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Abstract

We adopt the robust control, or game theoretic, approach of [5] to op-
tion pricing. In this approach, uncertainty is described by a restristtd
of possible price trajectories, without endowing this set with any probability
measure. We seek a hedge against every possible price trajectory.

In the absence of transaction costs, the continuous trading theory leads
to a very simple differential game, but to an uninteresting financial result, as
the hedging strategy obtained lacks robustness to the unmodeled transaction
costs. (A feature avoided by the classical Black and Scholes theory through
the use of unbounded variation cost trajectories. See [5].)

We therefore introduce transaction costs into the model. We examine first
the continuous time model. Its mathematical complexity makes it beyond a
complete solution at this time, but the partial results obtained do point to a
robust strategy, and as a matter of fact justify the second part of the paper.

In that second part, we examine the discrete time theory, deemed closer
to a realistic trading strategy. We introduce transaction costs into the model
from the outset and derive a pricing equation, which can be seen as a dis-
cretization of the quasi variational inequality of the continuous time theory.
The discrete time theory is well suited to a numerical solution. We give some
numerical results. In the particular case where the transaction costs are null,
we recover our theory of [5], and in particular the Cox Ross and Rubinstein
formula when the contingent claim is a convex function of the terminal price
of the underlying security.
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1 Introduction

We consider the classical problem of pricing a contingent claim based upon an
underlying stock of curent pricg(t), and defined by its terminal value, payoff
M(S(T)) atexercise timel'. In the case of a (European) call, we haugs) =

[s — K]+ = max{s — K, 0} for a givenstriking price K.

This problem is classically solved by Black and Scholes’theory [6] in the con-
tinuous trading framewaork, and approached by the theory of Cox, Ross and Rubin-
stein [8] in the limiting vanishing step size case for the discrete trading, discrete
time theory. The fundamental device of these theories, due to Merton, is to con-
struct areplicating portfolio, made up of the underlying stock and riskless bonds,
and a self financed trading strategy, leedging strategythat together yield the
same payoff as the contingent claim to be priced. However, the classical theory of
Black and Scholes, based upon the “geometric diffusion” market model, is known
to have the major weakness that transaction costs cannot be taken into account in
any meaningful way. See [15].

In [5], we proposed a robust control approach to that same idea, that we quickly
review hereafter. The distinctive feature of our theory is in our market model. We
forgo any stochastic description of the underlying stock price. Instead, we assume
that we know hard bounds on the possible (relative) variation rate of the stock price.
And we seek to manage our portfolio through self financed trading in such a way
as to do at least as well as the option, in terms of final value, on all possible price
histories, leading to a minimax control problem.

A very similar approach has been taken independantly and simultaneously with
our research by J-P. Aubin, D. Pujal and coworkers, see [13, 2], using their tools
of viability theory. A game theoretic approach is also used by [12] in connection
with transaction costs, but to investigate a different problem of optimizing these
costs from the viewpoint of the banker. Essentially the same market model as ours
has been proposed in [14], where they give it the nhame we shall use of “interval
model”.

In the absence of transaction costs, the continuous trading theory leads to a
simple differential game. However, the solution of that game yields the so called
“parity value” for the option, something rather far from observed prices on the
market. Correlatively, the bang-bang hedging strategy obtained, that we call the
“naive strategy”, lacks robustness to the unmodeled transaction costs, in particular
if the underlying stock price fluctuates close to the money resulting in a perpetual
dilema for the trader. (In [5] we argued that its inherent robustness is the main
reason to prefer the Black and Scholes strategy and option price. This is done
at the price of adopting, for the underlying stock price, trajectories of unbounded
variation and known quadratic relative variation —the volatility. Whether this is



realistic in a world where stock prices are updated at discrete time instants is a
matter of debate.)

We propose then to include transaction costs into our differential game model.
This leads to a three dimensional impulse control game that has up to now resisted
our attempts to solve it via classical mearis displays, however, at least one fea-
ture of robustness against fluctuating stock prices : the fact that no trading should
occur during a final time interval, after a final jump in portfolio composition. This
gives a strong hint as how the solution can be approached by a discrete time the-
ory, with a step size function of the transaction costs and of the maximum relative
variation rate hypothesized for the underlying stock.

Therefore, in a second part, we investigate the discrete time theory. The theory
we obtain is well suited to a numerical solution, particularily so in the convex
case where we are able to show that it preserves the convexity of the option price
with respect to the current underlying stock’s price, yielding a simplification into
the computation. Also, not surprisingly, the discrete time pricing equation can be
seen as a finite differences approximation of the continuous time equation. But
the continuous time theory is far from developed to the point where a rigorous
convergence proof would be feasible.

In the case where the transaction costs vanish, we recover our theory of [5].
Hence, if furthermore the contingent claim’s payoff, is a convex function of the
stock price (e.g. for a simple European call), it is strongly reminiscent of the theory
of Cox, Ross and Rubinstein [8], to which it gives a normative value even for a non-
vanishing step size. Otherwise, it is shown to give a higher equilibrium price to the
option than the previous theory. (If one identifies dur— «) and (1 + ) with
theird andwu.)

2 Continuous time theory

2.1 The models
2.1.1 Market model

In that market, we have a riskless security, calledds evolving at a known con-
stant rate, which in fact sets the lending and borrowing rate on that market. Let this
rate be denoted. The exercise time of the option considered’isAnd let

R(t) = et=T)

be either the value of a bond, or the end-time factor in our market.

1At the time of the revision of this paper we are close to a solution in terms of characteristics. It
displays an interesting new type of singularity.



We denoteS(t) the underlying stock price at tinte We let :

Definition 2.1 The set of admissibleprice histories is defined by two positive
numbersa and 3, and is the set of all absolutely continuous time functibrs
S(t) such that at every instant where it is differentiable, it satisfies the inequalities
S -
—_a< < 1
a<g<p @)

or, equivalently that between any two instants of time: ¢,
e -1 5(1) < S(ty) < P2 S(1y) .

We choose to represent that hypothesis in a system theoretic fashion :

S =79, 2

where the time function — 7(t) € [—a, (] is assumed to be measurable, and
represents an a priori unknown disturbance.

We shall use the notations= & + p andj3 = 3 — p. The positive numberg,
« andg describe the market model and are assumed known.

Although this presentation is meant to emphasize the fact that there are no
probabilities involved, and that our “disturbanceis just a mathematical device,
a renaming of the quantity that we have assumed to be bounded, it may be usefull
to relate this form with one more reminiscent of the classical geometric diffusion
model. Lety = (3 — &)/2 ando = (5 + @) /2. Letalsov = (7 — p)/o. Now, all
stock price trajectories can be represented by the system

S =(u+ov)S A3)

wherev is any measurable time functign— v(t) satisfying|v(t)| < 1, Vi. In
a sense, this is a “normalized” disturbance, and therefoie a measure of the
volatility of the stock considered.

2.1.2 Portfolio model

We form a portfolio made up af shares of the underlying stock, apdiskless
bonds. The value aworth @ of this portfolio at any time instant is thus

w(t) = x(t)S(t) + y(t)R(t) .

We aim to precisely define what is a self-financed hedging strategy.



Let us investigate how behaves a self financed trading strategy in the presence
of transaction costs, since this is our objective. Assume these costs are proportional
to the amount traded, not necessarily with the same proportionality ratio for the
two comodities considered. Let us cafl the trading cost ratio for the riskless
bond, and:; for the underlying stock. Each transaction should finance those costs.
Therefore, let @ be the variation irx at a stock price of, and d, the variation in
y at a bond value®, we should have

dzS + ¢1|dz|S + dyR + coldy|R = 0. 4)
We therefore let :
Definition 2.2
a. Adynamic portfolio(or simplyportfolio) is a pair of bounded variation time
functions(z(-), y(-)) defined ovef0, 7.
b. A dynamic portfolio is said to beelf financedf it satisfies (4) (in the sense
of Stieltjes calculus).

The costsyy andc; are assumed small, of the order of a few percent may be.
Introduce

oo ot a
e = sign(dzx) , Ce = €1 o (5)
Proposition 2.1 A self financed dynamic portfolio is entirely defined by its intial
composition(z(0), y(0)) and the bounded variation time functiony-). The time
functiony(-) and its worthw(-) can be reconstructed through integration of the

differential relations
. (1 + 661) E
dy = (1= zc0) Rda: (6)
and

dw = pwdt + (7 — p)zSdt — C.Sdz . (7)

Proof Because; andc; are smaller than one, it easily follows that dnd d,
should have opposite signs. Recall that sign(dz). It therefore comes

(1+ec1)deS + (1 —eco)dyR =0,

hence (6). Further more, the classical fact @R = pyRdt = p(w — xS)dt, it
comes (7)1

Notice that in (7), the last term is always negative, and represents the loss in
portfolio value due to the trading costs. Of course, the case without transactions
costs can be recovered by letting= ¢; = C. = 0in the above theory.

We shall let, for short¢', ;| = C*T andC_; = C~ (a negative number). It is
worthwile to examine two extreme cases :



The casecy = 0. If the riskless bond is, say money, and trading in that comodity
is free, then we simply hav€. = ec, the transaction cost on the stock.

The casecy = ¢; = c¢. If both transaction costs are equal, an interesting feature

that shows up is that then
1 1
l+ot=11C_ .
l—c 14C—

More generally, we may notice the folowing fact :

Proposition 2.2 Whenever, < ¢, one has

l1<1+Ct<

1+C

2.2 Hedging strategies
2.2.1 Variations ofz

We would like to letz(-) be our control. But there are costs associated teats
ations Hence, in a classical system theoretic fashion, we are led to consider its
derivative as the control. However, another difficulty shows up, since we want also
to allow discontinuities in:. We would therefore need a theory of impulse control
in differential games. It is worthwhile to write the Isaacs quasi-variational inequal-
ity that this formally leads to. But the theory of this inequation is not available at
this time.

We shall in some respect get around that difficulty with the following approxi-
mating device. We shall let the monetary flux be our control :

iS=¢, or  Sdr=<&dt, Ee[-X,+X], (8)

where we shall takeX to be a (very) large positive number, and investigate the
limit of the solution found asX — oo. Whether this limit is the solution of an
impulsive problem is a rather technical question, the more so here that we shall
deal with a differential game, not a mere control problem. The tools introduced in
arecent article [1] seem appropriate to attempt an extension to game problems. We
shall not be concerned with that problem here.

2.2.2 Trading strategies

We shall let our controf be a function of timeS(t), andz(t) if necessary. We
need to chose this function in such a way that the induced differential equations
have a solution. We therefore let



Definition 2.3 An admissiblérading strategys a functionp : [0, 7] x R* xR —
R such that the differential equation (8) with= ¢(¢, S(t), z(t)) has a unique
solutionz(-) for everyz(0) and admissible time functia$i(-) € Q.

As a result, an admissible trading strategy, together with an initial portfolio
(x(0),y(0)) yields a well defined dynamic portfolio.
Our aim is described by the following definition :

Definition 2.4 At an initial market priceS(0) given,

a. An initial portfolio and an admissible trading strategyconstitute ehedge
at S(0) if they insure that

VS(-) € Qwith S(0) given, w(T) > M(S(T)). 9)

b. The strategyp is a hedging strategyor the initial portfolio (z(0),y(0)) at
S(0) if together they constitute a hedge.

c. An initial portfolio is said to benedgingat S(0) if there exists a related
hedging strategy for it.

Finally, the relation with pricing is as follows :

Definition 2.5 The equilibrium priceof the contingent clain{Z, M/ (-)) at S(0)
is the least wortho(0) = y(0)R(0) of all hedging initial portfolios of the form

(0,4(0)).

This last definition stems from the following remark. Let an initial hedging portfo-
lio be given agz(0),y(0)). Lete = sign(z(0)), and let us assume that0) and

y(0) have different signs, as will be the case for efficient hedging portfolios in the
case of simple european options. The cost of creating it, prite is

P((0),4(0)) = (1+ec1)x(0)5(0) + (1 - eco)y(0)R(0)
= (1 —eco)[w(0) + Cex(0)S(0)] -

In the notations, of the next paragraph, this leads to define the price of the hedge as
P = (1 — ecp)R(0) min, [W(0,u(0),v) + Ccv]. On the other hand, if our theory
allows for a jump inz andy at initial time, satisfying (4), then it follows from (the
same reasoning as that leading to) equation (22) that inde@g}V (0, u,0) =

R(0) min, [W(0,u,v) + Cev]. Sincee will be the same for all efficient hedging
portfolios (+1 or -1 in the case of a call or a put respectively), in comparing the
worth of hedging portfolios, we may neglect the factor- ¢y ), which disapears
altogether if we assume that our original wealth was invested in bounds.

7



2.3 End-time values

It is convenient to transform everything in end-time values. We shall let

I
U—R, 'U—R, ’UJ—R,~
T:%_pu _a:_&_pa ﬁzﬁ_p7

3 X
== X=—.
& R’ R

Notice thatS, x andy are readily recovered from, v, andw with the help of

x=—, y=w-—uv. (10)
u

With these notations, the dynamics of the market and portfolio become

W = Tu, (11)
v = TUv+E, (12)
w = Tv—CLE. (13)
T € [—a,pf], e [-X,+X]. (14)

Our objective is to find the cheapest hedging portfolio and corresponding hedg-
ing strategy
§=(t,u,v) (15)
2.4 Mathematical analysis of the problem

The aim (9) of a hedging strategycan be written as
vr() €[, 8],  Mu(T))-w(T) <0,

where one remembers thatl’) is a function ofu(0) andr, andw(7") a function
of v(0), w(0), and bothr(-) andy. Obviously, this is equivalent to

sup{M (u(T)) ~ w(T)] < 0.

And for a givenu(0), v(0), w(0), there exists a hedging strategy if (and only if
provided that the min below exists)

mcgn bl(l}))[M(’LL(T)) —w(T)] <0. (16)



Hence, in a typical “robust control” fashion, we face a minimax control problem
or dynamic game problem.

Now, notice thatw does not appear in the right hand side of the dynamics
(11),(12),(13). hence, we may integrate (13) in

wlt) = w(®) + [ (F(5)0(s) = Cut(s)) ds.

The relation (16) can therefore be rewritten

T

minsup|[M (u(T)) — / (T(t)v(t) — C£(t)) dt —w(0)] < 0.
o) 0

Now, u(t), v(t) and hencé(t) = o(t, u(t), v(t)) are independent om(0). Hence,

the above relation is satisfied provided that

T
w(0) 2 minsuplM(u(T)) - [ (r(tjo(t) - Co€(0)) o).
7() 0

We are thus led to the investigation of the function

T
W (t,u(t), v(t)) = min 51(11)3[M (u(T)) - / (r(s)v(s) — C=&(s)) ds], - (17)
(- t
and define therice of the contingent claim investigated H$(0, «(0), 0).
We introduce the Isaacs equation of this game :

8(;/5 + mginTes[tjgﬁ] {7‘ [%Ifu + <831j)/ — 1) v] + (88‘;‘)/ + Cg)ﬁ} =0,
W(T,u,v) = M(u).
(18)
(Notice that the function between braces in the r.h.s. above is not differentiable in
¢ because of the definition @f., involving e = sign(¢).)
If we adopt the approximation device of restrictiigp a finite interval— X, X],
then themin, in (18) above should be restricted accordingly. And we get

Theorem 2.3 If there exists a viscosity solutidif of (18), then e”T W (0, u(0), 0)
is the approximated equilibrium price of the contingent claim investigated.

Proof From standard differential games theory (see [3,W))is indeed the min-
sup in (17). Hence the worth of the cheapest hedging initial portfolio wit) =
0, hencev(0) = 0, for a givenu(0) is w(0) = W (0, u(0),0). Going back to the
original variablesi(0) = e *Tw(0) yields the resultl

9



2.5 No transaction costs

We first consider the case without transaction costs{l.e= 0. This was investi-
gated in more detail in [5], but we stress here a game theoretic analysis which was
not discussed there.

Here, we need not keefb or v as a state variable as it can be changed instantly
at no cost. We therefore remain with two state variables (plus time) :

U = TU,

w = TU.

The control variables are € [—a, 8] andv € R. A trading strategy in this context
will be a functiony : [0,7] x RT — R giving v(t) = ¢(¢,u(t)). The problem
at hand is to find states controllable byo the setv(7') > M (u(T")) against any
control of 7.

The above analysis simplifies in

and

T
w(0) = min sup [M(u(T)) _ / T(t)v(t)dt] ,
Y 7 0
which thus provides the equilibrium option price sought.
Therefore, our pricing equation is Isaacs’equation for this game :

ow . ow
W—FmvmmTaX |:T <auu—vﬂ =0, W({T,u)=Mu). (19)

Theorem 2.4 In the absence of transaction costs, the equilibrium price of the con-
tingent claim investigated is the so-callpdrity value

e "TM(e15(0)).
The corresonding hedging strategy is given by
2(t) = OLlij(ep<T—f>S(1t)>.

Proof For anyv, themax, in (19) is non negative. Hence it is maximized by the
choicev = (0W/0u)u, and Isaacs equation is reducedid’/ot = 0. Hence its
solution isW (t,u) = M (u). The results followll

We see that we recover the classical fact that the optinisithe sensitivity of
the option’s value.

10



2.5.1 European Calls

Let us examine the case of a European call. Thén= [u — K], is not differ-
entiable. Yet it is easy to see thHBf = M is indeed the viscosity solution of
Isaacs’equation, since at= K, we do have that for any betweerD and1,

min max|[7(pu —v)] =0.
v T

However, this is not the last word about the nondifferentiabilitylof
The corresponding strategy is the “naive strategy” :

0 i u<K,
YTl u if u> K.

The strategy at. = K is better analyzed in terms of the semipermeability of the
manifoldw = [u — K]4. Itis readily apparent that if we do not want the corner
to leak, we need that botlh > 0 andw > u, which requires that = 0if 7 < 0
(to abide by the first constraint) and= 1 if 7 > 0 (to abide by the second.)
Hence the hedging strategy is a bang bang function o$idne of the variatiorof
the underlying stock price. A very undesirable feature.

Moreover, if there are transaction costs, and if the prices oscillate around the
parity value, this will induce constant large buy and sell decisions which will cost
much and ruin that hedging strategy.

2.6 Non-zero transaction costs : a partial solution

To be more specific, we consider the case of a european call with strikingfprice
whereM (s) = max{0,s — K }.

2.6.1 Three-D impulsive control formulation

In this paragraph, we investigate the problem allowing for instantaneous trading of
a finite amount of securities, hence jumpsiandy at times chosen by the trader,
but still in accordance with (4).
We let the trader choose instants of timgeand trading amount, with signs
€k, and augment the dynamic equations with the jump conditions
v(ty) = (ty) + &, (20)
w(th) = w(ty) - Cob. (21)
The definition of a trading strategy for this paragraph is therefore as follows:

Definition 2.6 A trading strategy is defined by

11



a. a measurable functiof(-) : [0,7] — R called thecontinuous part
b. animpulsive partmade of

e afinite increasing sequence of time instafs}
e a sequence of corresponding numbgfs},

The corresponding dynamic portfolio is given by the equations (12) (20), and the
worth of the portfolio can be computed from (13)(21).

We denote symbolically by a feedback rule that let one decide whether to
make a jump and of how much, and also compute the continuous part of the trading
strategy, knowing past and presers andv’s.

As previously notice thaty does not enter the right hand side. Using the equal-
ity

T
wlT) = w(0) + [ (rolt) = C.é0)e = 3 Cuyti
k

We therefore end up with the dynamics (11)(12)(20) and the problem to find

T
W (0,u(0),v(0)) = m(pin 81(11)) [M(u(T)) — /0 (To(t) — CE(t))dt + Z Ce, &k
T k

Determination of this impulsive minimax is beyond the scope of the current
theory. One should refer to the theory of impulse control, as developed in [4].
However, added difficulties arise. On the one hand, this is a game not a control
problem. On the other hand, this is a deterministic problem, so that the correspond-
ing PDE is first order, and one would need to extend to quasivariational inequalities
the technique of viscosity solutions. Moreover, the Q.V.I. is further degenerate due
to the fact that the second term in the brace in (22) is nonpoéitive.

Yet, it is interesting to write the quasivariational inequality that is formally
associated with this impulsive game :

0 = min 87W+ max T 8—Wu—i— a—Vv—l )
N ot  re[-a,8 | Ou ov ’

(22)
min[W(t, u, v +§) = W(t,u,v) + Cgﬁ]}
with furthermoredW /v € [—C*, —C~] whenever the first minimum is obtained
by the first term in the brace, in order fG@1V/0v + C;)¢ to have a minimum in
&, which is then reached §t= 0.

2In that respect, we would have a more classical impulse control problem if the transaction costs
were chosen affine, with a fixed part added to the proportional part.

12



It might be possible to construct the solution of this QVI. ¥éajecturehat the
solution leads to hedging strategy involving, for any realistic initial condition, an
initial jump in v followed by a “coasting” period whergtakes intermediate values
depending on the variations of followed by a final period witlf = 0 as the next
paragraph shows. Hence providing a non trivial hedging strategy for option pricing
with transaction costs, a feat known to be impossible with the classical theory, see
[15]

2.6.2 Four-D non impulsive analysis

We now turn to the approximation device consisting in bound{hby a very large
numberX that we shall let go to infinity.

We also turn back to the 3 state formulation, considering the qualitative prob-
lem of driving the final state to the sgt(T") — M (u(T")) > 0}. The barrier of this
problem is the graph of the functidi of the 2 state variable formulation. But the
geometric intuition of semipermeable surfaces will help here. Notice also that, to
gain in intuition (we like to think of the hedging strategy as maximizing the value
of the portfolio), we have changed the sign of the terminal term. We make use of
the Isaacs Breakwell theory. The reader unfamiliar with that theory could as well
turn directly to the subsection 2.6.3.

Hamiltonian set up. In terms of differential games, we must construct a “bar-
rier” separating states that can be driven to the desired set atltiagainst all
disturbances from those for which at least one disturbance function exists that will
prevent the aim to be reached. Although we shall only sketch the mathematical
details, we shall make free use of the theory. See, e.g. [10, 11].

Because we are in fixed end-time, the state space of this game is four dimen-
sional : (t,u,v,w). Let(n,p, g, r) be a semipermeable normal. It satisfies

n -+ mga,mein{[pu +(g+r)vjT+ (¢ —C:)E} =0,

and the controls on barrier trajectories are given by

i +
—a if pu+(¢g+7r)v>0, X !f q?C i
T g if pu+(¢g+r)v<0 &= 0 i 07 <g<C,
pu i ’ ~X if g<C.

Furthermore, on a smooth part of a barrier, along the barrier trajectories the semiper-
meable normal satisfies the adjoint equations :

no= 0,

13



p = —7Tp,
= —(1+q)r,
= 0.

Barrier sheet towardsu < K. Let us construct the natural barrier arriving on
the partu < K, w = 0 of the target set boundary, that we parametrize with
uw(T) =s,v(T) = x. We get

uw(T) = s<K, p(T) = 0,
o(T) = X, q(T) = 0,
w(T) = 0, r(T) = 1.

So, at final time, we get = —« and¢ = 0. The equations integrate backwards in

u(t) = serT0, p(t) = 0,
ot) = xe Y, q(t) = eI 0—1,
w(t) = X(e"‘(T_t)fl), rt) = 1.

This solution is not valid before the timig wheng crosses the valu€—, i.e.

T—ta:lln ! .
a 1+C™

Prior tot,,, one has; < C—, and therefore, if that trajectory is still part of a
barrier,( = —X. In view of the fact that we are interested in the cAse~ oo, this
means a negative jump in i.e. inz, the underlying stock content of our portfolio.

Regular barrier sheet towardsu(7") > K. We now consider the natural barrier
towardsu(7T") > K, w(T') = u(T) — K. We again parametrize that boundary by
u(T) = s andv(t) = x. We get now :

uwT) = s>K, p(T) = -1,
’U(T) = X, Q(T) = 07
w(T) = s—K, r(T) = 1.

The corresponding value efat timel’ depends on the sign ef— x. Let us first
consider the case > y. We have then at tim& and just before- = 3, and still
¢ = 0. The differential equations integrate backwards in

ut) = sePT=1, p(t) = —efT-D,
U(t) e Xe_ﬁ(T_t) R q(t) = eﬁ(T_t) — ]_ ,
w(t) = X(e_B(T_t) -1)+s—-K, r(t) = 1.

14



This solution is not valid before the tintg wheng crosses the valug™ :
1 +
T—t5:Bln(1+C ) - (23)

Prior to that time, and again if the trajectories were part of a continuing barrier, we
would have¢ = X, which indicates a positive jump in hence inz.

Singular barrier sheet towards«(7") > K. A particular case arises if we con-
sider the case = x. Then it is readily apparent that, + (¢ + r)v remains null
along any time intervalt, 7] on whichg = 0. Then, anyr satisfies the semiper-
meability condition, and so dogs= 0 as long as

T
mu+c~h;/7wmesmu+cﬂ.

Along these trajectories, = v € [s/(1+CF), s/(1+C7)|N[se AT sex(T1)],
andw = u — K.

Thus, for eachs we have two free parameters :and ftTT dé, yet this con-
stitutes only a 2-D manifold, because all are embedded into the 2-D manifold
u=v=w+ K, t arbitrary.

One of these trajectories for eashs obtained withr = (5. It is the “last”
trajectory of the sheet we would construct with< s. It will come as no surprise
to the reader that the trajectories constructed with> s, i.e. in our original
variablesr > 1, will play no role in the solution.

Intersection. These two three-dimensional sheets intersect along a 2-D edge, that
joins continuously with the above singular 2-D manifold, and that we can parametr-
ize withh =T — t andu € [K exp(—ph), K exp(ah)] as

uebh — K
ebh _ g—ah’

Notice that because of Proposition 2.2, and assumingathat3, (maximum
rate of decrease of a stock price not larger than the maximum rate of increase), then
ta < tg. Hence the above intersection only holds over the time intgtyal],
because before, the sheet towands K is missing.

A careful study of the intersection shows that it is-g@lispersal line, i.e. that
the trader must watch the evolution of the stock price and adapt to it.

v="0(h,u) = w=wh,u) = (1—eMoh,u).
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Composite barrier. These semipermeable surfaces define a composite natural
barrier that can as usual be described as (the graph of) a functio®V (¢, u, v) =
inf{w | (¢,u,v,w)is hedgeablp We get heré, =T — ¢ and

[ 1—epw it v
W(tﬂuﬂv)_{(l_eﬁh)v-}-ueﬁh—ff if v

We may further notice that if. < K exp(—(h), we always are in the first case
above, and ifu > K exp(ah), taking into account the fact that we consider only
the cases < u, we always are in the second case.

IN IV

0(h,u),
0(h,u) .

2.6.3 Interpretation of the results

As a cue to interpreting the geometry of the barrier in the state space, notice that if
a point(t, u, v, w) is “hedgeable”, then any poirt, u, v, w’) with w’ > w is also
admissible. Therefore for a given, u), say, we should look for a barrier point
with those coordinates and the lowest possiblas a limiting admissible state,
and therefore an equilibrium price for the call.

The main point we have shown is that the terminal part of the play leads to
¢ = 0 as an optimal behaviour, i.e. to a constanho trading is necessary during
the finalT" — ¢ 3 time interval. Therefore the main weakness of the “naive” strategy
of [5], which was a risk of constant and costly trading, is avoided. The whole idea
to include the transaction costs into the model was aimed at that result.

If u < Ke P(T-1) then according to our model, the call is and shall remain
out of the money. The value of the callis As a matter of fact, the only relevant
barrier is our sheet towards< K. For a giveru andt itis intersected at minimum
w by x = 0 and indeed yields) = 0.

If w > Ke#T-% the call may end up in the money. If moreover>
KerT=t then it will surely do. The intersection of the two sheets of the com-
posite barrier is ab = u, w = u — K. One should have (at least) one share of the
stock, and may have borrowed an amoBin®(¢), worth K at exercise time.

In between, and for the last instant of times, the limitingndw are just such
that with no trading, if the stock goes down at maximum rate, we shall end up
with w = 0, and if it goes up at maximum rate, we shall have just v — K.

The corresponding equilibrium value for the call is a linear function: dfvith
h =T — t the maturity) :

1— e—ah
eﬁh —g@ah

It coincides with one step of the discrete time theory hereafter (see also [5]),
and therefore more prominently of [8]. As a matter of fact, since we have found

(ue’" — K).

w =
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that the optimal behaviour was to l[&t— ¢z time pass without trading, therefore
without incurring trading costs, we find one step of the discrete time theory with
that step size.

We therefore suggest to exploit this result by using a discrete time strategy
with that step size. This is the minimum time it takes for the stock to increase of a
relative amount-C—, i.e. of the order of (but slightly less thas) + ¢;.

2.6.4 Closing costs

Before we investigate the discrete time theory, we must make a digression on clos-
ing costs.

If there are trading costs, it is not equivalent to end up with no stock and no
debt or with, say worth of stock, and as much in debt, as there is a cost to selling
the stock and using the proceeds to repay the debt.

The target set at exercise time should therefore be changed to reflect that fact.
Letn = sign(v). The correct target set far(T") < K is then

w+C v > 0.

(If we know that only positivey's will be used, we may simply set + C~v > 0,

but the above form is usefull for the theoretical analysis.) In the cé8g > K,

there are two possible ways of comparing a portfolio and the option. Either we

decide to liquidate any position, and compare situations with0, or we want to

bring our portfolio to a position similar to that just after exercising the call, i.e. with

v = u. Both methods do not lead to the same conclusions. The first one has the
advantage of leading to a continuous target set for the portfolio. Incidentally, one

should then exercise the call only if the net proceeds after liquidating the position

is positive, i.e. if(1 + C7)u(T) — K > 0. And the target set then reads

wt Copyo > [(1+C )u— K], |

We forgo the mathematical analysis of this case, as it is at this time less ad-
vanced than the previous one. The analysis seems to point to a delay without
trading at the end of length

1 1 +
T—tg=—In +C ,
B 1+C—

(24)

hence roughly twice as long as in the case without closure costs.
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3 Discrete time

We turn to the discrete time theory. In [5], we argued that this is a more realsitic
theory as a trader is likely to pay attention to a given portfolio a finite number
of times per day... Here, however, we have another justification, arising from the
continuous time theory itself, where we have seen that introducing transaction costs
automatically leads to optimal hedging strategies made of jumps in the contents of
the portfolio, with no trading at least after the last jufphis suggests to use the
characteristic step size (23) or (24) above. This is typicaly of the order of one third
to one half day. The present theory can also be exploited for other step sizes.

3.1 The model
3.1.1 Market model

We let now the time& be an integer, i.e. we take the step sixeas our unit of
time, so that is now an integer ranging frofito a given positive integef. Let
also the price of a unit riskless bound be

R(t) = (1+ )0

so thatp in this section is & — 1 of the continuous time theory. Likewise, con-
cerning the underlying stock pricewe let :

Definition 3.1 The set of admissibleprice histories is defined by two positive
numbersy and 5 and is the set of all sequencgS(¢)}, t € {1,...,T} such that

(1-&)S(t) < S(t+1) < (1+B)S() (25)

We choose to define

so that the above definition also reads
S(t+1)=1+7)S(t), 7 e [—a, f]. (26)

Notice that thet and 3 of this section are related to those of the previous section
via the same relation as

3And affine transaction costs would lead to purely impulsive strategies anyhow.
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3.1.2 Portfolio model

We call z; andy; the number of shares in the portfolio immediatelgforethe
transactions at time¢, andw; = x:S(t) + y.R(t) the corresponding value of the
portfolio. We shall make use ab;” = x;115(t) + y+1R(t), the value of the
portfolio immediatelyafter the trading at time, and likewise forv andw below.
Let alsodz(t) = x¢4+1 — xy anddy(t) = yi+1 — y.. We therefore have

Definition 3.2

a. Adynamic portfoliois a pair of sequence§{x;}, {y:}), defined ovet €
{1,...,T}.

b. A dynamic portfolio is said to keelf financedf it satisfies (as equation (4)):
dx(t)S(t) + c1]dz(t)|S(t) + dy(t)R(t) + coldy(t)|R(t) = 0. (27)

We chooseét, the amount irS traded at time as our control, so that

(Tt41 —2)S(t) = &t -

Lete = sign(¢). The same reasoning as in the continuous time case may be
used to conclude that self financing of the strategy imposes the following:

Proposition 3.1 A self financed dynamic portfolio satisfies

_1+661~

(Y1 — ye) R(t) = 1~ o &t -

and R B
W1 = (1 + p) (0 — C&t) + (Tt — p)(@eS(t) + &) -

Introduce, as in the continuous time theory, the end-time values

w — S(t) v — I‘tS(t) Wy — ?I}t 5 _ ft
as above,
+ xH—lS(t) + _ II):_
“ TRy " TR
and let ~
—oz::_O~é_p<7't::7~—t_p<ﬁ::u (28)
l+p — 1+p — 1+p’
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After some simple calculations, the discrete time market and portfolio model
then read

w1 = (1+7)ue,
P T v = L+, (29)
thr = Wt — Cgét , W41 = w;r + TtU;r .

We shall consider feedback trading strategies :

Definition 3.3 A trading strategy is a sequence of functians: R* x R — R.
The self financed dynamic portfolio generated from an initial portfolig yo) by

a price history{S;} € Q and the trading strategyy, } is the pair of sequences
generated by (29) with, foratle {0,1,...,7 — 1} : & = @¢(ug, vp) -

We now state our objective : finding hedging strategies and the equilibrium
price of the contingent claim.

Definition 3.4 At a given market pricé&(0),

a. Aninitial portfolio (z, y9) and a trading strategy constitutereedgeat S(0)
if, for any {S;} € Q, with S(0) given, together they yieldr > M (ur).

b. The corresponding trading strategy is then calledeglging strategy
c. An initial portfolio (xg, yo) is said hedgingat S(0) if there exists a corre-
sponding hedging stategy.
And finally

Definition 3.5 Theequilibrium priceof the contingent claim investigated &0)
is the least worthuy = yoR(0) of all hedging portfolios of the forrfD, yo).

Remark The definitiona) above may be slightly modified to reflect the preferred
notion of hedge in the presence of closing costs. (e.g., judgéd@mposing
vy > up, or alternativelyv} = 0 andw;. > [(1 — ¢1)u — K]4). See the section
on continuous trading for further hindsight into these definitions.

3.2 Dynamic programming

Let A; be the set of stateS.,, v, w;) from which there exists a trading strategy
&k = or(uk,vr), k > t that, for any possible future sequengs.}, drives the
portfolio to an admissible state at tirfig i.e. such thatvy > M (ur). Itis clear
that if (u, v, w) € A, then any(u, v, w’) with w’ > w will also be inA;. We may
thus characterize the sdi; as the epigraph of itdoor function

u u
v | €A so that v | € Ao w > Wy(u,v).
w w
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It is convenient to perform the classical dynamic programming construction,
leading to the Isaacs equation, in two steps. Let fi4st be the set of states
(ug, v, w;) att that will be driven tad,, ; by anyr, andW," the corresponding
floor function. Thus,

u (14+71)u
vt | € A <= V1 € [~a,0], (1+7)vt | € A1
wh wt + 7ot

or equivalently

wt > W, (u,vh) <= V7 € [~a, 8], wT + 70t > W (L+7)u, (1+7)vT).
Thus, we have

W (u,v) = Ter{n_a;cm (W1 (14 7)u, (1 +7)vt) — 70, (30)

Now, A; is the set of all state@:, v, w) that can be sent by an appropriate control
¢intoa(u,vt,wt)in Axq, hence,

w > Wi(u,v) <= 3w — C£ > W, (u,v + ).

Therefore
Wi(u,v) = m{in[WtJF(u, v+&) + C:E] (31)

It is useful to give the form taken by the recursion merging the two steps from
t;+1 totT and fromt™ to ¢ into a single Isaacs equation :

Wi(u,v) = mginTem[faof(ﬁ][WtH((l +7)u, (14+7)(v+E))—7(v+&)+C:] . (32)
to be initialized with
Wr(u,v) = M(u) (33)

We have thus proved the following result:

Theorem 3.2 If equations (32)(33) have a solutid#; (u, v), the equilibrium price
of the contingent claim a$(0) is (1 4 p) T Wo((1 + p)7'S(0),0).

(The coefficientg1 + p)~7 and(1 + p)? are there to come back in the original
variables, as opposed to their end-time values.)

Equations (30) and (31), or equivalently (32) and (33), also provide a con-
structive algorithm to numerically compute the equilibrium price. We discuss that
matter at the end of subsection 3.4.
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3.3 Limiting cases
3.3.1 Zero transaction costs

The case with no transaction costs corresponds hé&re to 0. Then in (32) only
appears in combination withas(v + £) (i.e. v™), which can therefore be taken as
our mute maximization variable. If moreover the final vallig does not depend
onwv, then the r.h.s. above never depends @ither, leading to a functiol; (u) :

Wi(u) = min max [Wy1((1+7)u) — 707].
vt T€[-0,0]

We shall argue below that in the case of simple European options, the maxi-
mum inT is reached at an end point of the admissible interval. As a consequence,
this maximum is minimum when = —« andr = (3 yield the same value, i.e.

Wir1((1 — a)u) + avt = Wi (1 + B)u) — pot

leading to
vt (u) = Wi ((1+ ﬂ)u; ; gftﬂ((l —a)u)
and thus
Wi(u) = ~ j‘_ ﬁWtJrl((l + B)u) + afﬂwtﬂ((l —a)u). (34)

These are exactly the equations obtained by Cox, Ross and Rubinstein [8]. The
reference [5] develops in some more detail the reason why the two theories seem
to coincide. The (big ?) difference, though, is that the theory of Cox, Ross, and
Rubinstein is based upon a market model whiamasrealistic for finite step sizes,
and only meant to be meaningful in the limit as the step size goes to zero. Here
we have a normative theory even for finite step sizes. However, with the same
historical data, we shall be led to a model with a larger volatiity: (o + 3)/2
than in their approach.

3.3.2 \Vanishing step size

Itis interesting to investigate the limiting case of our theory, with transaction costs,
when the step size goes to zero in the above recursion. Thus we replace the step
size “one” of the above theory by. We choose to modelize stock price histories

of bounded variationas opposed to the classical Black and Scholes model. (See
[5] for more details.) Thus replaceby 7, = hT € [—ha, hj].
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Equation (32) now reads

Wi(u,v) = mgin en[naxﬂ][WtJrh((l +hr)u,(1+h1)(v+§)) — hr(v+ &) + CE]
The following analysis is formal. We strongly conjecture that it can be made
precise, though at a rather high mathematical price. Rewrite the above equation as

0 = min max {WHh((l + hr)u, (1 + h7)v)) — Wi(u,v) — hr(v + &) +

6 Te[fav/g]

Wiin(L+ hm)u, (L+ h1)(v 4+ &) — Wign (1 + h7r)u, (1 + h1)v)) + CE ».

(35)
The first line in the above display always goes to zerd as 0. Now, two situa-
tions may arise a8 — 0.
Either the minimum ir¢ is attained for a non zer@ Nevertheless, the second
line must also go to zero, since the sum does. Therefore, in the limit we must have

mfin[Wt(u, v+ &) — Wi(u,v) + C:£] =0,

where we recognise the second term of (22). In this case, placing will yield
a positive r.h.s. But the second line in the display (35) is zerq fer0. Thus the
first is positive, and the term above is the minimum of the two lines.

Or the minimum in¢ is reached af = 0. This means that the second line in
the display would be positive for non ze¢ts. And the first line reads, dividing
through by the positivé

1
max [ <Wt+h((1 + h7)u, (1 + h7)v)) — Wi(u, v)) — TU:| =0.
T€[—a,B] h

In the limit ash goes to zero we recognize the first line of (22).

Altogether, we see that we end up with the quasivariational inequality (QVI)
(22) of the continuous time theory. Thus, equation (32) can be seen as an “upwind”
finite difference scheme for the continuous QVI, strongly suggesting that the solu-
tion of the discrete trading problem converges to that of the continuous trading one
as the setp size goes to zero.

3.4 The convex case

As is the case without transaction costs, convexity of the evaluation funkfiam
terminal time is preserved by the recursion and helps in the computations. Let us
state the main fact :
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Theorem 3.3

a. The functiond¥; and W," generated by the recursion (30),(31),(33) are
convex inv for eachu.

b. If furthermore the function/ is convex, then they are jointly convexin v).

Proof We provide the proof of the second statement. The first one goes along the
same lines, just simpler.

Notice first thatV being convex (in:), Wr is jointly convex in(u, v). Assume
that W1 (u, v) is convex in(u,v). So isWiy1((1 + 7)u, (1 4+ 7)v) — 7v. And
therefore, according to (30)," is the maximum of a family of convex functions,
thus convex.

Assume therefore that," is convex in(u, v). Introduce the extended function

I s e’ if n+#0,
F(ﬁaf)—{ _Cisg if 77:0

Itis convex in(&, n). Now, (31) reads

Wi(u,v) = rg}lign[W?(u —n,0—¢) +L(n,¢)].
HenceW; is the inf convolution of two convex functions, therefore it is convex.
The theorem follows by induction.
Beyond its theoretical significance, —there are deep reasons to expect the value
of a call to be convex, at least im (see, e.g. [9])— this fact has an important
computational consequence. Let us first emphasize the following fact :

Corollary 3.3.1 If M is convex, the function — [Wy1((1+7)u, (14+7)v) — 7]
iS convex.

As a consequence, the maximum<snin (30) is necessarily reached at an end
point of the segment-«, 3]. Computationally, this means that the maximization
is reduced to comparing two values, a significant simplification. The practical
consequence is that using the recurrence relation to compute a pricing is very fast
for a convex terminal value. We typically had run times of 6 seconds per time step
on a 500 Mhz P.C., withh andv discretized in 200 steps each, a golden search in
&, andP1 finite elements interpolation of the functid;.

This will not be so for a digital call, say. The maximizationsrthen has to
be done via an exhaustive search. Yet, since we preserve the convexjtthia
minimization in{ can still be performed via an efficient algorithm.
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Remark The various ways of taking closing costs into account usually preserve
the convexity of)M .

3.5 Partial solution for a European call

If we take M (s) = max{0,s — K}, we can perform “by hand” the first steps of
the recursion (32). We find the following facts.

e The optimal choice fo£(T) is always zero : there is no incentive to per-
form a portfolio readjustment at final time since this has a cost, and buys us
nothing in this formulation without closure costs.

e If u; > (1 — a)'~T K, one finds that the recursion reaches a fixed point
Wi(u,v) =[1+CHA+8) —1](u—v) +u— K.

The optimal trading strategy is always to jumpute= u, i.e. own one share
of the underlying stock.

o If u; < (1+ B)'"TK, the siuation is slightly more subtle, at least for large
trading costs. As a matter of fact,df + C~ < 0, for the last time steps,
where(1 — o))"=t > 1 4+ C—, the optimal hedging strategy §s = 0, hence
do not trade. This is again a feature of the robustness of this theory against
small variations inu. For earliert’s, the optimal hedging strategy is to jump
tov = 0, and the lowest value of a replicating portfolio is

Wi(u,v) =1-(1+C7)(1—a)v.

Thatis, one needs to have at le@ist C~ ) (1 —a)v worth of riskless bonds to
pay for the trading in of the stock at hand at the next time instant. (Remember
thatv, is the value of the stock in the portfoleforethe trading at time.)

e Foru between these two limits, the value is piecewise affine amdv. We
have shown in the previous subsection that the “worst” market evolution, i.e.
the one that dimensions the necessary portfolio, is always an extreme value,
which makes the numerical solution very fast (only —« andr = 3 have
to be compared).

¢ In the case where-a« = C'—, which corresponds to the critical time of the
continuous time theory, further degeneracies appear in the minimizatfon in
in the recursion (32), making = 0 a possible optimal hedging strategy for
a larger region of thé¢u, v) space.

¢ Adding a closure cost does not change much the above results.
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4 Conclusions

Our objective was to introduce transaction costs in our non-stochastic theory of
option pricing, not so much to have a more realistic theory, although this may be
of interest, but mainly because we speculated that doing so would alleviate the bad
feature of the previous continuous trading theory, which was found to give a naive
srategy much too sensitive to trading costs (which had been neglected) in case the
stock price oscillates around the present-value of the striking cost.

This aim seems to be indeed achieved, since at least for a (small) final time
interval, no trading occurs. Yet at this time, we do not have a complete solution of
the continuous time problem.

So we turn to a discrete time scheme, which may be considered as a more
realistic formulation anyway. The corresponding problem can easily be solved
numerically. The option value it will yield is reminiscent of that of Cox Ross and
Rubinstein in that it is piecewise affine, and coincides with it in the case of simple
put or call options with no transaction costs in the theory. We point out that this is
now a normative theory even with a finite step size, and not only as the step size
vanishes. A particularily meaningful step size is the critical time deduced from the
continuous trading strategy. Moreover, we conjecture that the limit of that theory
as the stepsize goes to zero is the solution of the continuous time theory, in effect
making our algorithm an efficient approximation scheme for the latter.

At this time, detailed numerical comparisons are being made between this the-
ory and classical stochastic theories and between option pricing with or without
trading costs. Even more importantly, we want to see whether this theory accounts
for observed option prices on the market. Notice that we have more parameters to
adjust than Black and Scholes, say.
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