficult to avoid within
a stochastic theory, as it is a consequence of the fact that one needs a process
with independent increments to avoid any arbitrage opportunity. The framework of
robust control and non-anticipative strategies avoids that problem since we do not
need to endow the set of trajectories with a probability which the trader might use
to devise an arbitrage.

It should be further emphasized that Black and Scholes’theory suffers its own
shortcomings in that it requires a continuous trading with no delay in information
use, an unrealistic portfolio model. This is of little consequence as long as the
prices do not change too rapidly, but becomes a fundamental limitation of the use-
fulness of the theory as a guide to managing a hedging portfolio when these sudden
changes do happen. Hence in the situations where our market model is violated, so
is Black and Scholes’portfolio model.

4.2 Isaacs’equation

We therefore have the following problem to solve. The dynamics are now (1)(2)(3)
with τ(·) ∈ Ψ = {measurable functions[0, T ] → [τ−, τ+]}, ξ(·) ∈ Ξ where it
is understood thatξ(·) contains the impulses that cause the jumps (3), that is,Ξ is
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the set of all sums of measurable functions from[0, T ] into R and of finitely many
weighted translated Dirac impulsesξkδ(t− tk).

The problem is to find, if it exists, the non-anticipative strategyϕ∗ ∈ Φ that
provides the minimum in (15).

This is a non classical differential game in that it features an impulse control,
and the corresponding Isaacs quasi variational inequality is further degenerated,
as compared to the (control) theory in [2], because the cost of jumps has a zero
infimum. Yet, we may take advantage of that last fact to transform that game into
a classical one in an artificial time (see Joshua’s transformation in [8]), leading to
a differential form of the quasi-variational inequality of the impulse control game,
and to the following theorem.

Theorem 1 The Value functionW (t, u, v) of the above game is a viscosity solution
of the following differential quasi variational inequality:

0 = min

{
∂W

∂t
+ max

τ∈[τ−,τ+]
τ

[
∂W

∂u
u +

(
∂W

∂v
− 1
)

v

]
,

∂W

∂v
+ C+ , −

(
∂W

∂v
+ C−

)}
,

W (T, u, v) = N(u, v) .

(19)

This function is further characterized by its rates of growth at infinity inu (one)
andv (−C+ at −∞ and−C− at +∞). Yet, a direct uniqueness proof derived
from the theory of viscosity solutions of Isaacs equation is still missing. We rely
instead on the fact that the solution we shall exhibit with the representation theorem
below is sufficiently regular for the Isaacs-Breakwell theory to apply, the viscosity
condition being the modern form of Breakwell’s “non leaking corners” (or our
corner conditions). (See [4, 11].)

In our case, the functionN is convex. The following is a consequence of the
convergence theorem of the next section (we do not know a direct proof):

Theorem 2 When the functionN is convex, the solution of (19) is convex in(u, v)
for all t.

This is an interesting property in itself. In addition, we discuss in [8] how this saves
much time in the computations of a discretized scheme for numerically solving that
equation. Yet the real breakthrough in the numerical computation of that function
is given by the following subsection, and the corresponding numerical algorithm
that we shall show in the next section.
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4.3 A representation theorem

We need to introduce the following notations. Let, for a closure in kind

q−(t) = max{(1 + c−) exp[τ−(T − t)]− 1 , C−} ,
q+(t) = min{(1 + c+) exp[τ+(T − t)]− 1 , C+} .

(20)

(For a closure in cash, bothq+ andq− are constructed withc− for a call andc+

for a put instead ofcε above). We shall refer to both at a time asqε, whereε = ±
is usually the sign of̌v − v (see below). Notice thatqε = Cε for t ≤ tε =
T − (1/τ ε) ln[(1 + Cε)/(1 + cε)], and increases (forq+) or decreases (forq−)
towardscε ast → T . For any realistic data,t+ andt− are very close toT , say one
day or less.

Let also

S =
(

1 0
1 0

)
, and T =

1
q+ − q−

(
τ+q+ − τ−q− τ+ − τ−

−(τ+ − τ−)q+q− τ−q+ − τ+q−

)
.

We introduce a pair of functions of two variablesv̌(t, u) and w̌(t, u) collec-
tively called

V(t, u) =
(

v̌(t, u)
w̌(t, u)

)
and defined by the final conditions (11) or (12), depending on which applies, and
the following linear P.D.E.:

∂V
∂t

+ T
(

∂V
∂u

u− SV
)

= 0 . (21)

It may be noticed thaťv(t, u) andw̌(t, u) keep the same form as in (11) foru /∈
[K exp(τ+(t − T )),K exp(τ−(t − T ))] for a closure in cash, or (12) andu /∈
[(K/1+c+) exp(τ+(t− T )), (K/1+c−) exp(τ−(t− T ))] for a closure in kind.

We prove in [9] the following representation theorem:

Theorem 3 The Value function of the game is given by the formula

W (t, u, v) = w̌(t, u) + qε(v̌(t, u)− v) , ε = sign(v̌(t, u)− v) . (22)

This formula gives a useful hindsight into the shape of the value function and
the role of the transaction costs. It also is the basis of a fast algorithm to approx-
imateW , that we shall see in the next section. The main point is that we have to
compute for each time instant two functions of one variable instead of one function
of two variables, a considerable savings if each variable is discretized in a few hun-
dreds to a few thousand points. Moreover,v̌ plays the role of an “optimal portfolio
composition” as the next result shows:
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Theorem 4 The optimal trading strategy is to jump at initial time tov = v̌(0, u(0))
and stay atv(t) = v̌(t, u(t)) while t < tε, do nothing ift ≥ tε.

There, however, lies a difficulty. Staying atv(t) = v̌(t, u(t)) is not possible within
our assumptions, because one easily sees that this would entail a strategy of the
form ξ(t) = ϕ(t, u(t), v(t), τ(t)). But we have emphasized the fact that this isnot
an admissible, non-anticipative, strategy. The solution of that dilemma is provided
by the convergence result of the next section which shows that the optimal value
in the game above can be approximated arbitrarily well with a non-anticipative
(discrete) trading strategy. (The minimum is actuallynot reached in (15)).

5 Interval model: discrete trading

This section is based upon the same references [8, 9] as the previous one.

5.1 The model

We turn to the more realistic model where trading is restricted to happen at discrete
time instants. Leth > 0 be our time step. The trader is restricted to jumps of the
form (3) at predetermined time instants, multiples ofh. Let thereforetk = kh,
k ∈ N, u(tk) = uk andv(tk) = vk. The market modelΩ translates into

eτ−h − 1 ≤ uk+1 − uk

uk
≤ eτ+h − 1.

We shall letτ ε
h := exp(τ εh) − 1. It should be noted thatτ ε

h converges to 0 ash
(it is equivalent toτ εh), instead of as

√
h in the limiting Cox Ross and Rubinstein

theory. This means that we do keep a single market modelΩ, while the step size
is decreased towards zero, while the classical (and remarkable) limiting process of
the Cox Ross and Rubinstein theory towards the Black and Scholes theory entails
a continuous change of model.

With these notations, our model is now (7)(8) withτk ∈ [τ−h , τ+
h ], and the non-

anticipative strategies are simply of the formξk = ϕk(uk, uk−1, . . .). Equivalently,
we shall find the optimal strategy in the formξk = ϕk(uk, vk). And our problem
is to find the minimum, together with the minimizing strategyϕ∗, in (16).

5.2 Isaacs’equation

This problem is now a classical multistage dynamic game, whose value function
W h is given by its Isaacs equation (we again use subscripts for the number of the
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stage, andKh = T ):

W h
k (u, v) = min

ξ
max

τ∈[τ−h ,τ+
h ]

[
W h

k+1

(
(1 + τ)u, (1 + τ)(v + ξ)

)
−τ(v + ξ)+Cεξ

]
W h

K(u, v) = N(u, v) .
(23)

It turns out to be useful to notice the following “fractional step” form of the first
equation :

W h
k+ 1

2

(u, v) = max
τ∈[τ−h ,τ+

h ]

[
W h

k+1

(
(1 + τ)u, (1 + τ)v

)
− τv

]
,

W h
k (u, v) = min

ξ

[
W h

k+ 1
2

(u, v + ξ) + Cεξ
]
.

This form lets one easily show the following theorem:

Theorem 5 If the functionv 7→ N(u, v) is convex for allu, so is the function
v 7→ W h

k (u, v) for all (k, u). If the function(u, v) 7→ N(u, v) is convex, so is the
function(u, v) 7→ W h

k (u, v) for all k.

This theorem in turn is useful to accelerate a numerical algorithm to evaluate the
sequence{W h

k }k and the optimal trading strategy using Isaacs’equation. As a
matter off fact, thenτ 7→ Wk+1((1 + τ)u, (1 + τ)v) is convex, hence its max
is reached at an end of the interval[τ−h , τ+

h ]. And the minimization inξ can also
benefit from the convexity. See [8]. We do not stress much that fact here because
the representation theorem below provides a much faster algorithm when it holds.
But an important consequence of the remark concerning the maximum inτ is as
follows.

Proposition 1 For a convex claimM(u), the above theory with no transaction
costs coincide with the Cox, Ross, and Rubinstein theory [13].

A consequence of that proposition is that, for small transaction costs and small time
step, for reasonable values ofτ−h andτ+

h , the pricing curve given by our theory will
resemble that of Black and Scholes.

The main theorem of our discrete trading theory is the following. Define
W h(t, u, v) as being the linear interpolation in time of the sequence{W h

k (u, v)}.

Theorem 6 The functionW h(t, u, v) converges uniformly on any compact to the
functionW (t, u, v) (value of the continuous trading problem) whenh tends to zero
ash = Tn−d, n, d ∈ N, d →∞.

As a matter of fact, one easily sees first that theW h
k are non-negative, and using

classical ideas of dynamical games, we see thatW h decreases asd above increases.
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It therefore has a monotoneous limit. This limit is then shown to be a sufficiently
regular viscosity solution of (19) using basically the method of [12], but with many
technical details to adapt it to our problem.

The consequence of that theorem is that one can approximate arbitrarily well
the value of the continuous trading portfolio with discrete trading, if that trading
happens often enough. This is a very desirable feature of any continuous trading
theory, since trading has to be discrete in practice, yet it is not enjoyed by the Black
and Scholes theory.

5.3 Representation theorem and fast algorithm

Introduce the following recursions. Let

qε
K = cε

for a closure in kind, or

qε
K = c− for a Call andqε

K = c+ for a Put

for a closure in cash, and

qε
k+ 1

2

= (1 + τ ε
h)qε

k+1 + τ ε
h ,

qε
k = ε min{εqε

k+ 1
2

, εCε} ,
(24)

and let, for every integer̀:

Qε
` = ( qε

` 1 ) and Vh
` (u) =

(
v̌h
` (u)

w̌h
` (u)

)
. (25)

(Notice that thenqε
k = qε(kh) as given by (20).) Takěvh

K(u) = v̌(u), w̌h
K(u) =

w̌(u) as given by (11) or (12) according to which applies, and

Vh
k (u) =

1
q+
k+ 1

2

− q−
k+ 1

2

(
1 −1

−q−
k+ 1

2

q+
k+ 1

2

)(
Q+

k+1V
h
k+1((1+τ+

h )u)
Q−

k+1V
h
k+1((1+τ−h )u)

)
. (26)

It can be checked that this is a consistent finite difference scheme for (21).
We claim (proof to appear in [9]):

Theorem 7 The solution of (23) is given by (24),(25),(26), and (11) or (12), as

W h
k (u, v) = w̌h

k(u) + qε
k(v̌

h
k (u)− v) = Qε

kVh
k (u)− qε

kv, ε = sign(v̌h
k (u)− v).

This theorem is the basis for a fast algorithm to compute the sequence{W h
k }k

and the corresponding minimizing non-anticipative strategyϕ∗. And in view of the
convergence theorem, it is also an algorithm to approximate the continuous trading
limit.
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5.4 Extensions

Some extensions of that theory are natural and simple. (Some are difficult such as
the case of the digital options which are neither convex nor continuous. We shall
report on that case elsewhere.) Let us just show two such extensions.

5.4.1 American options

Dealing with American options requires that one re-introduces the riskless interest
rateρ. Let

N̂(t, u, v) = eρ(t−T )N
(
eρ(T−t)u, eρ(T−t)v

)
,

and as usual̂Nh
k (u, v) = N̂(kh, u, v). This is the cost to the writer if the buyer

exerts the option at timet < T . The minimax control problem is now one with
stopping time, since the buyer may stop the problem any time. The criterion (16)
should therefore be replaced by

P (u0) = inf
ϕ∈Φ

sup
τ∈Ψ

sup
`<K

[
N`(u`, v`) +

`−1∑
k=0

[−τk(vk + ξk) + Cεkξk]

]
. (27)

It is a classical fact that Isaacs equation is now replaced by a quasi variational
inequality

W h
k (u, v) = max

{
N̂h

k (uk, vk) ,

min
ξ

max
τ∈[τ−h ,τ+

h ]

[
W h

k+1

(
(1+τ)u, (1+τ)(v+ξ)

)
−τ(v+ξ)+Cεξ

]}
,

W h
K(u, v) = N(u, v) .

Numerically implementing that equation requires to add single line of code in the
implementation of (23). As a matter of fact, one computes theminξ maxτ exactly
in the same fashion, and upon writing it in the table holdingW h

k , compare withN̂h
k

and keep whichever is larger forW h
k . And because the maximum of convex func-

tions is convex, we preserve the convexity ofW h
k , and hence the fast computation

we derived from it.
We have done very little work with that theory, and do not have a representation

theorem comparable to the above one. Whether there is one is an open question.
What we did check is the following, which is as in the stochastic theory:

Theorem 8 It is never advantageous for the buyer to exert an American call before
exercize time.
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5.4.2 Strictly causal strategies

If the trading instants are to be very closely spaced (smallh), it may be more
realistic to allow the trader to use onlyuk−1 to chooseξk. This strictly causal
strategy is the equivalent of a predictable strategy in a stochastic framework, as
opposed to measurable (only). This is easily done via the following device. Decide
thatξk = ϕ(uk, vk) can be applied only at timek + 1. (Hence it is theξk+1 of the
previous theory.) Now, this is achieved by changing our dynamic model into

vk+1 = (1 + τ)vk + ξk

instead of (8).
Isaacs’equation is changed accordingly. However, it does not easily split into

two equations as was done here, hence even the convexity of the resulting value
function is not as easy to prove. Again, this has not been investigated so far.

6 Conclusion

The approach of robust control together with the interval model for the market
yields a rather comprehensive theory of option pricing. This model has its draw-
backs. But it lets us build a consistent theory of discrete and continuous trading
option hedging with transaction costs, a feat that the classical stochastic approach
with Samuelson’s market model can not achieve. Moreover, while the main weak-
ness of the model is in the market model, it should be noted that this model is
violated under the same circumstances that cause the portfolio model of Black and
Scholes theory to fail.

This is an incomplete market model, which is a serious drawback, because we
must therefore resort to super replication instead of exact replication. Whether this
leads to unacceptably high prices depends on the choice of interval[τ−h , τ+

h ], and
there is therefore a trade off to be made between the realism of the market model
and the price to pay for that undesirable feature. Yet, the difference in pricing with
the Black and Scholes theory, in the case of a convex claim, is not very large, as
the comparison with the theory of Cox Ross and Rubinstein shows. (And since
our pricing is obviously a continuous function of the transaction costs, which are
ignored in that comparison.)

A rather unexpected representation theorem yields a fast algorithm to numer-
ically implement the theory, thus approaching in that respect the great simplicity
and elegance of Black and Scholes theory.
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