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Abstract

We adopt the robust control, or game theoretic, approach of [5] to op-
tion pricing. In this approach, uncertainty is described by a restrictedset
of possible price trajectories, without endowing this set with any probability
measure. We seek a hedge against every possible price trajectory.

In the absence of transaction costs, the continuous trading theory leads
to a very simple differential game, but to an uninteresting financial result, as
the hedging strategy obtained lacks robustness to the unmodeled transaction
costs. (A feature avoided by the classical Black and Scholes theory through
the use of unbounded variation cost trajectories. See [5].)

We therefore introduce transaction costs into the model. We examine first
the continuous time model. Its mathematical complexity makes it beyond a
complete solution at this time, but the partial results obtained do point to a
robust strategy, and as a matter of fact justify the second part of the paper.

In that second part, we examine the discrete time theory, deemed closer
to a realistic trading strategy. We introduce transaction costs into the model
from the outset and derive a pricing equation, which can be seen as a dis-
cretization of the quasi variational inequality of the continuous time theory.
The discrete time theory is well suited to a numerical solution. We give some
numerical results. In the particular case where the transaction costs are null,
we recover our theory of [5], and in particular the Cox Ross and Rubinstein
formula when the contingent claim is a convex function of the terminal price
of the underlying security.
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1 Introduction

We consider the classical problem of pricing a contingent claim based upon an
underlying stock of curent priceS(t), and defined by its terminal value, orpayoff,
M(S(T )) at exercise timeT . In the case of a (European) call, we haveM(s) =
[s−K]+ = max{s−K, 0} for a givenstriking priceK.

This problem is classically solved by Black and Scholes’theory [6] in the con-
tinuous trading framework, and approached by the theory of Cox, Ross and Rubin-
stein [8] in the limiting vanishing step size case for the discrete trading, discrete
time theory. The fundamental device of these theories, due to Merton, is to con-
struct areplicatingportfolio, made up of the underlying stock and riskless bonds,
and a self financed trading strategy, orhedging strategy, that together yield the
same payoff as the contingent claim to be priced. However, the classical theory of
Black and Scholes, based upon the “geometric diffusion” market model, is known
to have the major weakness that transaction costs cannot be taken into account in
any meaningful way. See [15].

In [5], we proposed a robust control approach to that same idea, that we quickly
review hereafter. The distinctive feature of our theory is in our market model. We
forgo any stochastic description of the underlying stock price. Instead, we assume
that we know hard bounds on the possible (relative) variation rate of the stock price.
And we seek to manage our portfolio through self financed trading in such a way
as to do at least as well as the option, in terms of final value, on all possible price
histories, leading to a minimax control problem.

A very similar approach has been taken independantly and simultaneously with
our research by J-P. Aubin, D. Pujal and coworkers, see [13, 2], using their tools
of viability theory. A game theoretic approach is also used by [12] in connection
with transaction costs, but to investigate a different problem of optimizing these
costs from the viewpoint of the banker. Essentially the same market model as ours
has been proposed in [14], where they give it the name we shall use of “interval
model”.

In the absence of transaction costs, the continuous trading theory leads to a
simple differential game. However, the solution of that game yields the so called
“parity value” for the option, something rather far from observed prices on the
market. Correlatively, the bang-bang hedging strategy obtained, that we call the
“naive strategy”, lacks robustness to the unmodeled transaction costs, in particular
if the underlying stock price fluctuates close to the money resulting in a perpetual
dilema for the trader. (In [5] we argued that its inherent robustness is the main
reason to prefer the Black and Scholes strategy and option price. This is done
at the price of adopting, for the underlying stock price, trajectories of unbounded
variation and known quadratic relative variation —the volatility. Whether this is
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realistic in a world where stock prices are updated at discrete time instants is a
matter of debate.)

We propose then to include transaction costs into our differential game model.
This leads to a three dimensional impulse control game that has up to now resisted
our attempts to solve it via classical means.1 It displays, however, at least one fea-
ture of robustness against fluctuating stock prices : the fact that no trading should
occur during a final time interval, after a final jump in portfolio composition. This
gives a strong hint as how the solution can be approached by a discrete time the-
ory, with a step size function of the transaction costs and of the maximum relative
variation rate hypothesized for the underlying stock.

Therefore, in a second part, we investigate the discrete time theory. The theory
we obtain is well suited to a numerical solution, particularily so in the convex
case where we are able to show that it preserves the convexity of the option price
with respect to the current underlying stock’s price, yielding a simplification into
the computation. Also, not surprisingly, the discrete time pricing equation can be
seen as a finite differences approximation of the continuous time equation. But
the continuous time theory is far from developed to the point where a rigorous
convergence proof would be feasible.

In the case where the transaction costs vanish, we recover our theory of [5].
Hence, if furthermore the contingent claim’s payoff, is a convex function of the
stock price (e.g. for a simple European call), it is strongly reminiscent of the theory
of Cox, Ross and Rubinstein [8], to which it gives a normative value even for a non-
vanishing step size. Otherwise, it is shown to give a higher equilibrium price to the
option than the previous theory. (If one identifies our(1 − α) and(1 + β) with
theird andu.)

2 Continuous time theory

2.1 The models

2.1.1 Market model

In that market, we have a riskless security, calledbonds, evolving at a known con-
stant rate, which in fact sets the lending and borrowing rate on that market. Let this
rate be denotedρ. The exercise time of the option considered isT . And let

R(t) = eρ(t−T )

be either the value of a bond, or the end-time factor in our market.
1At the time of the revision of this paper we are close to a solution in terms of characteristics. It

displays an interesting new type of singularity.
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We denoteS(t) the underlying stock price at timet. We let :

Definition 2.1 The setΩ of admissibleprice histories is defined by two positive
numbersα̃ and β̃, and is the set of all absolutely continuous time functionst 7→
S(t) such that at every instant where it is differentiable, it satisfies the inequalities

−α̃ ≤ Ṡ

S
≤ β̃ (1)

or, equivalently that between any two instants of timet1 < t2,

e−α̃(t2−t1)S(t1) ≤ S(t2) ≤ eβ̃(t2−t1)S(t1) .

We choose to represent that hypothesis in a system theoretic fashion :

Ṡ = τ̃S , (2)

where the time functiont 7→ τ̃(t) ∈ [−α̃, β̃] is assumed to be measurable, and
represents an a priori unknown disturbance.

We shall use the notationsα = α̃ + ρ andβ = β̃ − ρ. The positive numbersρ,
α andβ describe the market model and are assumed known.

Although this presentation is meant to emphasize the fact that there are no
probabilities involved, and that our “disturbance”τ̃ is just a mathematical device,
a renaming of the quantity that we have assumed to be bounded, it may be usefull
to relate this form with one more reminiscent of the classical geometric diffusion
model. Letµ = (β̃ − α̃)/2 andσ = (β̃ + α̃)/2. Let alsoν = (τ̃ − µ)/σ. Now, all
stock price trajectories can be represented by the system

Ṡ = (µ + σν)S (3)

whereν is any measurable time functiont 7→ ν(t) satisfying|ν(t)| ≤ 1, ∀t. In
a sense, this is a “normalized” disturbance, and thereforeσ is a measure of the
volatility of the stock considered.

2.1.2 Portfolio model

We form a portfolio made up ofx shares of the underlying stock, andy riskless
bonds. The value orworth w̃ of this portfolio at any time instant is thus

w̃(t) = x(t)S(t) + y(t)R(t) .

We aim to precisely define what is a self-financed hedging strategy.
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Let us investigate how behaves a self financed trading strategy in the presence
of transaction costs, since this is our objective. Assume these costs are proportional
to the amount traded, not necessarily with the same proportionality ratio for the
two comodities considered. Let us callc0 the trading cost ratio for the riskless
bond, andc1 for the underlying stock. Each transaction should finance those costs.
Therefore, let dx be the variation inx at a stock price ofS, and dy the variation in
y at a bond valueR, we should have

dxS + c1|dx|S + dyR + c0|dy|R = 0 . (4)

We therefore let :

Definition 2.2

a. Adynamic portfolio(or simplyportfolio) is a pair of bounded variation time
functions(x(·), y(·)) defined over[0, T ].

b. A dynamic portfolio is said to beself financedif it satisfies (4) (in the sense
of Stieltjes calculus).

The costsc0 andc1 are assumed small, of the order of a few percent may be.
Introduce

ε = sign(dx) , Cε := ε
c0 + c1

1− εc0
(5)

Proposition 2.1 A self financed dynamic portfolio is entirely defined by its intial
composition(x(0), y(0)) and the bounded variation time functionx(·). The time
functiony(·) and its worthw̃(·) can be reconstructed through integration of the
differential relations

dy = −(1 + εc1)
(1− εc0)

S

R
dx (6)

and
dw̃ = ρw̃dt + (τ̃ − ρ)xSdt− CεSdx . (7)

Proof Becausec0 andc1 are smaller than one, it easily follows that dx and dy
should have opposite signs. Recall thatε = sign(dx). It therefore comes

(1 + εc1)dxS + (1− εc0)dyR = 0 ,

hence (6). Further more, the classical fact thatydR = ρyRdt = ρ(w̃ − xS)dt, it
comes (7).

Notice that in (7), the last term is always negative, and represents the loss in
portfolio value due to the trading costs. Of course, the case without transactions
costs can be recovered by lettingc0 = c1 = Cε = 0 in the above theory.

We shall let, for short,C+1 = C+ andC−1 = C− (a negative number). It is
worthwile to examine two extreme cases :
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The casec0 = 0. If the riskless bond is, say money, and trading in that comodity
is free, then we simply haveCε = εc, the transaction cost on the stock.

The casec0 = c1 = c. If both transaction costs are equal, an interesting feature
that shows up is that then

1 + C+ =
1 + c

1− c
=

1

1 + C−
.

More generally, we may notice the folowing fact :

Proposition 2.2 Wheneverc0 ≤ c1, one has

1 < 1 + C+ ≤ 1

1 + C−

2.2 Hedging strategies

2.2.1 Variations ofx

We would like to letx(·) be our control. But there are costs associated to itsvari-
ations. Hence, in a classical system theoretic fashion, we are led to consider its
derivative as the control. However, another difficulty shows up, since we want also
to allow discontinuities inx. We would therefore need a theory of impulse control
in differential games. It is worthwhile to write the Isaacs quasi-variational inequal-
ity that this formally leads to. But the theory of this inequation is not available at
this time.

We shall in some respect get around that difficulty with the following approxi-
mating device. We shall let the monetary flux be our control :

ẋS = ξ̃ , or Sdx = ξ̃dt , ξ̃ ∈ [−X̃,+X̃] , (8)

where we shall takẽX to be a (very) large positive number, and investigate the
limit of the solution found as̃X → ∞. Whether this limit is the solution of an
impulsive problem is a rather technical question, the more so here that we shall
deal with a differential game, not a mere control problem. The tools introduced in
a recent article [1] seem appropriate to attempt an extension to game problems. We
shall not be concerned with that problem here.

2.2.2 Trading strategies

We shall let our control̃ξ be a function of time,S(t), andx(t) if necessary. We
need to chose this function in such a way that the induced differential equations
have a solution. We therefore let
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Definition 2.3 An admissibletrading strategyis a functionϕ̃ : [0, T ]×R+×R →
R such that the differential equation (8) with̃ξ = ϕ̃(t, S(t), x(t)) has a unique
solutionx(·) for everyx(0) and admissible time functionS(·) ∈ Ω.

As a result, an admissible trading strategy, together with an initial portfolio
(x(0), y(0)) yields a well defined dynamic portfolio.

Our aim is described by the following definition :

Definition 2.4 At an initial market priceS(0) given,

a. An initial portfolio and an admissible trading strategỹϕ constitute ahedge
at S(0) if they insure that

∀S(·) ∈ Ω with S(0) given, w̃(T ) ≥ M(S(T )) . (9)

b. The strategỹϕ is a hedging strategyfor the initial portfolio (x(0), y(0)) at
S(0) if together they constitute a hedge.

c. An initial portfolio is said to behedgingat S(0) if there exists a related
hedging strategy for it.

Finally, the relation with pricing is as follows :

Definition 2.5 The equilibrium priceof the contingent claim(T,M(·)) at S(0)
is the least worthw̃(0) = y(0)R(0) of all hedging initial portfolios of the form
(0, y(0)).

This last definition stems from the following remark. Let an initial hedging portfo-
lio be given as(x(0), y(0)). Let ε = sign(x(0)), and let us assume thatx(0) and
y(0) have different signs, as will be the case for efficient hedging portfolios in the
case of simple european options. The cost of creating it, or itsprice is

P (x(0), y(0)) = (1 + εc1)x(0)S(0) + (1− εc0)y(0)R(0)
= (1− εc0)[w̃(0) + Cεx(0)S(0)] .

In the notations, of the next paragraph, this leads to define the price of the hedge as
P = (1 − εc0)R(0)minv[W (0, u(0), v) + Cεv]. On the other hand, if our theory
allows for a jump inx andy at initial time, satisfying (4), then it follows from (the
same reasoning as that leading to) equation (22) that indeed,R(0)W (0, u, 0) =
R(0)minv[W (0, u, v) + Cεv]. Sinceε will be the same for all efficient hedging
portfolios (+1 or -1 in the case of a call or a put respectively), in comparing the
worth of hedging portfolios, we may neglect the factor(1− εc0), which disapears
altogether if we assume that our original wealth was invested in bounds.
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2.3 End-time values

It is convenient to transform everything in end-time values. We shall let

u =
S

R
, v =

xS

R
, w =

w̃

R
,

τ = τ̃ − ρ , −α = −α̃− ρ , β = β̃ − ρ ,

ξ =
ξ̃

R
, X =

X̃

R
.

Notice thatS, x andy are readily recovered fromu, v, andw with the help of

x =
v

u
, y = w − v . (10)

With these notations, the dynamics of the market and portfolio become

u̇ = τu , (11)

v̇ = τv + ξ , (12)

ẇ = τv − Cεξ . (13)

τ ∈ [−α, β] , ξ ∈ [−X, +X] . (14)

Our objective is to find the cheapest hedging portfolio and corresponding hedg-
ing strategy

ξ = ϕ(t, u, v) (15)

2.4 Mathematical analysis of the problem

The aim (9) of a hedging strategyϕ can be written as

∀τ(·) ∈ [−α, β] , M(u(T ))− w(T ) ≤ 0 ,

where one remembers thatu(T ) is a function ofu(0) andτ , andw(T ) a function
of v(0), w(0), and bothτ(·) andϕ. Obviously, this is equivalent to

sup
τ(·)

[M(u(T ))− w(T )] ≤ 0 .

And for a givenu(0), v(0), w(0), there exists a hedging strategy if (and only if
provided that the min below exists)

min
ϕ

sup
τ(·)

[M(u(T ))− w(T )] ≤ 0 . (16)
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Hence, in a typical “robust control” fashion, we face a minimax control problem
or dynamic game problem.

Now, notice thatw does not appear in the right hand side of the dynamics
(11),(12),(13). hence, we may integrate (13) in

w(t) = w(0) +
∫ t

0
(τ(s)v(s)− Cεξ(s)) ds .

The relation (16) can therefore be rewritten

min
ϕ

sup
τ(·)

[M(u(T ))−
∫ T

0
(τ(t)v(t)− Cεξ(t)) dt− w(0)] ≤ 0 .

Now,u(t), v(t) and henceξ(t) = ϕ(t, u(t), v(t)) are independent onw(0). Hence,
the above relation is satisfied provided that

w(0) ≥ min
ϕ

sup
τ(·)

[M(u(T ))−
∫ T

0
(τ(t)v(t)− Cεξ(t)) dt] .

We are thus led to the investigation of the function

W (t, u(t), v(t)) = min
ϕ

sup
τ(·)

[M(u(T ))−
∫ T

t
(τ(s)v(s)− Cεξ(s)) ds] , (17)

and define thepriceof the contingent claim investigated asW (0, u(0), 0).
We introduce the Isaacs equation of this game :

∂W

∂t
+ min

ξ
sup

τ∈[−α,β]

{
τ

[
∂W

∂u
u +

(
∂W

∂v
− 1

)
v

]
+ (

∂W

∂v
+ Cε)ξ

}
= 0 ,

W (T, u, v) = M(u) .
(18)

(Notice that the function between braces in the r.h.s. above is not differentiable in
ξ because of the definition ofCε, involving ε = sign(ξ).)

If we adopt the approximation device of restrictingξ to a finite interval[−X, X],
then theminξ in (18) above should be restricted accordingly. And we get

Theorem 2.3 If there exists a viscosity solutionW of (18), then e−ρT W (0, u(0), 0)
is the approximated equilibrium price of the contingent claim investigated.

Proof From standard differential games theory (see [3, 7]),W is indeed the min-
sup in (17). Hence the worth of the cheapest hedging initial portfolio withx(0) =
0, hencev(0) = 0, for a givenu(0) is w(0) = W (0, u(0), 0). Going back to the
original variablesw̃(0) = e−ρT w(0) yields the result.
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2.5 No transaction costs

We first consider the case without transaction costs, i.e.Cε = 0. This was investi-
gated in more detail in [5], but we stress here a game theoretic analysis which was
not discussed there.

Here, we need not keepxS or v as a state variable as it can be changed instantly
at no cost. We therefore remain with two state variables (plus time) :

u̇ = τu ,

ẇ = τv .

The control variables areτ ∈ [−α, β] andv ∈ R. A trading strategy in this context
will be a functionϕ : [0, T ] × R+ → R giving v(t) = ϕ(t, u(t)). The problem
at hand is to find states controllable byv to the setw(T ) ≥ M(u(T )) against any
control ofτ .

The above analysis simplifies in

w(T ) = w(0) +
∫ T

0
τ(t)v(t)dt .

and

w(0) = min
ϕ

sup
τ(·)

[
M(u(T ))−

∫ T

0
τ(t)v(t)dt

]
,

which thus provides the equilibrium option price sought.
Therefore, our pricing equation is Isaacs’equation for this game :

∂W

∂t
+ min

v
max

τ

[
τ

(
∂W

∂u
u− v

)]
= 0 , W (T, u) = M(u) . (19)

Theorem 2.4 In the absence of transaction costs, the equilibrium price of the con-
tingent claim investigated is the so-calledparity value

e−ρT M(eρT S(0)) .

The corresonding hedging strategy is given by

x(t) =
dM

ds
(eρ(T−t)S(t)) .

Proof For anyv, themaxτ in (19) is non negative. Hence it is maximized by the
choicev = (∂W/∂u)u, and Isaacs equation is reduced to∂W/∂t = 0. Hence its
solution isW (t, u) = M(u). The results follow.

We see that we recover the classical fact that the optimalx is the sensitivity of
the option’s value.
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2.5.1 European Calls

Let us examine the case of a European call. ThenM = [u − K]+ is not differ-
entiable. Yet it is easy to see thatW = M is indeed the viscosity solution of
Isaacs’equation, since atu = K, we do have that for anyp between0 and1,

min
v

max
τ

[τ(pu− v)] = 0 .

However, this is not the last word about the nondifferentiability ofW .
The corresponding strategy is the “naive strategy” :

v =
{

0 if u ≤ K ,
u if u ≥ K .

The strategy atu = K is better analyzed in terms of the semipermeability of the
manifoldw = [u − K]+. It is readily apparent that if we do not want the corner
to leak, we need that botḣw ≥ 0 andẇ ≥ u̇, which requires thatv = 0 if τ < 0
(to abide by the first constraint) andv = 1 if τ > 0 (to abide by the second.)
Hence the hedging strategy is a bang bang function of thesign of the variationof
the underlying stock price. A very undesirable feature.

Moreover, if there are transaction costs, and if the prices oscillate around the
parity value, this will induce constant large buy and sell decisions which will cost
much and ruin that hedging strategy.

2.6 Non-zero transaction costs : a partial solution

To be more specific, we consider the case of a european call with striking priceK,
whereM(s) = max{0, s−K}.

2.6.1 Three-D impulsive control formulation

In this paragraph, we investigate the problem allowing for instantaneous trading of
a finite amount of securities, hence jumps inx andy at times chosen by the trader,
but still in accordance with (4).

We let the trader choose instants of timetk and trading amountsξk with signs
εk, and augment the dynamic equations with the jump conditions

v(t+k ) = v(t−k ) + ξk , (20)

w(t+k ) = w(t−k )− Cεk
ξk . (21)

The definition of a trading strategy for this paragraph is therefore as follows:

Definition 2.6 A trading strategy is defined by
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a. a measurable functionξ(·) : [0, T ] → R called thecontinuous part,

b. animpulsive partmade of

• a finite increasing sequence of time instants{tk}
• a sequence of corresponding numbers{ξk},

The corresponding dynamic portfolio is given by the equations (12) (20), and the
worth of the portfolio can be computed from (13)(21).

We denote symbolically byϕ a feedback rule that let one decide whether to
make a jump and of how much, and also compute the continuous part of the trading
strategy, knowing past and presentu’s andv’s.

As previously notice thatw does not enter the right hand side. Using the equal-
ity

w(T ) = w(0) +
∫ T

0
(τv(t)− Cεξ(t))dt−

∑
k

Cεk
ξk ,

We therefore end up with the dynamics (11)(12)(20) and the problem to find

W (0, u(0), v(0)) = min
ϕ

sup
τ(·)

[
M(u(T ))−

∫ T

0
(τv(t)− Cεξ(t))dt +

∑
k

Cεk
ξk

]
.

Determination of this impulsive minimax is beyond the scope of the current
theory. One should refer to the theory of impulse control, as developed in [4].
However, added difficulties arise. On the one hand, this is a game not a control
problem. On the other hand, this is a deterministic problem, so that the correspond-
ing PDE is first order, and one would need to extend to quasivariational inequalities
the technique of viscosity solutions. Moreover, the Q.V.I. is further degenerate due
to the fact that the second term in the brace in (22) is nonpositive.2

Yet, it is interesting to write the quasivariational inequality that is formally
associated with this impulsive game :

0 = min

{
∂W

∂t
+ max

τ∈[−α,β]
τ

[
∂W

∂u
u +

(
∂W

∂v
− 1

)
v

]
,

min
ξ

[W (t, u, v + ξ)−W (t, u, v) + Cεξ]

} (22)

with furthermore∂W/∂v ∈ [−C+,−C−] whenever the first minimum is obtained
by the first term in the brace, in order for(∂W/∂v + Cε)ξ to have a minimum in
ξ, which is then reached atξ = 0.

2In that respect, we would have a more classical impulse control problem if the transaction costs
were chosen affine, with a fixed part added to the proportional part.

12



It might be possible to construct the solution of this QVI. Weconjecturethat the
solution leads to hedging strategy involving, for any realistic initial condition, an
initial jump in v followed by a “coasting” period whereξ takes intermediate values
depending on the variations ofu, followed by a final period withξ = 0 as the next
paragraph shows. Hence providing a non trivial hedging strategy for option pricing
with transaction costs, a feat known to be impossible with the classical theory, see
[15]

2.6.2 Four-D non impulsive analysis

We now turn to the approximation device consisting in bounding|ξ| by a very large
numberX that we shall let go to infinity.

We also turn back to the 3 state formulation, considering the qualitative prob-
lem of driving the final state to the set{w(T )−M(u(T )) ≥ 0}. The barrier of this
problem is the graph of the functionW of the 2 state variable formulation. But the
geometric intuition of semipermeable surfaces will help here. Notice also that, to
gain in intuition (we like to think of the hedging strategy as maximizing the value
of the portfolio), we have changed the sign of the terminal term. We make use of
the Isaacs Breakwell theory. The reader unfamiliar with that theory could as well
turn directly to the subsection 2.6.3.

Hamiltonian set up. In terms of differential games, we must construct a “bar-
rier” separating states that can be driven to the desired set at timeT against all
disturbances from those for which at least one disturbance function exists that will
prevent the aim to be reached. Although we shall only sketch the mathematical
details, we shall make free use of the theory. See, e.g. [10, 11].

Because we are in fixed end-time, the state space of this game is four dimen-
sional :(t, u, v, w). Let (n, p, q, r) be a semipermeable normal. It satisfies

n + max
ξ

min
τ
{[pu + (q + r)v]τ + (q − Cε)ξ} = 0 ,

and the controls on barrier trajectories are given by

τ =
{
−α if pu + (q + r)v > 0 ,

β if pu + (q + r)v < 0 ,
ξ =


X if q > C+ ,
0 if C− < q < C+ ,

−X if q < C− .

Furthermore, on a smooth part of a barrier, along the barrier trajectories the semiper-
meable normal satisfies the adjoint equations :

ṅ = 0 ,
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ṗ = −τp ,

q̇ = −(1 + q)τ ,

ṙ = 0 .

Barrier sheet towards u < K. Let us construct the natural barrier arriving on
the partu < K, w = 0 of the target set boundary, that we parametrize with
u(T ) = s, v(T ) = χ. We get

u(T ) = s ≤ K , p(T ) = 0 ,
v(T ) = χ , q(T ) = 0 ,
w(T ) = 0 , r(T ) = 1 .

So, at final time, we getτ = −α andξ = 0. The equations integrate backwards in

u(t) = seα(T−t) , p(t) = 0 ,

v(t) = χeα(T−t) , q(t) = e−α(T−t) − 1 ,

w(t) = χ(eα(T−t) − 1) , r(t) = 1 .

This solution is not valid before the timetα whenq crosses the valueC−, i.e.

T − tα =
1
α

ln
(

1

1 + C−

)
.

Prior to tα, one hasq < C−, and therefore, if that trajectory is still part of a
barrier,ξ = −X. In view of the fact that we are interested in the caseX →∞, this
means a negative jump inv, i.e. inx, the underlying stock content of our portfolio.

Regular barrier sheet towardsu(T ) > K. We now consider the natural barrier
towardsu(T ) > K, w(T ) = u(T ) −K. We again parametrize that boundary by
u(T ) = s andv(t) = χ. We get now :

u(T ) = s ≥ K , p(T ) = −1 ,
v(T ) = χ , q(T ) = 0 ,
w(T ) = s−K , r(T ) = 1 .

The corresponding value ofτ at timeT depends on the sign ofs − χ. Let us first
consider the cases > χ. We have then at timeT and just beforeτ = β, and still
ξ = 0. The differential equations integrate backwards in

u(t) = se−β(T−t) , p(t) = −eβ(T−t) ,

v(t) = χe−β(T−t) , q(t) = eβ(T−t) − 1 ,

w(t) = χ(e−β(T−t) − 1) + s−K , r(t) = 1 .
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This solution is not valid before the timetβ whenq crosses the valueC+ :

T − tβ =
1
β

ln(1 + C+) . (23)

Prior to that time, and again if the trajectories were part of a continuing barrier, we
would haveξ = X, which indicates a positive jump inv, hence inx.

Singular barrier sheet towards u(T ) > K. A particular case arises if we con-
sider the cases = χ. Then it is readily apparent thatpu + (q + r)v remains null
along any time interval[t, T ] on whichξ = 0. Then, anyτ satisfies the semiper-
meability condition, and so doesξ = 0 as long as

ln(1 + C−) ≤
∫ T

t
τ(θ) dθ ≤ ln(1 + C+) .

Along these trajectories,u = v ∈ [s/(1+C+), s/(1+C−)]∩[se−β(T−t), seα(T−t)],
andw = u−K.

Thus, for eachs we have two free parameters :t and
∫ T
t τ dθ, yet this con-

stitutes only a 2-D manifold, because all are embedded into the 2-D manifold
u = v = w + K, t arbitrary.

One of these trajectories for eachs is obtained withτ = β. It is the “last”
trajectory of the sheet we would construct withχ ≤ s. It will come as no surprise
to the reader that the trajectories constructed withχ > s, i.e. in our original
variablesx > 1, will play no role in the solution.

Intersection. These two three-dimensional sheets intersect along a 2-D edge, that
joins continuously with the above singular 2-D manifold, and that we can parametr-
ize withh = T − t andu ∈ [K exp(−βh),K exp(αh)] as

v = v̂(h, u) :=
ueβh −K

eβh − e−αh
, w = ŵ(h, u) := (1− e−αh)v̂(h, u) .

Notice that because of Proposition 2.2, and assuming thatα ≤ β, (maximum
rate of decrease of a stock price not larger than the maximum rate of increase), then
tα < tβ . Hence the above intersection only holds over the time interval[tβ, T ],
because before, the sheet towardsu > K is missing.

A careful study of the intersection shows that it is aτ -dispersal line, i.e. that
the trader must watch the evolution of the stock price and adapt to it.

15



Composite barrier. These semipermeable surfaces define a composite natural
barrier that can as usual be described as (the graph of) a functionw = W (t, u, v) =
inf{w | (t, u, v, w) is hedgeable}. We get hereh = T − t and

W (t, u, v) =
{

(1− e−αh)v if v ≥ v̂(h, u) ,
(1− eβh)v + ueβh −K if v ≤ v̂(h, u) .

We may further notice that ifu ≤ K exp(−βh), we always are in the first case
above, and ifu ≥ K exp(αh), taking into account the fact that we consider only
the casesv ≤ u, we always are in the second case.

2.6.3 Interpretation of the results

As a cue to interpreting the geometry of the barrier in the state space, notice that if
a point(t, u, v, w) is “hedgeable”, then any point(t, u, v, w′) with w′ > w is also
admissible. Therefore for a given(t, u), say, we should look for a barrier point
with those coordinates and the lowest possiblew as a limiting admissible state,
and therefore an equilibrium price for the call.

The main point we have shown is that the terminal part of the play leads to
ξ = 0 as an optimal behaviour, i.e. to a constantx, no trading is necessary during
the finalT − tβ time interval. Therefore the main weakness of the “naive” strategy
of [5], which was a risk of constant and costly trading, is avoided. The whole idea
to include the transaction costs into the model was aimed at that result.

If u < Ke−β(T−t), then according to our model, the call is and shall remain
out of the money. The value of the call is0. As a matter of fact, the only relevant
barrier is our sheet towardsu < K. For a givenu andt it is intersected at minimum
w by χ = 0 and indeed yieldsw = 0.

If u > Ke−β(T−t), the call may end up in the money. If moreoveru >
Keα(T−t), then it will surely do. The intersection of the two sheets of the com-
posite barrier is atv = u, w = u−K. One should have (at least) one share of the
stock, and may have borrowed an amountKR(t), worthK at exercise time.

In between, and for the last instant of times, the limitingv andw are just such
that with no trading, if the stock goes down at maximum rate, we shall end up
with w = 0, and if it goes up at maximum rate, we shall have justw = u − K.
The corresponding equilibrium value for the call is a linear function ofu (with
h = T − t the maturity) :

w =
1− e−αh

eβh − e−αh
(ueβh −K) .

It coincides with one step of the discrete time theory hereafter (see also [5]),
and therefore more prominently of [8]. As a matter of fact, since we have found
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that the optimal behaviour was to letT − tβ time pass without trading, therefore
without incurring trading costs, we find one step of the discrete time theory with
that step size.

We therefore suggest to exploit this result by using a discrete time strategy
with that step size. This is the minimum time it takes for the stock to increase of a
relative amount−C−, i.e. of the order of (but slightly less than)c0 + c1.

2.6.4 Closing costs

Before we investigate the discrete time theory, we must make a digression on clos-
ing costs.

If there are trading costs, it is not equivalent to end up with no stock and no
debt or with, says worth of stock, and as much in debt, as there is a cost to selling
the stock and using the proceeds to repay the debt.

The target set at exercise time should therefore be changed to reflect that fact.
Let η = sign(v). The correct target set foru(T ) < K is then

w + C−ηv ≥ 0 .

(If we know that only positivev’s will be used, we may simply setw + C−v ≥ 0,
but the above form is usefull for the theoretical analysis.) In the caseu(T ) > K,
there are two possible ways of comparing a portfolio and the option. Either we
decide to liquidate any position, and compare situations withv = 0, or we want to
bring our portfolio to a position similar to that just after exercising the call, i.e. with
v = u. Both methods do not lead to the same conclusions. The first one has the
advantage of leading to a continuous target set for the portfolio. Incidentally, one
should then exercise the call only if the net proceeds after liquidating the position
is positive, i.e. if(1 + C−)u(T )−K > 0. And the target set then reads

w + C−ηv ≥ [(1 + C−)u−K]+ .

We forgo the mathematical analysis of this case, as it is at this time less ad-
vanced than the previous one. The analysis seems to point to a delay without
trading at the end of length

T − tβ =
1
β

ln
1 + C+

1 + C−
, (24)

hence roughly twice as long as in the case without closure costs.
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3 Discrete time

We turn to the discrete time theory. In [5], we argued that this is a more realsitic
theory as a trader is likely to pay attention to a given portfolio a finite number
of times per day... Here, however, we have another justification, arising from the
continuous time theory itself, where we have seen that introducing transaction costs
automatically leads to optimal hedging strategies made of jumps in the contents of
the portfolio, with no trading at least after the last jump.3 This suggests to use the
characteristic step size (23) or (24) above. This is typicaly of the order of one third
to one half day. The present theory can also be exploited for other step sizes.

3.1 The model

3.1.1 Market model

We let now the timet be an integer, i.e. we take the step size∆t as our unit of
time, so thatt is now an integer ranging from0 to a given positive integerT . Let
also the price of a unit riskless bound be

R(t) = (1 + ρ)(t−T )

so thatρ in this section is eρ∆t − 1 of the continuous time theory. Likewise, con-
cerning the underlying stock priceS we let :

Definition 3.1 The setΩ of admissibleprice histories is defined by two positive
numbers̃α andβ̃ and is the set of all sequences{S(t)}, t ∈ {1, . . . , T} such that

(1− α̃)S(t) ≤ S(t + 1) ≤ (1 + β̃)S(t) (25)

We choose to define

τ̃t :=
S(t + 1)− S(t)

S(t)
,

so that the above definition also reads

S(t + 1) = (1 + τ̃t)S(t) , τ̃t ∈ [−α̃, β̃] . (26)

Notice that thẽα andβ̃ of this section are related to those of the previous section
via the same relation asρ.

3And affine transaction costs would lead to purely impulsive strategies anyhow.
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3.1.2 Portfolio model

We call xt andyt the number of shares in the portfolio immediatelybefore the
transactions at timet, andw̃t = xtS(t) + ytR(t) the corresponding value of the
portfolio. We shall make use of̃w+

t = xt+1S(t) + yt+1R(t), the value of the
portfolio immediatelyafter the trading at timet, and likewise forv andw below.
Let alsodx(t) = xt+1 − xt anddy(t) = yt+1 − yt. We therefore have

Definition 3.2

a. A dynamic portfoliois a pair of sequences({xt}, {yt}), defined overt ∈
{1, . . . , T}.

b. A dynamic portfolio is said to beself financedif it satisfies (as equation (4)):

dx(t)S(t) + c1|dx(t)|S(t) + dy(t)R(t) + c0|dy(t)|R(t) = 0 . (27)

We choosẽξt, the amount inS traded at timet as our control, so that

(xt+1 − xt)S(t) = ξ̃t .

Let ε = sign(ξ̃). The same reasoning as in the continuous time case may be
used to conclude that self financing of the strategy imposes the following:

Proposition 3.1 A self financed dynamic portfolio satisfies

(yt+1 − yt)R(t) = −1 + εc1

1− εc0
ξ̃t .

and
w̃t+1 = (1 + ρ)(w̃t − Cεξ̃t) + (τ̃t − ρ)(xtS(t) + ξ̃t) .

Introduce, as in the continuous time theory, the end-time values

ut =
S(t)
R(t)

, vt =
xtS(t)
R(t)

, wt =
w̃t

R(t)
, ξt =

ξ̃t

R(t)
,

as above,

v+
t =

xt+1S(t)
R(t)

, w+
t =

w̃+
t

R(t)
,

and let

−α :=
−α̃− ρ

1 + ρ
≤ τt :=

τ̃t − ρ

1 + ρ
≤ β :=

β̃ − ρ

1 + ρ
, (28)
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After some simple calculations, the discrete time market and portfolio model
then read

ut+1 = (1 + τt)ut ,
v+
t = vt + ξt , vt+1 = (1 + τt)v+

t ,
w+

t = wt − Cεξt , wt+1 = w+
t + τtv

+
t .

(29)

We shall consider feedback trading strategies :

Definition 3.3 A trading strategy is a sequence of functionsϕt : R+ × R → R.
The self financed dynamic portfolio generated from an initial portfolio(x0, y0) by
a price history{St} ∈ Ω and the trading strategy{ϕt} is the pair of sequences
generated by (29) with, for allt ∈ {0, 1, . . . , T − 1} : ξt = ϕt(ut, vt) .

We now state our objective : finding hedging strategies and the equilibrium
price of the contingent claim.

Definition 3.4 At a given market priceS(0),

a. An initial portfolio(x0, y0) and a trading strategy constitute ahedgeat S(0)
if, for any{St} ∈ Ω, with S(0) given, together they yieldwT ≥ M(uT ).

b. The corresponding trading strategy is then called ahedging strategy.

c. An initial portfolio (x0, y0) is saidhedgingat S(0) if there exists a corre-
sponding hedging stategy.

And finally

Definition 3.5 Theequilibrium priceof the contingent claim investigated atS(0)
is the least worthw0 = y0R(0) of all hedging portfolios of the form(0, y0).

Remark The definitiona) above may be slightly modified to reflect the preferred
notion of hedge in the presence of closing costs. (e.g., judged atT+ imposing
v+
T ≥ uT , or alternativelyv+

T = 0 andw+
T ≥ [(1 − c1)u −K]+). See the section

on continuous trading for further hindsight into these definitions.

3.2 Dynamic programming

Let At be the set of states(ut, vt, wt) from which there exists a trading strategy
ξk = ϕk(uk, vk), k ≥ t that, for any possible future sequence{τk}, drives the
portfolio to an admissible state at timeT , i.e. such thatwT ≥ M(uT ). It is clear
that if (u, v, w) ∈ At, then any(u, v, w′) with w′ > w will also be inAt. We may
thus characterize the setAt as the epigraph of itsfloor function

Wt(u, v) = min

w

∣∣∣∣∣
 u

v
w

 ∈ At

 so that

 u
v
w

 ∈ At ⇔ w ≥ Wt(u, v) .
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It is convenient to perform the classical dynamic programming construction,
leading to the Isaacs equation, in two steps. Let firstA+

t be the set of states
(ut, v

+
t , w+

t ) att+ that will be driven toAt+1 by anyτ , andW+
t the corresponding

floor function. Thus, u
v+

w+

 ∈ A+
t ⇐⇒ ∀τ ∈ [−α, β] ,

 (1 + τ)u
(1 + τ)v+

w+ + τv+

 ∈ At+1.

or equivalently

w+ ≥ W+
t (u, v+) ⇐⇒ ∀τ ∈ [−α, β], w+ + τv+ ≥ Wt+1((1+ τ)u, (1+ τ)v+) .

Thus, we have

W+
t (u, v+) = max

τ∈[−α,β]
[Wt+1((1 + τ)u, (1 + τ)v+)− τv+] . (30)

Now,At is the set of all states(u, v, w) that can be sent by an appropriate control
ξ into a(u, v+, w+) in At+1, hence,

w ≥ Wt(u, v) ⇐⇒ ∃ξ : w − Cεξ ≥ W+
t (u, v + ξ) .

Therefore
Wt(u, v) = min

ξ
[W+

t (u, v + ξ) + Cεξ] (31)

It is useful to give the form taken by the recursion merging the two steps from
tt+1 to t+ and fromt+ to t into a single Isaacs equation :

Wt(u, v) = min
ξ

max
τ∈[−α,β]

[Wt+1((1+τ)u, (1+τ)(v+ξ))−τ(v+ξ)+Cεξ] . (32)

to be initialized with
WT (u, v) = M(u) (33)

We have thus proved the following result:

Theorem 3.2 If equations (32)(33) have a solutionWt(u, v), the equilibrium price
of the contingent claim atS(0) is (1 + ρ)−T W0((1 + ρ)T S(0), 0).

(The coefficients(1 + ρ)−T and(1 + ρ)T are there to come back in the original
variables, as opposed to their end-time values.)

Equations (30) and (31), or equivalently (32) and (33), also provide a con-
structive algorithm to numerically compute the equilibrium price. We discuss that
matter at the end of subsection 3.4.
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3.3 Limiting cases

3.3.1 Zero transaction costs

The case with no transaction costs corresponds here toCε = 0. Then in (32)ξ only
appears in combination withv as(v + ξ) (i.e. v+), which can therefore be taken as
our mute maximization variable. If moreover the final valueWT does not depend
onv, then the r.h.s. above never depends onv either, leading to a functionWt(u) :

Wt(u) = min
v+

max
τ∈[−α,β]

[Wt+1((1 + τ)u)− τv+] .

We shall argue below that in the case of simple European options, the maxi-
mum inτ is reached at an end point of the admissible interval. As a consequence,
this maximum is minimum whenτ = −α andτ = β yield the same value, i.e.

Wt+1((1− α)u) + αv+ = Wt+1((1 + β)u)− βv+

leading to

v+(u) =
Wt+1((1 + β)u)−Wt+1((1− α)u)

α + β

and thus

Wt(u) =
α

α + β
Wt+1((1 + β)u) +

β

α + β
Wt+1((1− α)u) . (34)

These are exactly the equations obtained by Cox, Ross and Rubinstein [8]. The
reference [5] develops in some more detail the reason why the two theories seem
to coincide. The (big ?) difference, though, is that the theory of Cox, Ross, and
Rubinstein is based upon a market model which isnot realistic for finite step sizes,
and only meant to be meaningful in the limit as the step size goes to zero. Here
we have a normative theory even for finite step sizes. However, with the same
historical data, we shall be led to a model with a larger volatilityσ = (α + β)/2
than in their approach.

3.3.2 Vanishing step size

It is interesting to investigate the limiting case of our theory, with transaction costs,
when the step size goes to zero in the above recursion. Thus we replace the step
size “one” of the above theory byh. We choose to modelize stock price histories
of bounded variation, as opposed to the classical Black and Scholes model. (See
[5] for more details.) Thus replaceτ by τh = hτ ∈ [−hα, hβ].
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Equation (32) now reads

Wt(u, v) = min
ξ

max
τ∈[−α,β]

[Wt+h((1 + hτ)u, (1 + hτ)(v + ξ))− hτ(v + ξ) + Cεξ]

The following analysis is formal. We strongly conjecture that it can be made
precise, though at a rather high mathematical price. Rewrite the above equation as

0 = min
ξ

max
τ∈[−α,β]

{
Wt+h((1 + hτ)u, (1 + hτ)v))−Wt(u, v)− hτ(v + ξ) +

Wt+h((1 + hτ)u, (1 + hτ)(v + ξ))−Wt+h((1 + hτ)u, (1 + hτ)v)) + Cεξ

}
.

(35)
The first line in the above display always goes to zero ash → 0. Now, two situa-
tions may arise ash → 0.

Either the minimum inξ is attained for a non zeroξ. Nevertheless, the second
line must also go to zero, since the sum does. Therefore, in the limit we must have

min
ξ

[Wt(u, v + ξ)−Wt(u, v) + Cεξ] = 0 ,

where we recognise the second term of (22). In this case, placingξ = 0 will yield
a positive r.h.s. But the second line in the display (35) is zero forξ = 0. Thus the
first is positive, and the term above is the minimum of the two lines.

Or the minimum inξ is reached atξ = 0. This means that the second line in
the display would be positive for non zeroξ’s. And the first line reads, dividing
through by the positiveh

max
τ∈[−α,β]

[
1
h

(
Wt+h((1 + hτ)u, (1 + hτ)v))−Wt(u, v)

)
− τv

]
= 0 .

In the limit ash goes to zero we recognize the first line of (22).
Altogether, we see that we end up with the quasivariational inequality (QVI)

(22) of the continuous time theory. Thus, equation (32) can be seen as an “upwind”
finite difference scheme for the continuous QVI, strongly suggesting that the solu-
tion of the discrete trading problem converges to that of the continuous trading one
as the setp size goes to zero.

3.4 The convex case

As is the case without transaction costs, convexity of the evaluation functionM at
terminal time is preserved by the recursion and helps in the computations. Let us
state the main fact :
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Theorem 3.3

a. The functionsWt and W+
t generated by the recursion (30),(31),(33) are

convex inv for eachu.

b. If furthermore the functionM is convex, then they are jointly convex in(u, v).

Proof We provide the proof of the second statement. The first one goes along the
same lines, just simpler.

Notice first thatM being convex (inu), WT is jointly convex in(u, v). Assume
thatWt+1(u, v) is convex in(u, v). So isWt+1((1 + τ)u, (1 + τ)v) − τv. And
therefore, according to (30),W+

t is the maximum of a family of convex functions,
thus convex.

Assume therefore thatW+
t is convex in(u, v). Introduce the extended function

Γ(η, ξ) =
{

+∞ if η 6= 0 ,
−C−εξ if η = 0 .

It is convex in(ξ, η). Now, (31) reads

Wt(u, v) = min
η,ξ

[W+
t (u− η, v − ξ) + Γ(η, ξ)] .

HenceWt is the inf convolution of two convex functions, therefore it is convex.
The theorem follows by induction.

Beyond its theoretical significance, —there are deep reasons to expect the value
of a call to be convex, at least inu (see, e.g. [9])— this fact has an important
computational consequence. Let us first emphasize the following fact :

Corollary 3.3.1 If M is convex, the functionτ 7→ [Wt+1((1+τ)u, (1+τ)v)−τv]
is convex.

As a consequence, the maximum inτ in (30) is necessarily reached at an end
point of the segment[−α, β]. Computationally, this means that the maximization
is reduced to comparing two values, a significant simplification. The practical
consequence is that using the recurrence relation to compute a pricing is very fast
for a convex terminal value. We typically had run times of 6 seconds per time step
on a 500 Mhz P.C., withu andv discretized in 200 steps each, a golden search in
ξ, andP1 finite elements interpolation of the functionWt.

This will not be so for a digital call, say. The maximization inτ then has to
be done via an exhaustive search. Yet, since we preserve the convexity inv, the
minimization inξ can still be performed via an efficient algorithm.

24



Remark The various ways of taking closing costs into account usually preserve
the convexity ofM .

3.5 Partial solution for a European call

If we takeM(s) = max{0, s − K}, we can perform “by hand” the first steps of
the recursion (32). We find the following facts.

• The optimal choice forξ(T ) is always zero : there is no incentive to per-
form a portfolio readjustment at final time since this has a cost, and buys us
nothing in this formulation without closure costs.

• If ut ≥ (1− α)t−T K, one finds that the recursion reaches a fixed point

Wt(u, v) = [(1 + C+)(1 + β)− 1](u− v) + u−K .

The optimal trading strategy is always to jump tov = u, i.e. own one share
of the underlying stock.

• If ut ≤ (1 + β)t−T K, the siuation is slightly more subtle, at least for large
trading costs. As a matter of fact, ifα + C− < 0, for the last time steps,
where(1− α)T−t > 1 + C−, the optimal hedging strategy isξt = 0, hence
do not trade. This is again a feature of the robustness of this theory against
small variations inu. For earliert’s, the optimal hedging strategy is to jump
to v = 0, and the lowest value of a replicating portfolio is

Wt(u, v) = [1− (1 + C−)(1− α)]v .

That is, one needs to have at least(1+C−)(1−α)v worth of riskless bonds to
pay for the trading in of the stock at hand at the next time instant. (Remember
thatvt is the value of the stock in the portfoliobeforethe trading at timet.)

• Foru between these two limits, the value is piecewise affine inu andv. We
have shown in the previous subsection that the “worst” market evolution, i.e.
the one that dimensions the necessary portfolio, is always an extreme value,
which makes the numerical solution very fast (onlyτ = −α andτ = β have
to be compared).

• In the case where−α = C−, which corresponds to the critical time of the
continuous time theory, further degeneracies appear in the minimization inξ
in the recursion (32), makingξ = 0 a possible optimal hedging strategy for
a larger region of the(u, v) space.

• Adding a closure cost does not change much the above results.
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4 Conclusions

Our objective was to introduce transaction costs in our non-stochastic theory of
option pricing, not so much to have a more realistic theory, although this may be
of interest, but mainly because we speculated that doing so would alleviate the bad
feature of the previous continuous trading theory, which was found to give a naive
srategy much too sensitive to trading costs (which had been neglected) in case the
stock price oscillates around the present-value of the striking cost.

This aim seems to be indeed achieved, since at least for a (small) final time
interval, no trading occurs. Yet at this time, we do not have a complete solution of
the continuous time problem.

So we turn to a discrete time scheme, which may be considered as a more
realistic formulation anyway. The corresponding problem can easily be solved
numerically. The option value it will yield is reminiscent of that of Cox Ross and
Rubinstein in that it is piecewise affine, and coincides with it in the case of simple
put or call options with no transaction costs in the theory. We point out that this is
now a normative theory even with a finite step size, and not only as the step size
vanishes. A particularily meaningful step size is the critical time deduced from the
continuous trading strategy. Moreover, we conjecture that the limit of that theory
as the stepsize goes to zero is the solution of the continuous time theory, in effect
making our algorithm an efficient approximation scheme for the latter.

At this time, detailed numerical comparisons are being made between this the-
ory and classical stochastic theories and between option pricing with or without
trading costs. Even more importantly, we want to see whether this theory accounts
for observed option prices on the market. Notice that we have more parameters to
adjust than Black and Scholes, say.
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Figure 1: Equilibrium prices for various transaction costs, 20 time steps

Figure 2: Equilibrium prices for various maturities,c0 = 2%, c1 = 5%
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