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1 introduction

Motivated by the need to perform Hamilton Jacobi Caratheodory theory with an
infinite dimensional state, we first introduce a concept of derivative in between the
Gateaux derivative, which does not yield the chain rule, ar@tiet derivative,
which is too restrictive for our purpouse. While thé@t@aux derivative can be de-
fined over any vector space, theeEhet derivative requires a normed vector space.
The concept of chain derivative we introduce can be defined over a topological
vector space (t.v.s.), and seems to be a natural concept in that framework. Not
surprisingly, this concept is closely related to epiderivatives [1], which have been
extensively used in modern, (but finite dimensional) Hamilton Jacobi theory [2, 3].

In order to illustrate the concept, and as a complement to a couple of earlier
papers [4, 5, 6] where the derivation was presented as formal, for lack of a precise
framework, we show that the mathematical fear operator is chain differentiable
with respect to the cost distribution in the space of continuous functions endowed
with the topology of pointwise convergence uniform on every compact subsets.



2 Chain differentials and chain derivatives

In the sequel, we shall use directional derivativeg afx in the directior¢ denoted
Df(z;¢), or differentials Everywhere, in the case where the differential is linear
and continuous ig:
Df(z;§) =Df(x)- ¢,

then the linear operatd f () is called aderivative

Wile Gateaux differentiation can be defined over any vector spaéehEt dif-
ferentiation requires that the variable lie in a normed space. The following concept
is well suited to the intermediary structure of a topological vector space, or t.v.s.
Let thereforeX andY betwotv.s.,and : X — Y.

Definition 1 The functionf has achain differentialD f(x; £) at = in the direction
¢ if, for any sequencg, — ¢ € X and any sequenceof real numberg,, — 0 it
holds that

lim - [f(z 4+ Onbn) — f(2)] = Df(2:6) 1)

That this be indeed a concept in betweeitéaux and Fchet differentiation,
and close to an epiderivative, is stated in the following fact:

Proposition 1 i) If f has a chain differential, it also is a&eaux differential,
ii) If f has a chain differential, it is also an epiderivative,

ii) If X is a normed space, anfl has a Féchet derivative, it also is a chain
derivative.

We also need to emphasize the following fact:
Proposition 2 The chain differentiaD f (x; ) is homogeneous of degree oné& in
V9 € R, Df(x;06) = ODf (). (2)
The main objective of this definition is to yield the following theorem:

Theorem 1 LetX,Y andZ be threetvs.f :z —Y,g9:Y — Zandf andg
have chain differentials at in the direction and atf(z) in the directionD f (z; £)
respectively. Lek = g o f. Thenh has a chain differential at in the direction¢,
given by the chain rule:

Dh(x;§) = Dg(f(z); Df(;€)) .

Lit would be possible, as in the definition of epiderivatives, to restrictHe to be positive.
However, this does not let us extend the second theorem beloen&s= rather than vector spaces.
Thus it seems of little interest here.




Proof Let¢, — &€ X andf, — 0 € R. Let

Pn = eln[f(x + engn) - f(x)] :

On the one hand, we have that — D f(x; £) by the definition of chain differen-
tiation for f, and on the other hand thatx + 6,,&,) = f(x) + 6,¢,. It follows
that

T RG+0060) ~(2)] = -l (@) +0uip0) ~g( ()] — Dyl (2):DS (53 ).

On
again by the definition of chain differentiation forll

We shall need to consider the concepteadtricted differentialandrestricted
derivative:

Definition 2 Let X andY be two t.v.s., an& C X be a linear subspace of.
Letf: X — Y. We calldifferential of f retsricted td=, or if no ambiguity results
restricted differentiabf f at x in a direction{ € = the differential atx in the
direction¢ of the restriction off toxz + =.

Hence, a restricted differential is obtained by restricting the sequghgein
(1) to belong tc=.

The following theorem allows one to identify ad@aux differential with a
chain differential, and will be used in the example of section 2.

Theorem 2 Let X andY be two t.v.s.Z C X asubspaceok,andf: X —» Y

have a Giteaux differential at all points in an open $etC X in all directions in
=. Forall (y,&) € Q x E, assume thab f (y; £) is continuous iny for every fixed
&, and for somer € X, thatD f(y;¢) is jointly continuous iny, &) € X x E at

(x,0), i.e., that

Va, — x,¥¢, — 0inE, Df(x,;&,) — 0. 3)
ThenD f(z; ) is a chain differential restricted t&.

A simple way of using this theorem is via the simpler

Corollary 1 If the Gateaux differentialD f (z; £) is jointly continuous in(z, &)
over() x =, it also is a continuous restricted chain differential.



Proof of the theorem Let{¢,} C =, and, — £ € = andf,, — 0. Using the
finite difference formula for the functiof'(¢) := f(z + 0,£ + t0,(&, — &)), we
have that there exists, € [0, 1] such that:

f(@+0n8n) = f(@+ 0,8) + Df (2 + 00 + T0bn(En — §); On(€n — £)) -

Hence, using proposition 2,

L@+ 0080) =1 (2)) = L1 @400E) ~ @) DI (00,647 (€0 -8): 6.

The first term in the right hand side converges to ti@e@ux derivativd f (z; £),
and the second one to zero thanks to hypothesidl(3).

The same proof as for elementary derivatives also yields the following result,
which can be adapted to restricted derivatives by replacing everywhbieits
restriction to a set of the forrf, y) + = x T for some linear subspac&sand Y
of X andY respectively.

Proposition 3 Let X, Y, and Z be three t.v.s.,and lef : X x Y — Z. Assume
that both partial functions: — f(z,y) andy — f(z,y) have chain differentials
D, f and D, f respectively, for al(z, y) in an open sef) C X x Y and in any
direction, and assume thd}, f is jointly continuous in its three arguments over
Q) x X. Thenf admits (in the product topology of x Y') a chain differential at
any(z,y) in that domain, in any directiof¢, n), given by

Df(z,y;€,m) = D1f(z,y;€) + Daf(z,y;m) -

Corollary 2 Let X be at.v.s.F : X — X a continuous functior]’ € R™, and
z(+) : [0,T] — X be a differentiable function with derivativg ) satisfying

Vte[0,T), @(t) = F(z(t)).

LetalsoV : R x X — R have a continuous partial derivativig in ¢t and have a
continuous chain differentidD,V in z. Then, for allt € R,

V(t,2(t)) = V(0,2(0)) + /0 [Vi(s, 2(s)) + DoV (s,(s); F(a(s)))] ds.  (4)

Proof of the corollary  According to theorem 1, the functian— V' (¢, z(¢)) has
a continuous derivative
dv
5 (52(5) = Vils, 2(s)) + D2V (s, z(s); F(a(s))) -
And as it is a continuous real function over the compacisét], this derivative is
bounded thud/ (¢, z(t)) is absolutely continuous, and the formula (4) follows.
This is the equation needed to perform Hamilton-Jacobi-Caratheodory (or Isaacs-
Bellman) theory with state and Value functiori/.
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3 Example: mathematical fear

This example is motivated by the theory of minimax partial information control.
See [4, 5, 6]. It rests upon the concept of “cost measures”, a particular class of
Maslov measures introduced by Quadrat and co-workers. See [8, 9, 10].

Let Q be the set otost functiong; : R™ — R continuous, going to— co as
x — oo, and such thatnax, g(x) = 0. Lety : R" — R be continuous. By
definition, themathematical feaof © with respect tq; is

Flp:=Fip(z) := Sgp[sﬁ(rv) +q(z)].

This concept has been used to investigate partial information minimax control
problems as a parallel development to stochastic control. We sketch that theory
here with the notations of [6], to which we refer the reader for more details.

Let a control system ifR™ be given by

z = f(t,z,u,w), z(0)=x0,
y = h(t,u,w).

Here,z(t) € R™ is the stateu(t) € U ¢ R™ is the controlw(t) € W C Rf a
disturbance and(t) € RP a measured output. The functigns assumed to satisfy
a set of regularity and growth hypotheses that insure existence and uniqueness of
thetrajectoryz(-) for every measurable control and disturbance functiong, iad
assumed continuous. We also denote= (xg, w(-)) € Q := R" x L([0,T],W).

The problem at hand is to find @on-anticipativecontrol strategyu(t) =
w(t, y(+)) that will minimize a performance index

H(p) =FoJ (u(y(-)), w) ®)

defined via twaC'! real functionsM : R® — Rand : [0, T] x R" x Ux W — R
as
J(u(),w) = M(x(T)) + sup L(t,(t), u(t), w(t)).
t€[0,T]
In the mathematical fear (5), the cost functions attacheg ndw(-), Q(zo) and
J T(t,w(t))dt respectively, are part of the data.
As a matter of factl’ may be taken as a function of the other variables also, so
that the overall performance index considered is in fact of the form

H(p) = sup sup L(t,x(t),u(t),w(t))—i—/ (s, z(s),u(s), w(s)) ds+Q(zo)|.
weQ 1[0, 0

But we shall stick here with the notatidi{t, w). See [6] for more details.
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It is then showed that this problem may be solved via infinite dimensional
Hamilton Jacobi Caratheodory Isaacs Bellman theory, the “state” being then the
conditional state mathematical fe@(t, ) itself defined via the “worst conditional
past cost functionW (z) as

w

w(e) = s [ "D(s,w(s)) ds + Qo)

where the supremum is taken among thasthat are compatible with the past
controls and observations and lead to the current stgde= . Then

Q(t,x) = W(t,x) — max W(t,§) .
£eR™

And we letX be the set irR” on which the max above is achieved.
Formally, Q satisfies the PDE given in terms of

V(tv :L“y) = [h(tv xz, )]_l(y)
and of the cost measure (denot&d(y) in [6])

A(t,y) =max max I'(¢t,w)
rzeX weV(t,x\y)

as

oQ(t,x) _8W(t, x) B

We letq(t) = {z — Q(t,x)} and write the above PDE as

dq(t
U0 — G, qf1), utr) w(e). ©)
With this system, we perform HICIB theory, in terms of a performance function

U (t, q) satisfying formally the Hamilton Jacobi equation (welgt:= D, U)

Vge Q, U(T,q) =F1M,

vVt e [0,T], VYqe Q,

0= infJ max {U;(t, q) + F,D2U(t, ¢)G(t, ¢, u,y), Fp o L(t, 2, u,w) — U(t,q) }.
ue

Mathematical fears with respect toare taken here with the cost functigft), or
more explicitlyQ(¢, z), with respect tav with the cost functiord’(¢, w), and with
respect tgy with the cost function\(¢, y).



The justification of that theory is based upon the possibility to use formula (4)
for the functionU (¢, ¢(t)) with ¢ satisfying the differential equation (6).
To investigate that question, we shall ignore the time dependance and investi-
gate the differentiability of
U(q) = FV ™

for a functionV (x) satisfying the condition (8) below.

We shall restrict our attention to a set up where ghe is always amax. Let
V:R" - R: 2z~ V(x) be afunction continuously differentiable ovef, and
let VV (x) be its gradient. Let us further assume that there exists a positive number
« such that,

Y(z,y) €R" xR", (VV(z) = VV(y),z—y) <alz—y|*. (8

Let @, be the set of cost functions that gtestrongly concave for some > a.
That is,

Ve,y e R", VAel0,1],
A1 =N)

¢z + (1= N)y) 2 Ag(w) + (1 = Naly) + =z = y]*.

This is known to be equivalent, ifis continuously differentiable, to the property

(Va(z) = Va(y),z —y) < =Bl — y|*.

We shall always lety = 8 — o > 0. Using (8), for any functiony € Q,, the sum
V() + q(+) is y-concave, hence it reaches its maximum dR&rat a unique point
that we shall usually denote

We shall embed our functionig andq in C. Notice thatQ is not a vector
subspace, nor its subsét,. However, the set gb’s such that for anyy € 9.,
for a small enougld, ¢ + 0p is G-concave with3 > «, is a vector spac®. (Its
intersection withC'! is the set of’s such that{Vp(z) — Vp(y), = — y)/|lz — y||?
is bounded oveR™.) In particular,P C C. We shall restrict all differentials t®.

Letg € Q, andp € P. LetU be defined by (7). Let moreover be the
(unique) argmax in (7). We have

Proposition 4 The function/ has a Giteaux derivative given by

DU(q) - p = p(2).



Proof Itis clear that, if it exists, the &eaux differential is given by

DU(g:p) = o (max[V (@) + () +6p)] )|

00 \ =z

Our hypotheses have been arranged so thai fmall enough the functiol” +
q + 6p is y-concave for some positive. Hence the max is reached at a unique
z(0) andz(0) = z. Moreover, the derivative ifl for any fixedx is continuous in
(¢ and)z. Hence we are in the conditions of Danskin’s theorem (see [7]). Hence
DU (q;p) = p(z). Now,  only depends og and not orp. Hence the operation of
evaluation at: is linear, and continuous if. Thus there is a (&teaux) derivative.
1

We shall now use the corollary 1 to show that

Theorem 3 The functionJ in (7) has at any; € Q,, a chain derivative restricted
to P in any directionp € P.

Proof We have seen that thed@ux differential is a derivative, i.e. continuous in
p. The theorem follows from the following fact. Let — ¢ in Q. Letz,, be the
argmax inU (g, ) = max,[V (x) + ¢, (z)]. We have

Proposition 5
Tp — X as q, —q.

As a matter of fact, if the proposition holds, then take any sequéfigep,,)} in
Q. x P converging ta(q, p). We do have thabU (q,,) - pn = pn(Zn) — p(Z) =
DU (q) - p, sincez,, converging taz, it remains in a compact subset containiing
over whichp,, — p uniformly in z.

Proof of the proposition Our proof of the proposition entails a minor restriction
on the sequence,, which can be seen as harmless to apply the thebrdrat
us assume that ajl, behave for large enoughz|| as ay-concave function, for a
uniform positivey. We shall use the following notation: for any positive number
let B. be the closed ball of centérand of radiug. Let thenr be a fixed positive
number, and: andb be two numbers such that

VeeB,, a<V(z)+q(z)<b.

Sincegq, — ¢ uniformly over B, it follows that the above inequalities hold with
gn instead ofy for n large enough. Because we have assumed al},the behave

2Alternatively, we may lety and theg,’s range overQ, for somea > « and lety = a — a.



as#y-concave functions for large, it follows that there is a large enoudghsuch
that
|l —Z|| > R = V(z) 4+ gun(x) < a.

(For instance, for g-concave function, tak& = r + 2(b — a)/7.) As a conse-
quence, we conclude that, € Bg. Lete > 0 (ande < R). Forallz £ B., we

haveV (z)+q(z) < V(%) +q(2) — (v/2)e%. Forn large enoughlg, (z) —q(z)| <

(v/4)e? for all z € Bg. Hence, inBgr, (V + ¢,)(z) < (V + q)(x) + (v/4)e%.

Hence, ifr € Br — B:

V(@) + gu(e) < V(@) +q(@) + 16> < V(@) + (&) — 1> < V(@) + (8.
It follows that forn large enoughg,, € B., and sinces was arbitrary, that indeed

Zn — 2.1

4 Conclusion

Since the concept of t.v.s. is the one that seems well suited to deal with pointwise
convergence, it was necessary to have a concept of derivative defined over a t.v.s.
that yields the chain rule, which the classicat€aux derivative does not do, in
order to have the relation (4) in the context of partial information minimax control,
where the “state” of the system is a cost distribution satisfying a forward Hamilton-
Jacobi-like evolution PDE. We have shown that the concept of “chain derivative”
meets these requirements. Moreover, the theorem 2 gives a way of computing it
easily by identifying it with a Gteaux derivative when the later is suitably contin-
uous. In the case of a mathematical fear operator, we can get that continuity with
some care. Among other applications, it gives a solid footing to the sufficiency
condition of [6] for the minimax control of a patially observed system. That this is
not purely formal can be seen in the application of that theory made in [11].
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