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1 introduction

Motivated by the need to perform Hamilton Jacobi Caratheodory theory with an
infinite dimensional state, we first introduce a concept of derivative in between the
Gâteaux derivative, which does not yield the chain rule, and Fréchet derivative,
which is too restrictive for our purpouse. While the Gâteaux derivative can be de-
fined over any vector space, the Fréchet derivative requires a normed vector space.
The concept of chain derivative we introduce can be defined over a topological
vector space (t.v.s.), and seems to be a natural concept in that framework. Not
surprisingly, this concept is closely related to epiderivatives [1], which have been
extensively used in modern, (but finite dimensional) Hamilton Jacobi theory [2, 3].

In order to illustrate the concept, and as a complement to a couple of earlier
papers [4, 5, 6] where the derivation was presented as formal, for lack of a precise
framework, we show that the mathematical fear operator is chain differentiable
with respect to the cost distribution in the space of continuous functions endowed
with the topology of pointwise convergence uniform on every compact subsets.
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2 Chain differentials and chain derivatives

In the sequel, we shall use directional derivatives off atx in the directionξ denoted
Df(x; ξ), or differentials. Everywhere, in the case where the differential is linear
and continuous inξ:

Df(x; ξ) = Df(x) · ξ ,

then the linear operatorDf(x) is called aderivative.
Wile Gâteaux differentiation can be defined over any vector space, Fréchet dif-

ferentiation requires that the variable lie in a normed space. The following concept
is well suited to the intermediary structure of a topological vector space, or t.v.s.
Let thereforeX andY be two t.v.s., andf : X → Y .

Definition 1 The functionf has achain differentialDf(x; ξ) at x in the direction
ξ if, for any sequenceξn → ξ ∈ X and any sequence1 of real numbersθn → 0 it
holds that

lim
n→∞

1
θn

[f(x + θnξn)− f(x)] = Df(x; ξ) . (1)

That this be indeed a concept in between Gâteaux and Fréchet differentiation,
and close to an epiderivative, is stated in the following fact:

Proposition 1 i) If f has a chain differential, it also is a Ĝateaux differential,

ii) If f has a chain differential, it is also an epiderivative,

iii) If X is a normed space, andf has a Fŕechet derivative, it also is a chain
derivative.

We also need to emphasize the following fact:

Proposition 2 The chain differentialDf(x; ξ) is homogeneous of degree one inξ :

∀θ ∈ R , Df(x; θξ) = θDf(x; ξ) . (2)

The main objective of this definition is to yield the following theorem:

Theorem 1 Let X, Y andZ be three t.v.s.,f : x → Y , g : Y → Z andf andg
have chain differentials atx in the directionξ and atf(x) in the directionDf(x; ξ)
respectively. Leth = g ◦ f . Thenh has a chain differential atx in the directionξ,
given by the chain rule:

Dh(x; ξ) = Dg(f(x); Df(x; ξ)) .

1it would be possible, as in the definition of epiderivatives, to restrict theθn’s to be positive.
However, this does not let us extend the second theorem below toconesΞ rather than vector spaces.
Thus it seems of little interest here.
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Proof Let ξn → ξ ∈ X andθn → 0 ∈ R. Let

ϕn :=
1
θn

[f(x + θnξn)− f(x)] .

On the one hand, we have thatϕn → Df(x; ξ) by the definition of chain differen-
tiation for f , and on the other hand thatf(x + θnξn) = f(x) + θnϕn. It follows
that

1
θn

[h(x+θnξn)−h(x)] =
1
θn

[g(f(x)+θnϕn)−g(f(x))] → Dg(f(x); Df(x; ξ)) ,

again by the definition of chain differentiation forg.
We shall need to consider the concept ofrestricted differential(andrestricted

derivative):

Definition 2 Let X andY be two t.v.s., andΞ ⊂ X be a linear subspace ofX.
Letf : X → Y . We calldifferential off retsricted toΞ, or if no ambiguity results
restricted differentialof f at x in a direction ξ ∈ Ξ the differential atx in the
directionξ of the restriction off to x + Ξ.

Hence, a restricted differential is obtained by restricting the sequence{ξn} in
(1) to belong toΞ.

The following theorem allows one to identify a Gâteaux differential with a
chain differential, and will be used in the example of section 2.

Theorem 2 Let X andY be two t.v.s.,Ξ ⊂ X a subspace ofX, andf : X → Y
have a Ĝateaux differential at all points in an open setΩ ⊂ X in all directions in
Ξ. For all (y, ξ) ∈ Ω× Ξ, assume thatDf(y; ξ) is continuous iny for every fixed
ξ, and for somex ∈ X, thatDf(y; ξ) is jointly continuous in(y, ξ) ∈ X × Ξ at
(x, 0), i.e., that

∀xn → x ,∀ξn → 0 in Ξ , Df(xn; ξn) → 0 . (3)

ThenDf(x; ξ) is a chain differential restricted toΞ.

A simple way of using this theorem is via the simpler

Corollary 1 If the Gâteaux differentialDf(x; ξ) is jointly continuous in(x, ξ)
overΩ× Ξ, it also is a continuous restricted chain differential.
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Proof of the theorem Let {ξn} ⊂ Ξ, andξn → ξ ∈ Ξ andθn → 0. Using the
finite difference formula for the functionF (t) := f(x + θnξ + tθn(ξn − ξ)), we
have that there existsτn ∈ [0, 1] such that:

f(x + θnξn) = f(x + θnξ) + Df(x + θnξ + τnθn(ξn − ξ); θn(ξn − ξ)) .

Hence, using proposition 2,

1
θn

[f(x+θnξn)−f(x)]=
1
θn

[f(x+θnξ)−f(x)]+Df(x+θnξ+τnθn(ξn−ξ); ξn−ξ).

The first term in the right hand side converges to the Gâteaux derivativeDf(x; ξ),
and the second one to zero thanks to hypothesis (3).

The same proof as for elementary derivatives also yields the following result,
which can be adapted to restricted derivatives by replacing everywheref by its
restriction to a set of the form(x, y) + Ξ × Υ for some linear subspacesΞ andΥ
of X andY respectively.

Proposition 3 Let X, Y , andZ be three t.v.s., and letf : X × Y → Z. Assume
that both partial functionsx 7→ f(x, y) andy 7→ f(x, y) have chain differentials
D1f andD2f respectively, for all(x, y) in an open setΩ ⊂ X × Y and in any
direction, and assume thatD1f is jointly continuous in its three arguments over
Ω ×X. Thenf admits (in the product topology ofX × Y ) a chain differential at
any(x, y) in that domain, in any direction(ξ, η), given by

Df(x, y; ξ, η) = D1f(x, y; ξ) + D2f(x, y; η) .

Corollary 2 Let X be a t.v.s.,F : X → X a continuous function,T ∈ R+, and
x(·) : [0, T ] → X be a differentiable function with derivativėx(·) satisfying

∀t ∈ [0, T ] , ẋ(t) = F (x(t)) .

Let alsoV : R ×X → R have a continuous partial derivativeVt in t and have a
continuous chain differentialD2V in x. Then, for allt ∈ R,

V (t, x(t)) = V (0, x(0)) +
∫ t

0
[Vt(s, x(s)) + D2V (s, x(s);F (x(s)))] ds . (4)

Proof of the corollary According to theorem 1, the functiont 7→ V (t, x(t)) has
a continuous derivative

dV

dt
(s, x(s)) = Vt(s, x(s)) + D2V (s, x(s);F (x(s))) .

And as it is a continuous real function over the compact set[0, T ], this derivative is
bounded thusV (t, x(t)) is absolutely continuous, and the formula (4) follows.

This is the equation needed to perform Hamilton-Jacobi-Caratheodory (or Isaacs-
Bellman) theory with statex and Value functionV .
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3 Example: mathematical fear

This example is motivated by the theory of minimax partial information control.
See [4, 5, 6]. It rests upon the concept of “cost measures”, a particular class of
Maslov measures introduced by Quadrat and co-workers. See [8, 9, 10].

LetQ be the set ofcost functionsq : Rn → R continuous, going to−∞ as
x → ∞, and such thatmaxx q(x) = 0. Let ϕ : Rn → R be continuous. By
definition, themathematical fearof ϕ with respect toq is

Fqϕ := Fq
xϕ(x) := sup

x
[ϕ(x) + q(x)] .

This concept has been used to investigate partial information minimax control
problems as a parallel development to stochastic control. We sketch that theory
here with the notations of [6], to which we refer the reader for more details.

Let a control system inRn be given by

ẋ = f(t, x, u, w) , x(0) = x0 ,

y = h(t, u, w) .

Here,x(t) ∈ Rn is the state,u(t) ∈ U ⊂ Rm is the control,w(t) ∈ W ⊂ R` a
disturbance andy(t) ∈ Rp a measured output. The functionf is assumed to satisfy
a set of regularity and growth hypotheses that insure existence and uniqueness of
the trajectoryx(·) for every measurable control and disturbance functions, adh is
assumed continuous. We also denoteω := (x0, w(·)) ∈ Ω := Rn×L1([0, T ],W).

The problem at hand is to find anon-anticipativecontrol strategyu(t) =
µ(t, y(·)) that will minimize a performance index

H(µ) = FωJ(µ(y(·)), ω) (5)

defined via twoC1 real functionsM : Rn → R andL : [0, T ]×Rn×U×W → R
as

J(u(·), ω) = M(x(T )) + sup
t∈[0,T ]

L(t, x(t), u(t), w(t)) .

In the mathematical fear (5), the cost functions attached tox0 andw(·), Q(x0) and∫
Γ(t, w(t))dt respectively, are part of the data.
As a matter of fact,Γ may be taken as a function of the other variables also, so

that the overall performance index considered is in fact of the form

H(µ) = sup
ω∈Ω

sup
t∈[0,T ]

[
L(t, x(t), u(t), w(t))+

∫ t

0
Γ(s, x(s), u(s), w(s)) ds+Q(x0)

]
.

But we shall stick here with the notationΓ(t, w). See [6] for more details.
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It is then showed that this problem may be solved via infinite dimensional
Hamilton Jacobi Caratheodory Isaacs Bellman theory, the “state” being then the
conditional state mathematical fearQ(t, x) itself defined via the “worst conditional
past cost function”W (x) as

W (ξ) = sup
ω

[∫ t

0
Γ(s, w(s)) ds + Q(x0)

]
where the supremum is taken among thoseω that are compatible with the past
controls and observations and lead to the current statex(t) = ξ. Then

Q(t, x) = W (t, x)−max
ξ∈Rn

W (t, ξ) .

And we letX̂ be the set inRn on which the max above is achieved.
Formally,Q satisfies the PDE given in terms of

V(t, x|y) = [h(t, x, ·)]−1(y)

and of the cost measure (denotedΛ∞t (y) in [6])

Λ(t, y) = max
x∈ bX max

w∈V(t,x|y)
Γ(t, w)

as

∂Q(t, x)
∂t

= max
w∈V(t,x|y)

[
−∂W (t, x)

∂x
f(t, x, u, w) + Γ(t, w)

]
− Λ(t, y) .

We letq(t) = {x 7→ Q(t, x)} and write the above PDE as

dq(t)
dt

= G(t, q(t), u(t), y(t)) . (6)

With this system, we perform HJCIB theory, in terms of a performance function
U(t, q) satisfying formally the Hamilton Jacobi equation (we letUt := D1U )

∀q ∈ Q , U(T, q) = FqM ,
∀t ∈ [0, T ] , ∀q ∈ Q ,
0 = inf

u∈U
max {Ut(t, q) + FyD2U(t, q)G(t, q, u, y), Fx,wL(t, x, u, w)− U(t, q)}.

Mathematical fears with respect tox are taken here with the cost functionq(t), or
more explicitlyQ(t, x), with respect tow with the cost functionΓ(t, w), and with
respect toy with the cost functionΛ(t, y).
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The justification of that theory is based upon the possibility to use formula (4)
for the functionU(t, q(t)) with q satisfying the differential equation (6).

To investigate that question, we shall ignore the time dependance and investi-
gate the differentiability of

U(q) = FqV (7)

for a functionV (x) satisfying the condition (8) below.
We shall restrict our attention to a set up where thesup is always amax. Let

V : Rn → R : x 7→ V (x) be a function continuously differentiable overRn, and
let∇V (x) be its gradient. Let us further assume that there exists a positive number
α such that,

∀(x, y) ∈ Rn × Rn , (∇V (x)−∇V (y), x− y) ≤ α‖x− y‖2 . (8)

LetQα be the set of cost functions that areβ-strongly concave for someβ > α.
That is,

∀x, y ∈ Rn , ∀λ ∈ [0, 1] ,

q(λx + (1− λ)y) ≥ λq(x) + (1− λ)q(y) + β
λ(1− λ)

2
‖x− y‖2 .

This is known to be equivalent, ifq is continuously differentiable, to the property

(∇q(x)−∇q(y), x− y) ≤ −β‖x− y‖2 .

We shall always letγ = β − α > 0. Using (8), for any functionq ∈ Qα the sum
V (·) + q(·) is γ-concave, hence it reaches its maximum overRn at a unique point
that we shall usually denotêx.

We shall embed our functionsV and q in C. Notice thatQ is not a vector
subspace, nor its subsetQα. However, the set ofp’s such that for anyq ∈ Qα,
for a small enoughθ, q + θp is β-concave withβ > α, is a vector spaceP. (Its
intersection withC1 is the set ofp’s such that(∇p(x)−∇p(y), x− y)/‖x− y‖2

is bounded overRn.) In particular,P ⊂ C. We shall restrict all differentials toP.
Let q ∈ Qα andp ∈ P. Let U be defined by (7). Let moreover̂x be the

(unique) argmax in (7). We have

Proposition 4 The functionU has a Ĝateaux derivative given by

DU(q) · p = p(x̂).
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Proof It is clear that, if it exists, the Ĝateaux differential is given by

DU(q; p) =
∂

∂θ

(
max

x
[V (x) + q(x) + θp(x)]

) ∣∣∣
θ=0

.

Our hypotheses have been arranged so that forθ small enough the functionV +
q + θp is γ-concave for some positiveγ. Hence the max is reached at a unique
x̂(θ) andx̂(0) = x̂. Moreover, the derivative inθ for any fixedx is continuous in
(θ and)x. Hence we are in the conditions of Danskin’s theorem (see [7]). Hence
DU(q; p) = p(x̂). Now, x̂ only depends onq and not onp. Hence the operation of
evaluation at̂x is linear, and continuous inC. Thus there is a (Ĝateaux) derivative.

We shall now use the corollary 1 to show that

Theorem 3 The functionU in (7) has at anyq ∈ Qα a chain derivative restricted
toP in any directionp ∈ P.

Proof We have seen that the Gâteux differential is a derivative, i.e. continuous in
p. The theorem follows from the following fact. Letqn → q in Qα. Let x̂n be the
argmax inU(qn) = maxx[V (x) + qn(x)]. We have

Proposition 5

x̂n → x̂ as qn → q .

As a matter of fact, if the proposition holds, then take any sequence{(qn, pn)} in
Qα × P converging to(q, p). We do have thatDU(qn) · pn = pn(x̂n) → p(x̂) =
DU(q) · p, sincex̂n converging tôx, it remains in a compact subset containingx̂
over whichpn → p uniformly in x.

Proof of the proposition Our proof of the proposition entails a minor restriction
on the sequenceqn, which can be seen as harmless to apply the theorem2. Let
us assume that allqn behave for large enough‖x‖ as aγ̄-concave function, for a
uniform positiveγ̄. We shall use the following notation: for any positive numberε,
let Bε be the closed ball of center̂x and of radiusε. Let thenr be a fixed positive
number, anda andb be two numbers such that

∀x ∈ Br , a < V (x) + q(x) < b .

Sinceqn → q uniformly overBr, it follows that the above inequalities hold with
qn instead ofq for n large enough. Because we have assumed all theqn to behave

2Alternatively, we may letq and theqn’s range overQᾱ for someᾱ > α and letγ̄ = ᾱ− α.
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as γ̄-concave functions for largex, it follows that there is a large enoughR such
that

‖x− x̂‖ > R =⇒ V (x) + qn(x) < a .

(For instance, for āγ-concave function, takeR = r + 2(b − a)/γ̄.) As a conse-
quence, we conclude thatx̂n ∈ BR. Let ε > 0 (andε < R). For allx /∈ Bε, we
haveV (x)+q(x) < V (x̂)+q(x̂)−(γ/2)ε2. Forn large enough,|qn(x)−q(x)| <
(γ/4)ε2 for all x ∈ BR. Hence, inBR, (V + qn)(x) < (V + q)(x) + (γ/4)ε2.
Hence, ifx ∈ BR −Bε

V (x) + qn(x) < V (x) + q(x) +
γ

4
ε2 < V (x̂) + q(x̂)− γ

4
ε2 < V (x̂) + qn(x̂) .

It follows that forn large enough,̂xn ∈ Bε, and sinceε was arbitrary, that indeed
x̂n → x̂.

4 Conclusion

Since the concept of t.v.s. is the one that seems well suited to deal with pointwise
convergence, it was necessary to have a concept of derivative defined over a t.v.s.
that yields the chain rule, which the classical Gâteaux derivative does not do, in
order to have the relation (4) in the context of partial information minimax control,
where the “state” of the system is a cost distribution satisfying a forward Hamilton-
Jacobi-like evolution PDE. We have shown that the concept of “chain derivative”
meets these requirements. Moreover, the theorem 2 gives a way of computing it
easily by identifying it with a Ĝateaux derivative when the later is suitably contin-
uous. In the case of a mathematical fear operator, we can get that continuity with
some care. Among other applications, it gives a solid footing to the sufficiency
condition of [6] for the minimax control of a patially observed system. That this is
not purely formal can be seen in the application of that theory made in [11].
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[11] A. Rapaport and P. Bernhard: “Étude d’un jeu de poursuite plane avec con-
naissance imparfaite d’une coordonnée”,APII, 29, pp 575–601, 1995.

10


