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Abstract

We propose an approach of option pricing based upon game theory in
a typical nonlinear robust control fashion. In this approach, one needs a
description of the set of possible trajectories for the underlying stock’s price
process, but no probabilistic law over it.

We first quickly review the classical theory —albeit stripped of all ref-
erences to probabilities—, mainly to underline the role of trajectory sets, in-
cluding the bounded variation case and the “naive” hedging strategy it leads
to.

Then we propose a purely (robust) control theoretic view of the problem,
and solve it that way, both for continuous trading and for discrete time trad-
ing. At this time, we consider only “european” options, that is a security
whose value is defined at a fixed terminal timeT .

The new theory exists in both continuous and discrete time. In continuous
time, we are at present restricted to a bounded variation set up, recovering
the naive theory. We expect to get a more robust result once we include
transaction costs, a work currently in progress.

In discrete time, the model proposed, although strongly reminiscent —
if the security to be replicated is convex— of the theory of Cox, Ross, and
Rubinstein, has the advantage of being realistic in its finite step version, and
not only in the limit as the step goes to zero. As a matter of fact, it does
not assume that the stock price evolves on a binary tree, but to the contrary,
allows for a continuum of possible values at the end of each time period.
It provides us with an efficient discrete time hedging strategy against that
continuum of possible outcomes.

We show that in the convex case, the limit of the discrete time theory
gives back either the “naive” solution or the classical Black and Scholes so-
lution depending on whether we chose a bounded variation or a bounded
quadratic variation function for the underlying stock’s price history.

∗i3s, University of Nice-Sophia Antipolis and CNRS, France
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1 Introduction

The crucial point in Black and Scholes’s theory of option pricing [2] is that of
finding a portfolio together with a self financed trading strategy that insures the
same return as the option to be priced. Hence, if no riskless profitable arbitrage
is to exist in that market, the price of the option should be equal to that of that
portfolio.

What is requested is that the portfolio and strategy constructed replicate the
option, i.e. yield the same payment to the ownerfor all possible outcomes of the
underlying stock’s value. As has been stressed by several authors, this statement is
not in terms of probabilities, and therefore the precise (probabilist) model adopted
for the stock’s price should be irrelevant. As a matter of fact, it is known that if one
adopts a “geometric diffusion” model

dS
S

= µdt+ σdν , (1)

ν(t) a Weiener process, then the famous Black and Scholes equation and formula
do not containµ. In our formulation,µ just does not appear in the problem state-
ment. We shall further argue that the volatilityσ appears only as a characteristic of
the set of allowable historiesS(·), not as a probabilistic entity.

We first show an elementary theory that emphasizes this point, and let us dis-
cuss a zero volatility, but yet stochastic —in the sense thatS(·) is a priori unknown
and can thus be thought of as stochastic— model. This model leads, in continuous
time, to a naive hedging strategy, which lacks robustness against transaction costs.
This naive theory is usefull to set the stage for further discussion downstream, but
apart from that, the fact that it fails in discrete time only serves the purpouse of
stressing its limits.

The only novelty we claim in this note, if any, is to take a control theory view-
point where the value of a portfolio is seen as a dynamical system, influenced by
two exogeneous inputs : the underlying stock’s price and the trading strategy of the
owner. With this viewpoint, it is only natural to reinterpret the goal of replication
as one of controllability in the presence of disturbances. Now, a recent trend in
control theory is to deal with uncertain disturbances with little modeling, but try-
ing to insure a desired outcome against all possible disturbance histories within a
prescribed set of possible such histories. This leads to a dynamic game approach
(and the theory of “capturability” [5, 1]). This is what we propose to do here.

We first investigate a continuous time theory, using the theory of differential
games. If the resulting game has some interest from a game theoretic viewpoint,
in its present form that theory only recovers the naive one. We expect to be able

2



to make it into a more practical theory by introducing transaction costs into the
model, a work currently in progress.

We finally investigate the discrete time case. When the terminal payment at-
tached to the contingent claim considered is a convex function of the underlying
stock’s price at that time, the new approach leads to a theory strongly reminiscent
of that of Cox, Ross, and Rubinstein [3, 4], but with the advantage that now the
model is more realistic even with a finite time step —and not only in the limit as
the time step goes to zero—, since we do not have to assume that the underlying
stock’s price evolves on a binary tree. We allow for a continuum of possible prices
at the end of each time step, and yet find a hedging strategy. (It even gives a way of
recovering at each time step part of the price paid for the portfolio to hedge against
past risks that did not materialize.) When the terminal payment is not convex, our
theory still yields a numerical solution to the pricing problem and a hedging strat-
egy. The binary tree approach in that case underestimates the price of the claim.

The limit of the discrete time theory can be made, as in [3], to coincide with
the classical Black and Scholes theory, or with the “naive” theory, depending on
what class of stock price trajectories we choose to approach.

2 Problem formulation

The time variable, always denotedt, ranges, depending on the model, either over
a continuous time interval[0, T ] of the real line or over the integers{0, 1, . . . , T},
or over the discretized time interval{0, h, 2h, . . . , Nh = T}

A given stock is assumed to have a time dependant, unpredictable, market price
S(t) at timet. An important part of the discussion, both in discrete and continuous
time, will be the setΩ of possible time functionsS(·) assumed.

There also exists in that economy a riskless bond, the value of one unit of which
at timet isR(t), characterized byR(T ) = 1 and its rateρ. ThusR(t) is a pesent
value factor. In continuous time,

R(t) = eρ(t−T ) ,

and in discrete time,
R(t) = (1 + ρ)t−T = rt−T ,

where we have set
1 + ρ = r .

(In the “discretized time interval” case, we may choose either of the two models

R(kh) = eρ(k−N)h or R(kh) = r(k−N)h ,
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with N = T/h, without altering the limiting results.)
We are interested in replicating a security whose value at timeT is a given

functionM of S(T ). As is well known, in the case of a call of striking priceK,
M(s) = max{s−K, 0}, that we shall writeM(s) = [s−K]+, and in the case of
a put,M(s) = [K − s]+. In these cases,M is convex and has a finite growth rate
at infinity, a case of interest later.

We shall consider a portfolio made ofx shares of the stock andy riskless bonds.
Its value at timet is thus

w(t) = x(t)S(t) + y(t)R(t) .

We shall consider trading strategies of the form

x(t) = ϕ(t, S(t)) , (2)

and discuss the choice of the function, or strategy,ϕ. In discrete time, this is a nat-
ural concept : the owner of the portfolio watches a market priceS(t) at timet, and
essentially simultaneously buys or sells the necessary equities to holdϕ(t, S(t))
shares, that he or she keeps until the next trading timet+1. In continuous time, de-
ciding whether it is feasible to instantly and continuously implement such a strategy
is more debatable. In line with all feedback theory, we shall accept that concept,
stressing that we shall allways restrict the functionsS(·) to a setΩ of continuous
functions so that it is mathematically unambiguous.

The trading of the riskless bonds will always be decided, beyond the initial
time, by the requirement that the portfolio be self financed. Hence, the amount of
shares bought at timet, dx(t) in continuous time orx(t) − x(t − 1) in discrete
time, at the priceS(t) should exactly balance the amount of trading in the bond,
dy(t) or y(t)− y(t− 1) at the priceR(t). Therefore we should have either

S(t)dx(t) +R(t)dy(t) = 0 , (3)

or
S(t)(x(t)− x(t− 1)) +R(t)(y(t)− y(t− 1)) = 0 . (4)

As a result, inherent in our models will be that, in continuous time

dw(t) = x(t)dS(t) + y(t)dR(t) ,

or, using the fact that dR(t) = ρR(t)dt andy(t)R(t) = w(t)− x(t)S(t),

dw(t) = x(t)dS(t) + ρ(w(t)− x(t)S(t))dt . (5)

The use we shall make of that “differential” form will be made clear later.
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In discrete time, we get, using (4),

w(t) = S(t)x(t− 1) +R(t)y(t− 1) ,

therefore, using the discrete time definition ofR(t), and shifting all time instants
by one, we shall use either the form

w(t+ 1) = (S(t+ 1)− S(t))x(t)− ρx(t)S(t) + (1 + ρ)w(t) (6)

or the form
w(t+ 1) = S(t+ 1)x(t) + r(w(t)− x(t)S(t)) . (7)

3 An elementary approach

3.1 Continuous time

3.1.1 Bounded variation : the naive theory

In this section, we assume that the setΩ of possible market price historiesS(·)
is that of continuous bounded variation positive functions. One possible instance
would be a stochastic process driven by (1), with astochasticdrift µ and zero
volatility σ. In spite of its zero volatility, this can be a very unpredictable stochastic
process, of very high frequency, depending upon the stochastic processµ. But we
shall not need that interpretation.

We want to find a functionW (t, s) and a trading strategyϕ(t, s) such that
the use of (2) will lead tow(t) = W (t, S(t)) for all t ∈ [0, T ], and this for all
S(·) ∈ Ω. If this is possible, and ifW is of classC1, we must have

dW (t) =
∂W

∂s
(t, S(t))dS(t) +

∂W

∂t
(t, S(t))dt = dw(t) (8)

where dw(t) is to be taken in (5), and the differential calculus is to be taken in the
sense of Stieltjes. We have a way to make this hold for everyS(·) ∈ Ω by equating
the terms in dS through the choice

x(t) =
∂W

∂s
(t, S(t)) , (9)

and further equating the remaining terms in dt yields

ρ(w(t)− x(t)S(t)) =
∂W

∂t
(t, S(t)) .
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Using the previous equality again, we see that this will be satisfied if,∀(t, s),

∂W

∂t
(t, s)− ρW (t, s) + ρs

∂W

∂s
(t, s) = 0 . (10)

If this partial differential equation has a solution that furthermore satisfies

∀s ∈ R+ W (T, s) = M(s) , (11)

then a portfolio of total valueW (0, S(0)) at time 0, driven by the strategy thus
computed indeed replicates the security considered. An equilibrium price for the
option in that model is thusW (0, S(0)).

The unique solution of the PDE (10)(11) is the (discounted)parity value:

W (t, s) = eρ(t−T )M(eρ(T−t)s) . (12)

Take the case of a call say. The associated naive hedging srategy is justx = 0
if the call is out of the money,S(t) < exp(ρ(t−T )K), andx = 1 otherwise. This
näıve strategy is easily seen to be indeed self financed, and replicating the call.

Its bad feature is in case the price of the underlying stock oscillates close to the
discounted value of the striking price. Then the owner is perpetually in doubt as to
whether the price will go up, and he must buy a share, or down and he must not.
Any friction, like transaction costs, ruins that strategy. We argue that the weakness
of that model, which would yield an essentially free insurance mechanism, is in the
fact that we ignored transactions costs in the model,not in the choice ofΩ, which
may be more realistic than the more classical next choice.

3.1.2 Fixed quadratic relative variation

Assume now that the setΩ of allowable price processes still contains continuous
positive functions, but now of unbounded total variation, and all of quadratic rela-
tive variation

lim
N∑
k=1

(
S(tk+1)− S(tk)

S(tk)

)2

= σ2t

the limit being taken as the division0 = t0 < t1 < . . . < tN = t has its diameter
—the largest intervaltk+1− tk— that goes to zero. (And thusN correlatively goes
to infinity.) Allmost all trajectories generated by (1) have that property. But the
drift has no effect on the set of possible trajectories, and hence does not appear
here.

For this class of functions, we have the following lemma (see appendix) :
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Lemma 1 Let V (t, s) : R × R → R be twice continuously differentiable. Let
S(·) ∈ Ω and assume that(∂V/∂s)(t, S(t)) = 0 for all t ∈ [0, T ]. Then∀t ∈
[0, T ],

V (t, S(t)) = V (0, S(0)) +
∫ t

0

(
∂V

∂t
(τ, S(τ)) +

σ2

2
S(τ)2∂

2V

∂s2
(τ, S(τ))

)
dτ .

We apply the lemma toV (t, s) = W (t, s) − x(t)s − y(t)R(t), trying to keep
V (t, S(t)) equal to zero. First insure that(∂V/∂s)(t, S(t)) = 0 through the choice
(9). Assume that this will lead to a differentiablex(·), thus alsoy(·). Then (3)
yields ẋS + ẏR = 0. Finally, using againyṘ = ρ(w − xS), we insure that
V (t, S(t)) remains constant along any trajectory if,∀(t, s) ∈ [0, T ]× R+,

∂W

∂t
− ρW + ρs

∂W

∂s
+
σ2

2
s2∂

2W

∂s2
= 0 ,

which, togeher with (11), is Black and Scholes’equation.
It is a simple matter to check that its famous solution indeed converges to (12)

asσ → 0, and that the corresponding hedging strategy also converges to the naive
strategy.

As a final remark, let us point out that extending that elementary theory to a
claim contingent on the value ofseveralunderlying securities is straightforward.

3.2 Discrete time

We quickly look at what that approach leads to in discrete time. Starting from (7),
we see that we would like to find a functionW (t, s) and a strategyϕ(t, s) such that

∀S, S′ ∈ R+, ∀t ∈ {1, . . . , T} ,
W (t+ 1, S′) = ϕ(t, S)S′ + r(W (t, S)− ϕ(t, S)S) .

The right hand side of the above equality is affine inS′, thus so should be the
left hand side, i.e.W (t + 1, s) = At+1s + Bt+1, andAt+1 = ϕ(t, s), henceϕ
should be independant froms. Placing this back, for timet, in the above equation,
we get

Bt+1 = r[(At −At+1)S +Bt] .

SinceBt cannot depend onS, we see that necessarily,At = At+1, i.e. At is a
constant, sayA, andBt+1 = rBt, i.e. Bt = rt−TB for some constantB. As a
consequence, the only possible form for the final value of the security considered
isM(s) = As+B, totally uninteresting.
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Notice that in that approach, limiting the range of variations ofS(t+ 1) given
S(t) would not help. It is why in their discrete time theory, Cox, Ross, and Ru-
binstein [3], are obliged to limit the variations ofS to exactly two possible values,
leading to the now classical binary tree. A model which can be considered hardly
realistic as a normative one, except in the limit as the step size goes to zero.

4 The robust control approach

4.1 A controllability viewpoint

We observe that the dynamic equation governingw(t) defines a dynamical system
with inputsS(·) andx(·), and outputw(·). A portfolio will be at least as good as
the option, and therefore defines an upper bound to the equilibrium price, as soon
as we can find a strategy wherex(t) depends only onpast and present information,
that leads to a final value greater or equal to that of the option for all admissible dis-
turbancesS(·). (This controllability propertyagainst all admissible disturbances
is calledcapturability).

We therefore need to know which initial portfolios, if any, can thus be driven
to a set of “admissible” terminal states. A good definition of the equilibrium price
of the option isthe least expensiveinitial portfolio that enjoys that property. As a
matter of fact, we have already argued that, being controllable to the desirable ter-
minal condition, it sets an upper bound on the equilibrium price. But in addition, if
any cheaper portfolio might be faced with possible price historiesS(·) that prevent
its being driven to that desirable state, then the option is more valuable than any
of those cheaper portfolios. It can therefore not be lower priced than that limiting
“capturable” portfolio.

It is easily seen that if we set no restriction in the admissible time functions
S(·), there is likely to be no capturable set. The classical way of imposing such
restrictions is by representing the said function as the output of a controlled system,
the simplest of all being of first order. We are thus led to the introduction of a
second dynamic equation, that we may choose of the form

Ṡ(t) = (µ+ σν(t))S(t) , |ν(t)| ≤ 1 , (13)

in continuous time, withν(·) measurable —this implies that we restrictS(·) to
absolutely continuous, bounded variation, positive functions—, or

S(t+ 1) = (1 + µ+ σν(t))S(t) = (m+ σν(t))S(t) , |ν(t)| ≤ 1 (14)

in discrete time. In these two models,ν(·) is a “noise” signal that only serves the
purpose of defining a set of admissible disturbancesS(·), not a brownian motion. It
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ranges over the continuous interval[−1,+1], andnot over the finite set{−1,+1}.
For that reason, we shall let, in the discrete time analysis,

m− σ = a , m+ σ = b ,

instead of the “d” and “u” of [3], to distinguish our model from theirs. But they
shall play a very comparable role in the subsequent calculations.

We have set, or shall also use, the definitions

1 + µ = m, µ− ρ = m− r = λ .

The standard approach is then to consider the two equations forS andw as a
dynamical system,ν as the disturbance,x as the control,

AT =
{(

S
w

)
∈ (R+)2

∣∣∣w ≥M(S)
}

(15)

as the set of admissible terminal states.
The relationship with game theory is best displayed by noticing that the pre-

scription

∀ν(·) ,
(
S(T )
w(T )

)
∈ AT

can also be written
inf
ν(·)

[w(T )−M(S(T ))] ≥ 0 , (16)

and the existence of an admissible strategyϕ that insures (16) is equivalent to

max
ϕ

inf
ν(·)

[w(T )−M(S(T ))] ≥ 0

at least if the maximum exists. No wonder then that the methods of robust control
be the same as those of dynamical games.

4.2 Continuous time

We are therefore faced with the task of finding the initial states that can be con-
trolled to the set (15) in the dynamical system

Ṡ = (µ+ σν(t))S , |ν(t)| ≤ 1 ,
ẇ = ρw + (λ+ σν(t))Sx(t) ,

where we choosex(t) as our control.
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It is known that the solution of this “qualitative game” (or “game of kind”) can
be sought through the backwards construction of a barrier from the boundary of
the (usable part of the) capture set. It turns out that that construction presents an
unusual feature, interesting from a game theoretic viewpoint. We choose here to
skip that question, and directly exhibit a solution.

We claim that a barrier is the 2D manifold parametrized byt andS asw =
W (t, S) whereW (·, ·) is given by (12). Let us directly check this fact. At a point
(t, S, w) of this manifold, we compute a normal pointing in the direction of larger
w’s. We useR = exp(ρ(t− T )). The normaln is given by

n(t, S, w) =

 nt
nS
nw

 =

 ρ[−RM (S/R) +M ′(S/R)S]
−M ′(S/R)

1


then we form

H = nt + nSṠ + nwẇ = (λ+ σν)S(x−M ′(S/R)) .

Now, λ < σ, so thatν has the choice of the sign of(λ + σν), so thatinfν H is
nonpositive. Therefore,maxx infν H is obtained forx = M ′(S/R), and is indeed
zero. Therefore the manifoldw = W (t, S) is indeed a barrier. The choice of
strategyx(t) = M ′(S(t)/R(t)) for any state lying on this manifold will prevent
the state of the system from crossing it. (Actually, starting on the manifold, the
state will stay on it for anyν(·). This is, in disguise, the same argument as in the
naive theory.)

Take the case of a call, indeedx = M ′(S/R) is the naive hedging strategy we
have discussed. In the parlance of differential games, the locusS(t) = KR(t) is
a pursuer dispersal line. That is, when the state of the system is on that locus, the
pursuer, here the disturbance, can behave the way it wants. The evader, here the
portfolio’s owner, must adapt and playx = 0 if S goes down, andx = 1 if S goes
up. We have already noticed that in this dilema lies the unrealistic character of that
strategy from a practical perspective.

4.3 Discrete time

4.3.1 Isaacs’equation

The system we now consider is governed by

S(t+ 1) = (m+ σν(t))S(t) ,
w(t+ 1) = rw(t) + (λ+ σν(t))S(t)x(t) .
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It is convenient to make the following change of variables

u(t) =
S(t)
R(t)

, v(t) =
w(t)
R(t)

,

and to take the alternate control variables

τ(t) =
1
r

(m+ σν) ∈ [ã b̃] =
[
a

r

b

r

]
, ψ(t) = x(t)u(t) .

Then the system is simply

u(t+ 1) = τ(t)u(t) , (17)

v(t+ 1) = v(t) + (τ(t)− 1)ψ(t) . (18)

The set of admissible terminal states is still

AT =
{(

u
v

)
∈ (R+)2

∣∣∣ v ≥M(u)
}
. (19)

Let At be the set of states at timet capturable toAT at terminal time. i.e.,
(ū, v̄) ∈ At if and only if there exists an admissible strategy

ψ(t′) = ϕ(t′, u(t′), v(t′)) , t′ ≥ t ,

such that the system (17)(18) initialized at(u(t), v(t)) = (ū, v̄), driven by that
strategy ends in an admissible state at timeT for all admissible disturbancesτ(·).

We notice first that if a state(ū, v̄) belongs toAt, then clearly so do all(ū, v)’s
for v ≥ v̄. Let therefore

Vt(u) = min
{
v
∣∣∣ ( u

v

)
∈ At

}
.

The functionVt(·) completely describes the setAt as its epigraph.
We shall now proceed backwards, by dynamic programming. The sequence

of setsAt and the hedging strategyψ(t) = ϕ(t, S) are simultaneously defined by
Isaacs’equation:

11At(u, v) = max
ψ

inf
τ

11At+1(τu, v + (τ − 1)ψ) (20)

where

11At+1(u′, v′) =
{

1 if v′ ≥ Vt+1(u′) ,
0 if v′ < Vt+1(u′) ,

and
Vt(u) = min{v | 11At(u, v) = 1} . (21)

This actually provides us with a computational procedure thats lets us compute
V0(S) for every admissibleS(0) = S, and thus a valuation formula for the contin-
gent claim.
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4.3.2 The convex case

Notice now that ifM(·) is convex, so is the setAT . Furthermore, for a given state
(u(T − 1), v(T − 1)) and a fixedψ(T − 1), the set of possible(u(T ), v(T )) is a
line segment in(u, v) space. It is entirely contained in the convex setAT if and
only if its end points are. Therefore we investigate for which(u, v) there exists a
fixedψ such that

v + (ã− 1)ψ ≤M(ãu) , v + (b̃− 1)ψ ≤M(b̃u) .

Remember that̃a < 1 < b̃, so that the above pair of inequalities is satisfied provid-
ed that

1
b̃− 1

[−v +M(b̃u)] ≤ ψ ≤ 1
1− ã

[v −M(ãu)] .

There exists such aψ if and only if

1
b̃− 1

[−v +M(b̃u)] ≤ 1
1− ã

[v −M(ãu)] ,

or equivalently,v ≥ VT−1(u), with

VT−1(u) =
b̃− 1
b̃− ã

M(ãu) +
1− ã
b̃− ã

M(b̃u) .

This therefore describes the setAT−1. Now, it is a simple matter to check that,
due to the convexity ofM , the functionVT−1 above is still convex, (notice for
that purpose thatu is the convex combination of̃au and b̃u with the respective
coefficients(b̃− 1)/(b̃− ã) and(1− ã)/(b̃− ã)) and therefore also the setAT−1.

As a consequence, the same calculation can be propagated backwards, defining
a sequence of functionsVt(·) through

Vt−1(u) =
b̃− 1
b̃− ã

Vt(ãu) +
1− ã
b̃− ã

Vt(b̃u) , VT (u) = M(u) . (22)

It is convenient to get back in the original variables, and to set

W (t, S) = R(t)Vt(S/R(t)) = rt−TVt(rT−tS)

and to rewrite the above recursion as

W (t− 1, S) =
1
r

[
b− r
b− a

W (t, aS) +
r − a
b− a

W (t, bS)
]
, W (T, S) = M(S) ,

(23)
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which is the same as in [3], equation (2) or (4). This recursion enables one to
numerically compute a sequence of functionsW (t, S) for a givenM(·). And it
yields an equilibrium priceW (0, S(0)) for the security considered.

Notice that, if we are to trade bonds for shares of the underlying stock a finite
number of times, i.e. at discrete instants of time, this model is the relevant one. As
we shall see, it gives a higher price for the option than that obtained for any of the
continuous limits we shall consider. The difference is the price to be paid for less
attentive behaviour. However, part of this price may be recovered through careful
trading if the risk it was meant to hedge against does not materialize. Here is how.

Assume that at timet − 1, w = W (t − 1, S), i.e. we are on the boundary
of admissible states, the portfolio’s current value is the minimum one if we are to
hedge against all admissible disturbances in the future stock’s price. We use the
strategy —the portfolio composition— advised by the present theory (explicitly
given below). Now, assume also that the priceS(t) that happens to materialize is
not an extreme one, but interior to the admissible interval[aS(t − 1), bS(t − 1)].
Then, in general (this is not always so), we shall get that the difference∆w(t) =
w(t)−W (t, S(t)) will be strictly positive. Therefore, an admissible hedging strat-
egy is to first sell equities in the portfolio for an amount equal to that difference,
and being then back to a worthw(t+) = W (t, S(t)), choose a portfolio compo-
sition according to the now unique hedging strategy easily derived from the above
analysis :

x(t)S(t) =
1

b− a
[W (t+ 1, bS(t))−W (t+ 1, aS(t))] .

The complementy(t)R(t) = w(t)− x(t)S(t) is thus :

y(t)R(t) =
1

b− a
[
b

r
W (t+ 1, aS(t))− a

r
W (t+ 1, bS(t))] .

It might be interesting to notice that the amount∆w(t) recovered at each step
by selling the excess portfolio value is directly related to the convexity of the suc-
cessiveW (t, ·), hence ofM(·), as is shown by the following formula. (WriteS−

andS+ for ãS(t−1) andb̃S(t−1) respectively to make the formula more legible.)

∆w(t) =

(S+−S(t))(S(t)− S−)
S+ − S−

(
W (t, S+)−W (t, S(t))

S+ − S(t)
− W (t, S(t))−W (t, S−)

S(t)− S−

)
.

An interesting question, then, would be to evaluate the expectation of the (discount-
ed) sum of these benefits ifν is, say, evenly distributed between−1 and 1.

13



4.3.3 Non convex contingent claims

We relied in the above theory on the convexity of the functionM(s) giving the
payoff at terminal time. The natural question then is what if this payoff is non
convex, such as a spread :M(s) = min{max{0, s − K}, L}, or a “digital call”
such asM(s) = L(1 + sign(s −K))/2. Then, the fact that the endpoints of the
segment described by (17)(18) be inAt+1 is no longer sufficient to guarantee that
(ut+1, vt+1) be in that set for all possibleν(t). Therefore, that theory alone, i.e.
the Cox, Ross and Rubinstein valuation formula,underestimatesthe value of the
replicating portfolio, and of course gives no hint as to a hedging strategy.

In that case, we must revert to numerical implementation of the Isaacs equation
(20)(21). For each time stept, we traverse the state space inu, and for fixedu per-
form a dichotomic search for the lowest admissiblev. That way, if one accepts our
model ofS(·), which is at least more realistic than a binary tree, the present theory
can be used to compute both a hedging strategy and a valuation. The computational
load remains light for classical contingent claims based upon a single underlying
good.

We give hereafter the results of computations that display the disparity between
the Cox Ross and Rubinstein valuation and the new one proposed here.

4.4 Vanishing step size

4.4.1 The general framework

We wish now to investigate the case of vanishing step sizes. In [3], the solution of
(23) in the case of a call is explicitly computed, and its limit as the step size goes
to zero is computed, with two limit procedures : one corresponding to a geometric
diffusion process forS(·), and the other one to a jump process. Here, in keeping
with our previous theory, we shall consider the case of a continuous bounded vari-
ation function and that of a continous, fixed quadratic variation, one. However, we
choose a path that lets us deal with a more general contingent claim characterized
by its convex terminal valueM(S(T )), assumed to have bounded growth rate at
infinity. We shall deal elsewhere with non convex claims.

In both cases, we need to leta andb, or ã and b̃, depend on the step sizeh.
We denote themah andbh, or ãh and b̃h. We callV (h)

k (·) the function obtained
from the recursion (22), with̃ah and b̃h in place ofã and b̃, for the timet = kh.
Therefore, the “initialization” of that recursion at terminal time is now given by

V
(h)
T
h

(u) = M(u) . (24)

14



We wish to obtain
V 0

0 (u) = lim
h→0

V
(h)

0 (u) ,

or, for that matter,
V 0
t (u) = lim

h→0
V

(h)
t
h

(u) ,

for any fixedt. Our method will be to show that the recursion (22) approximates the
solution of a partial differential equation, Black and Scholes’ in the fixed nonzero
quadratic variation case. To do so, notice that using (22) and substractingV

(h)
k (u)

from both sides, we get

1
h(V (h)

k−1(u)− V (h)
k (u)) =

b̃h − 1
b̃h − ãh

1
h

[
V

(h)
k (ãhu)− V (h)

k (u)
]

+
1− ãh
b̃h − ãh

1
h

[
V

(h)
k (b̃hu)− V (h)

k (u)
]
.

(25)
We also notice the following easy facts :

Propositions

1. The applicationM 7→ Vt(·), or equivalentlyM 7→ V
(h)
k (·) defined by (22),

is a contraction in the large for the distance of uniform convergence.

2. If M ∈ C1(R+), and|M ′(u)| ≤ C1 for all u, then all theV (h)
k (·) have first

derivatives bounded byC1.

3. If M ∈ C2(R+), and |M”(u)| ≤ C2 for all u, then all theV (h)
k (·) have

second derivatives. They are uniformly bounded by a numberD provided
that

∀h, (ãh + b̃h − ãhb̃h)T/hC2 ≤ D . (26)

LetMε(·) be a convex function, of classC2 for each fixed epsilon, approaching
M uniformly asε goes to zero as

∀u ∈ R+ , |Mε(u)−M(u)| ≤ ε .

Such anMε exists because we have assumed thatM has a finite growth rate at
infinity. We can consider the recursion (22) initialized byV (h)

T/h = Mε instead of

(24). Because of proposition (1) above, eachV
(h)
k (u) lies within ε of the corre-

sponding one when the recursion is initialized atM . Therefore so does their limit
V 0
t (u). We may therefore evluate this limit for aC2 terminal valueMε and let that

function converge toM in the resulting expression.
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4.4.2 Bounded variation

For the sake of completeness, we first examine the case where the sequence{S(t)}
is requested to approach a bounded variation function. This is done by choosing

ãh = ãh and b̃h = b̃h .

In that way, the amplitude of admissible variations ofS over a fixed time interval
is preserved for allh. Notice then that

(ãh + b̃h − ãhb̃h)T/h → 1

ash→ 0 so that it is indeed bounded.
Consider equation (25) with the aboveãh andb̃h. Notice further that

b̃h − 1
b̃h − ãh

→ ln b̃
ln b̃− ln ã

,
1− ãh

b̃h − ãh
→ − ln ã

ln b̃− ln ã
,

and, assuming that the derivatives exist (we have replacedM byMε as explained
above)

1
h

[
V

(h)
k (ãhu)− V (h)

k (u)
]
→

dV (h)
k

du
(u)u ln ã ,

1
h

[
V

(h)
k (b̃hu)− V (h)

k (u)
]
→

dV (h)
k

du
(u)u ln b̃ .

As a consequence,(1/h)[V (h)
k−1(u) − V

(h)
k (u)] → 0. More precisely, using the

bound on the second derivatives of theV (h)
k ,

1
h

∣∣∣V (h)
k−1(u)− V (h)

k (u)
∣∣∣ ≤ hD

so that, for anyt,

V
(h)
T
h

(u)− h(T − t)D ≤ V (h)
t
h

(u) ≤ V (h)
T
h

(u) + h(T − t)D ,

Hence, in the limitV 0
t = Mε, and letingε go to zero,V 0

t = M for all t.
We therefore recover the naive theory where the equilibrium price of any such

security is constant in discounted values. The corresponding srategy is the naive
strategy.
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4.4.3 Fixed quadratic variation

We now want to approach the case where the admissible functionsS(·) have fixed
quadratic variation. This is done by choosing

ãh = 1 + µh − σ
√
h , b̃h = 1 + µh + σ

√
h ,

whereµh/h converges to someµ′0 ash goes to zero.
Let us consider (25) and leth go to zero. The left hand side formally converges

to −∂V 0
t /∂t. Calculation of the limit of the right hand side requires that the dif-

ferences be expanded to second order, since the variation in the arguments is only
of the order of

√
h. It is however an elementary task to check that (25) formally

converges to

−∂V
0
t

∂t
(u) =

σ2

2
u2∂

2Vt(u)
∂u2

, (27)

i.e. Black and Scholes’partial differential equation in discounted variables.
To make that statement precise, we first use the previous trick of replacingM

by aC2 Mε, and let it converge toM in the limitingV 0
t . We shall therefore assume

that theV (h)
k are all twice differentiable inu. Notice also that we now have that

(ãh + b̃h − ãhb̃h)T/h → eσ
2

so that again, that function is bounded and continuous inh ash approaches 0. Thus
it has a finite maximum and we are still in the conditions of proposition (3) above.

The calculation proposed above lets us conclude that∣∣∣∣∣−1
h

[V (h)
k−1(u)− V (h)

k (u)] +
σ2

2
u2∂

2V
(h)
k

∂u2

∣∣∣∣∣ ≤ √hD . (28)

Let us consider a dyadic sequence of time divisions, in stepshn = 2−n. The
first and second derivatives inu of theV (h)

k are all bounded, uniformly inn, k, u.
By Tychonov’s theorem, there is a subsequence for which these derivatives have a
pointwise limit. By repeated application of the dominated convergence theorem,
these limits are the first and second derivatives of a limitV 0

t (u) of theV (h)
t/h (u)’s.

Let us further, for each fixedh, interpolate linearly the saidV (h)
k (u)’s for val-

ues oft between the discretization points, and, with a transparent abuse of not-
ations let us call thisV (h)

t (u). It results from (28) that(∂V (h)
t /∂t)(u) converges

to−(σ2/2)(∂2V 0
t /∂u

2)(u), and again from the dominated convergence theorem,
this limit is (∂V 0

t /∂t)(u). Thus,V 0
t (u) satisfies equation (28). The solution of

that equation with boundary valueMε at T is unique. Therefore it is the whole
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sequence that converges. Finally, the solution of that equation can be seen to be
continuous in its boundary value, thus we have that indeed,V

(h)
t/h converges to the

solution of Black and Scholes’equation with boundary valueM atT .

5 conclusion

We conclude that the classical Black and Scholes equation can be seen as a property
of the set of trajectoriesassumed for the underlying market prices, not of a proba-
bilistic measure it would be endowed with. A weakness of the bounded quadratic
variation case (i.e. Black and Scholes’s theory) is that the itdoes not sufficeto
assume that the quadratic variation be bounded to calculate a valuation. We need
to know the exact volatility. In contrast, in the bounded variation case —the zero
volatility case— the total variation does not need to be known. And the problem
does not seem much less meaningfull. The weakness of that theory, in its present
form, being that it yields our “naive” hedging strategy, that we have seen to be non
robust to even small transaction costs. We are currently investigating its solution
in the presence of these costs, using our robust control approach.

As a matter of fact, we have a coherent piece of theory based upon robust
control and game theoretic tools, concerning the pricing of a contingent claim at a
fixed expiration date, such as european options. In continuous time, we only have a
“bounded variation” theory, easily recovering our naive theory. But as we said, we
hope to get a much more realistic hedging strategy by including transaction costs.

In the case of discrete time trading, by exhibiting a hedging strategy against
infinitly many possibilities, we give a normative value to the theory of Cox, Ross
and Rubinstein, and improve over it in the case of non convex contingent claims. In
that last case, we have shown that the previous theory underestimates the value of
the contingent claim (which was known to a large extent) and we have a numerical
tool to efficiently compute a valuation, if one accepts our model for market prices.

We have carried out numerical checks of that theory. If carefully done, the
computation proves to be very fast, and completely corroborates the theory. We
give here two graphics concerning the digital call, chosen because it is not simply
constructed from calls and puts. Similar caluclations have been performed for
standard calls and puts, and various spreads. In the results shown, the discount
factor has been chosen unrealistically large to better separate the curves. The first
graphic shows the valuation of the digital call for various maturities. The second
one provides a comparison with a “Cox Ross and Rubinstein” approach.

Finally, we extended the convergence results of the Cox, Ross and Rubinstein
theory for vanishingly small stepsizes in two directions : on the one hand, we allow
for a wider class of contingent claims than just call or put, on the other hand, we
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show that the bounded variation theory can also be recovered that way. An aim of
further research is to exploit recent advances in the numerical approach to dynamic
games, using the tool of viscosity solutions, to investigate the limit of our valuation
in non convex cases.

Finally, the methodology advocated here lends itself to deal with other types of
contingent claims, american options, asiatic options, barrier options, etc. We plan
to cover these in forthcoming papers.
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Figure 1: Pricing of a digital call
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7 Appendix

We prove here a lemma of deterministic Itô calculus, a slightly modified ver-
sion of which is lemma 1 in the text.

Lemma 2 Let σ(·) be a measurable real function andz(·) be a continuous
real function, both defined over the interval[0, T ], such that for anyt ∈ [0, T ]
and any sequence of divisions0 = t0 < t1 < t2 < . . . < tN = t with a
diameterh going to0 (and thereforeN →∞), it holds that

lim
N−1∑
k=0

(z(tk+1)− z(tk))2 =
∫ t

0
σ2(τ) dτ . (29)

Letf(t, x) be a function from[0, T ]×R toR twice continuously differentiable.
And assume that, for allt ∈ [0, T ],

∂f

∂x
(t, z(t)) = 0 .

Then, for allt ∈ [0, T ],

f(t, z(t)) = f(0, z(0)) +
∫ t

0

(
∂f

∂t
(τ, z(τ)) +

σ(τ)2

2
∂2f

∂x2
(τ, z(τ))

)
dτ .

Proof Consider a division0 = t0 < t1 < t2 < . . . < tN = t. Using a
Taylor expansion to second order with exact rest, we have

f(tk+1, z(tk+1))− f(tk, z(tk)) =
(
∂f

∂t
(tk, z(tk))

)
(tk+1 − tk)+(

∂f

∂x
(tk, z(tk))

)
(z(tk+1)− z(tk)) +

1
2
∂2f

∂t2
(tk+1 − tk)2 +

∂2f

∂t∂x
(tk+1 − tk)(z(tk+1)− z(tk)) +

1
2
∂2f

∂x2
(z(tk+1)− z(tk))2,

where all second partial derivatives are evaluated at a point(t′k, z
′
k) on the

line segment[(tk, z(tk)) (tk+1, z(tk+1))].

By assumption, the second term in the r.h.s. is equal to zero. We summ these
expressions fork = 0 toN − 1. The l.h.s. is justf(t, z(t))− f(0, z(0)). We
want to investigate the limit of the four remaining sums in the r.h.s.

The first sum is elementary : sincet 7→ (∂f/∂t)(t, z(t)) is continuous, we
get
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Proposition 1

lim
N−1∑
k=0

(
∂f

∂t
(tk, z(tk))

)
(tk+1 − tk) =

∫ t

0

∂f

∂t
(τ, z(τ)) dτ .

Let us examine the quadratic terms. Again, it is a trivial matter to check that

Proposition 2

lim
N−1∑
k=0

(
∂2f

∂t2
(t′k, z

′
k)
)

(tk+1 − tk)2 = 0 .

Let us show

Proposition 3

lim
N−1∑
k=0

(
∂2f

∂t∂x
(t′k, z

′
k)
)

(tk+1 − tk)(z(tk+1)− z(tk)) = 0 .

Proof This is hardly any more complicated than the previous fact, but let
us be careful with terms involvingz(·). However, we know that that function
is continuous over[0, t], hence uniformly so. Therefore, for any positiveε,
there exists a sufficiently smallh such that if the diameter of the division is
less thanh, then |z(tk+1) − z(tk)| ≤ ε for all k. Moreover,z(t) remains
within a compact, and thus so do all thez′k’s. Hence,f being of classC2, its
second derivative evaluated in(t′k, z

′
k) is bounded by a numberC. Therefore,

for a small enough diameter, the absolute value of the above sum is less than

N−1∑
k=0

Cε(tk+1 − tk) = Cεt ,

hence the result claimed.

We now want to prove

Proposition 4

lim
N−1∑
k=0

(
∂2f

∂x2
(t′k, z

′
k)
)

(z(tk+1)− z(tk))2 =
∫ t

0
σ(τ)2∂

2f

∂x2
(τ, z(τ))dτ .

To that aim, we show two intermediary facts :
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Fact 4.1 For any continous real functiona(·), we have that, fortk ≤ t′k ≤
tk+1,

lim
N−1∑
k=0

a(t′k)(z(tk+1)− z(tk))2 =
∫ t

0
a(τ)σ(τ)2 dτ .

Proof Notice that the result trivially follows from the assumption (29)
whenever the functiona is piecewise constant. (In the limit ash → 0, on-
ly a finite number of intervals[z(tk), z(tk + 1)] contain a discontinuity ofa,
and their weight in the sum vanishes. For all the other ones, just piece togeth-
er the intervals wherea is constant. There the differences are multiplied by a
constant number.)

Now, both the finite sums of the l.h.s. and the integral are continous with
respect toa(·) for the uniform convergence. (Concerning the finite sums, they
are linear ina(·). Check the continuity at zero.) Anda being continuous over
[0, T ], it is uniformly continuous and can be approximated arbitrarily well, in
the distance of the uniform convergence, by a piecewise continuous function.
The result follows.

Fact 4.2 For any continuous functionb(t, z), we have fortk ≤ t′k ≤ t′k+1

andz(tk) ≤ z′k ≤ z(tk+1)

lim
N−1∑
k=0

b(t′k, z
′
k)(z(tk+1)− z(tk))2 =

∫ t

0
σ(τ)2b(τ, z(τ))dτ .

Proof Replace firstz′k byz(t′k) as the second argument ofb in the l.h.s. Then
just leta(t) = b(t, z(t)) in proposition 4.1, and he limit follows. Now, ash→
0, and becauseb andz are continuous,b(t′k, z

′
k) − b(t′k, z(t′k)) converges to

zero uniformly ink. (They both approachb(tk, z(tk)) uniformly.) The result
follows.

Setb = ∂2f/∂x2 in the fact 4.2 above to get proposition 4.

Propositions 1,2,3, and 4 together yield the lemma.

Remark Useb(t, S) = S2(∂2V/∂s2)(t, S) in Proposition 4.2 to derive the
slightly different lemma 1 in the text.
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