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Abstract

We review several control problems, all related to robust control in some way,
that lead to a minimax linear quadratic problem. We stress the fact that although
an augmented preformance index appears, containig anL2 norm of a disturbance
signal, only thenon augmentedquadratic performance index is of interest per se in
each case.
Keywords : linear-quadratic, robust control, Riccati equations,H∞-optimal con-
trol.



1 Introduction

Robust control has been one of the most active areas of control research for the
last twenty years or so. By the phrase “robust control”, one means those control
mechanisms that explicitly take into account the fact that the system model (or the
noise model) is unprecise. Of course, one has to know something about this model.
A distinctive feature of most of robust control theory is that the a priori information
on the unknown model errors (or signals) is non probabilistic in nature, but rather
in terms ofsets of possible realizations1. Typically (though not always), bounded
errors of some kind. (Yet we shall show a strange parallel with a stochastic problem
formulation in the so calledrisk aversecontrol problem.) As a consequence, ro-
bust control aims at synthesizing control mechanisms that control in a satisfactory
fashion (e.g. stabilize, or bound an output) afamilyof models.

If so calledH∞-optimal control has been the subject of the largest share of that
research, it is by no means the only approach to robust control. Most prominent
among other approaches are those “à la Kharitonov”. Kharitonov’s theorem states
a sufficient condition for a particular family of polynomials to have all their roots
in the left half complex plane. Applied to the characteristc polynomial of a family
of linear time invariant (LTI) systems, it yields interesting robust control results.
The so called “edge theorem” is an attempt at a similar result for more interesting
families of polynomials. It is the starting point of some robust control results. We
shall not review that line of thought here. For a nice review, see Barmish 1988.
H∞-optimal control started with the work of G. Zames 1981, although some

other papers such as Doyle and Stein 1981 can be seen as forerunners of the new
theory. It was developped in the context of LTI systems and frequency domain rep-
resentation, where it won its name. A good review of that approach can be found in
Francis 1987. It was with the important paper of Doyle, Glover, Khargonekar, and
Francis 1989, first given at the 1988 Conference on Decision and Control (CDC),
that the first link with state space was established, the role of a game-like Ric-
cati equation shown, and an observer-like form, reminiscent of the linear quadratic
gaussian (LQG) theory, exhibited. The link with games was elucidated the next
year independently by Başar 1989, Papavassilopoulos and Safonov 1989, Tadmor
1989. At that time, the available game theory did not allow one to explain the
full result of Doyle, Glover, Khargonekar, and Francis 1989 and its observer-like
structure. This was to be explained by our minimax certainty equivalence theorem
in Bernhard 1990, 1991 and Bernhard and Rapaport 1995 and exploited to its full
strength by Başar and Bernhard 1991.

1One may argue a posteriori that this is because being concerned with disturbances in the coef-
ficients of the model, a stochastic formulation would lead to a differential equation with stochastic
coefficients, a technically complex object, difficult to use.
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This allowed us to develop a theory entirely in state space, indeed in the realm
of the classical linear quadratic theory, with the same type of tools. It also let
us extend the theory to non time invariant systems, finite horizon criterions, and
successfuly deal with such features as sampled data control, time lags,H∞-optimal
estimation, etc.

Other important works were conducted in parallel on the time domain ap-
proach, such as Limebeer, Green and Walker 1989, Stoorvogel 1992 or Kwak-
ernaak 1991, most of them, however, restricted to LTI systems.

Consideration ofL2 norms in a linear system with statex and controlu nat-
urally leads to the consideration of a quadratic perforamce index, specifically the
integral of a quadratic form inx(t) andu(t), that we callJ . In some sense, we
wish to keep it small in spite of unknown factors, disturbances and/or model er-
rors. For technical reasons there shall appear an augmented performance index
Jγ = J − γ2‖w(·)‖2 and its minimax. Our presentation is intended to stress the
fact that this is for pure technical reasons, and that the real problems at hand are
only concerned withJ and its being kept small.

In section 2, we first show a simple noise attenuation problem, that shows up
as an alternative to the gaussian noise model to deal with the control of a disturbed
linear system. No uncertain model in that problem, and no set of models per se.
But it shares a feature of robust control in as much as the noise description is in
terms of an admissible set of time functions :L2, the set of finite “energy” signals.
(The set of finite “power” signals leads to the same theory).

In section 3, we consider a slightly generalized version of Zames’original ro-
bust control formulation. Here lies the claim ofH∞-optimal control to solve ro-
bust control problems. The second edition of Başar and Bernhard 1991 (1995) will
serve as the basis of sections 2 and 3.

In a fourth section, we show the link with so called “risk averse” control. As
a matter of fact, Whittle’s separation theorem largely predates our certainty equiv-
alence theorem. It is a version of the latter restricted to the discrete time, time
invariant, linear quadratic case (with a simple observation equation). We introduce
the relationship betweenH∞-optimal control and risk averse control via what we
nickname “Whittle’s magic formula”. This in a way makes that relationship look
at best accidental, at worst magic. Some deeper reason is probably at work, but not
completely clear to us at this time.

A final section gives a couple of elementary examples to show how the mathe-
matics deal with model uncertainty. We want there to emphasize thatrobustis not
synonym tocautious. Robust control may be more or less cautious than classical
LQG, depending on the structure of the model uncertainties.

To keep the exposition as short and simple as possible, we shall restrict it to
continuous-time models. There exist discrete time parallels to (essentially) every-
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thing we shall discuss. In some instances the mathematics are even simlper, but the
formulas are always more complicated there.

2 Robust noise attenuation

2.1 System and notations

Consider a linear system with statex ∈ Rn, two inputs : the controlu ∈ Rm and a
disturbance signalw ∈ R`, and two outputs : a measurement outputy ∈ Rp and a
controlled outputz ∈ Rq :

ẋ = Ax+Bu+Dw , (1)

y = Cx + Ew , (2)

z = Hx+Gu . (3)

The matricesA,B,D,C,E,H, andG are of appropriate sizes. In infinite horizon
problems, they will be assumed constant. In finite horizon problems, they may be
time varying, say piecewise continuous, right-continuous and left-limited. But we
shall always omit that possibility in our notations. Notice that the followingsystem
matrix can be built from them :

S =

A B D
C 0 E
H G 0

 . (4)

The0 matrix in the definition ofy is of no consequence. As a matter of fact,
y will be the measured output, i.e. the information available to the controller to
chooseu. If there were a term+Fu in it, one, knowingu(t), could instantly
substract out that term and recover oury. Therefore there is no loss of generality
here. This is not so for the0 matrix in z. We shall keep it because the theory is
simpler that way. But T. Başar has extended the theory to the case where this extra
term is present (see the second ed. of Başar and Bernhard 1991 ). See also Bernhard
2000 for a discussion of that question in the framework of minimax control.

Also to keep things simple, we shall always make the following assumptions :

Assumptions A

1. the matrixG is injective, and has itsmth (smallest) singular value bounded
away from zero, (hencem < q),

2. the matrixE is surjective, and has itspth (smallest) singular value bounded
away from zero, (hencep < `).
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We shall also use the notations(
HtH HtG
GtH GtG

)
=:
(
Q S
St R

)
, (5)

so that hypothesisA1 translates intoR > 0 andR−1 bounded, and(
DDt DEt

EDt EEt

)
=:
(
M Lt

L N

)
, (6)

so that hypothesisA2 translates intoN > 0 andN−1 bounded.
In many applications, one hasS = 0 (no cross terms inxu in J below) and

L = 0 (the dynamics noiseDw and measurement noiseEw are unrelated). This
simplifies somewhat the various equations below, but not by much.

We shall write‖u‖2R = (u,Ru) = utRu, ‖w‖2N = (w,Nw) = wtNw and
likewise for other quadratic forms, even when the weighting matrix shall not be
positive definite.

We shall consider infinite horizon problems wheret ∈ (−∞,+∞), where
implicitly what is meant is that the state at time−∞ was zero :

x(t) = exp(At)
∫ t

−∞
exp(−As)[Bu(s) +Dw(s)] ds .

(This is well defined provided that the system be stable, or adequately stabilized
by feedback.) Therefore,x(·) is then a function ofu(·) andw(·) alone, and there
is no consideration of final state either, we shall always require that the system be
stabilized :x(t)→ 0 ast→∞. We shall then havez(·) ∈ L2(−∞,+∞) and use
the notation

J(u(·), w(·)) = ‖z(·)‖2 =
∫ ∞
−∞

[‖x(t)‖2Q + 2x(t)tSu(t) + ‖u(t)‖2R] dt , (7)

and for any positive numberγ

Jγ = J − γ2‖w(·)‖2 =
∫ ∞
−∞

[‖x(t)‖2Q + 2x(t)tSu(t) + ‖u(t)‖2R− γ2‖w(t)‖2] dt .

(8)
For the finite horizon case, wheret ∈ [0, T ], we shall need the notations

ζ =
(
z(·)
x(T )

)
∈ L2([0, T ]→ R

n)× RnX , (9)

for a given non negative definite matrixX, so that

‖ζ‖2 = ‖x(T )‖2X +
∫ T

0
[‖x(t)‖2Q + 2x(t)tSu(t) + ‖u(t)‖2R] dt , (10)
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and

ω =
(
x0

w(·)

)
∈ RnY × L2([0, T ]→ R

`) =: Ω , (11)

wherex0 = x(0) andY is a given positive definite matrix, so that

‖ω‖2 =
∫ T

0
‖w(t)‖2 dt+ ‖x0‖2Y . (12)

And we shall write

J(x0, u(·), w(·)) = J(u(·), ω) = ‖ζ‖2 , (13)

and
Jγ(u(·), ω) = J(u(·), ω)− γ2‖ω‖2 , (14)

hence

Jγ = ‖x(T )‖2+
∫ ∞
−∞

[‖x(t)‖2Q+2x(t)tSu(t)+‖u(t)‖2R−γ2‖w(t)‖2] dt−γ2‖x0‖2Y .

2.2 The problem

In an unprecise statement, the aim is to “chooseu(t), knowing only the pasty(s),
s < t”, in such a way as to “keepz(·) small in spite of the unpredictable dis-
turbances”. All we shall assume concerning these disturbances is that the time
functionw(·) is square integrable over the time interval considered, either finite or
infinite.

The aim of the mathematical models is to propose mathematical metaphors of
that problem, more or less well suited to various experimental or logical contexts.
One very famous metaphor has been to construct a probabilistic model for the
disturbances, and accordingly for the state trajectory, with the necessary aparatus
to account for the causality of the admissible control laws. One then strives to
minimize theexpceted valueof J . This leads to the famous LQG theory.

This is known to be a very usefull piece of theory, and a very brilliant one, but
the point here is that it is onlyonepossible way of making a mathematical metaphor
of the basic problem. It is well suited if, on the one hand, one has reasons to believe
that the disturbances qualitatively resemble a random walk, and on the other hand,
the average value ofJ over several experiments is of interest. But assume that it
be known, for instance, that the distrbance is abias, a constant over time. (Still of
zero expectation.) There is no way by which this can resemble a random walk, nor
be represented as the output of a linear system driven by such a process, because
it is not ergodic. (The time average differs from the ensemble average.) This is

5



one situation, and others may arise, where the foregoing approach might be better
suited.

We shall stick with the decision that “keepingz(·) small” will be juged by
looking at theL2 norm of that ouput function, either ofz(·) in the infinite horizon
case, or, to be slightly more general,ζ in the finite horizon case. Thus our aim is,
as previously, to keepJ as given by (7) or (13) small.

Admissible control laws will becausalfunctions of the measured output, i.e.
of the form2

u(t) = µ(t, y(s); s < t) (15)

and such that when substituted foru in (1), (2) it yields for allω ∈ Ω a unique
solutionx(·). LetM be the set of all such admissible controls.

Assume for awhile that we are restricted tolinear control lawsµ. Then, once
µ is substituted into the dynamics,ζ becomes a linear function ofω alone, say
ζ = Tµω. Hence, there is no way to avoid thatJ = ‖ζ‖2 grow as‖ω‖2. A
reasonable mathematical problem, which indeed is a valid metaphor of the original
problem, is to try to keep the ratioJ/‖ω‖2 as small as possible. Equivalently, since
the norm of a linear operatorTµ is defined as the smallest number‖Tµ‖ such that

∀ω ∈ Ω , ‖ζ‖ ≤ ‖Tµ‖‖ω‖

the problem at hand is tofind an admissible control lawµ that makes‖Tµ‖ small.
Thus, it would be nice to be able to solve the problemminµ∈M ‖Tµ‖. Unfor-

tunately, this problem is not well behaved and does not admit a simple solution. In
particular, the discussion of whether the min is reached or not is difficult.

It turns out that it is usefull to rephrase that problem in the following way :

ProblemPγ Given a positive numberγ, does there exist an admissible
control lawµ that will insure that‖Tµ‖ ≤ γ, or equivalently (16)
below, and if yes find one.

Equivalently, this reads (remember that hereζ = Tµω)

∀ω ∈ Ω , ‖ζ‖ ≤ γ‖ω‖ . (16)

Now, the above property is equivalent to

∀ω ∈ Ω , ‖ζ‖2 − γ2‖ω‖2 = Jγ(µ, ω) ≤ 0 ,
2Roxin has proposed the following equivalent definition of causality : an applicationµ from

L2([0, T ]→ R
p) toL2([0, T ]→ R

m) is causal if∀t ∈ [0, T ], the equalityy(s) = y′(s) for allmost
all s < t impliesµ(y)(t) = µ(y′)(t).
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and thus also to
sup
ω∈Ω

Jγ(µ, ω) ≤ 0 .

Finally, existence of an admissible control law that achieves (16) is equivalent to
(if the min exists)

min
µ∈M

sup
ω∈Ω

Jγ(µ, ω) ≤ 0 , (17)

(and this does not depend onµ being linear).
Hence, we end up solving a differential game, or minimax control problem, for

the cost functionJγ . But only because checking whether (17) holds is a means of
answering the question of problemPγ , or equivalently to attempt to insure (16),
and because if the answer is yes, then the minimizingµ in (17) solves it.

2.3 Solution

For the sake of completeness, we recall here the solution of that game problem.

2.3.1 Finite horizon

Let us first consider the finite horizon case. The solution of the problem involves
two matrix Riccati equations, for symmetric matricesP (t) andΣ(t) :

Ṗ+PA+AtP−(PB+S)R−1(BtP+St)+γ−2PMP+Q = 0 , P (T ) = X ,
(18)

and

Σ̇ = AΣ+ΣAt−(ΣCt+Lt)N−1(CΣ+L)+γ−2ΣQΣ+M , Σ(0) = Z , (19)

where we have setZ := Y −1.
The main theorem ofH∞-optimal control is as follows. (For any square matrix

K, ρ(K) stands forspectral radiusof K.)

Theorem 1 If equations (18) and (19) have solutionsP (·) and Σ(·) over [0, T ],
and if furthermore these solutions satisfy the following inequality :

∀t ∈ [0, T ] ρ(Σ(t)P (t)) ≤ γ2 ,

then the answer to problemPγ is positive, and a control law that achieves the de-
sired disturbance attenuation levelγ is given by equations (20) and (21) hereafter.

Conversely, if one of the above conditions fails, then for anyγ̃ > γ the problem
Pγ̃ has no solution.
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The control law proposed is obtained as a “certainty equivalent” feedback on a
“worst possible state”̂x(t) :

u(t) = −R−1(BtP (t) + St(t))x̂(t) , (20)

wherex̂ is the solution of the following differential equation :

˙̂x = (A−BR−1(BtP + St) + γ−2MP )x̂
+(I − γ−2ΣP )−1(ΣCt + Lt)N−1[y − (C + γ−2LP )x̂] ,

x̂(0) = 0 .
(21)

One may notice the similarity with the optimal LQG control. Indeed, the feed-
back law (20) has exactly the same form (though with a differentx̂ of course), and
equation (21) has the same structure as a Kalman filter. The differences with the
latter case are in the presence of a ”worst” disturbancew = γ−2DtPx̂ in the dy-
namics and in the corrective term (it disappears from the correcting term ifL = 0),
and in the fact that the gain matrix of the corrective term is premultiplied by the co-
efficient(I − γ−2ΣP )−1. Notice that the spectral radius condition of the theorem
precisely guarantees the required invertibility.

As a matter of fact, one way of showing this theorem is through a certainty
equivalence theorem that states that under some conditions satisfied here, a min-
imax control in imperfect information is obtained by substituting in the minimax
state feedback (i.e. the optimal control law in the case of perfect state information)
a “worst current state compatible with the past measurements”, that (21) provides.

It is a worthwhile fact to state (andnot a corollary of the above) that

Theorem 2 If the available measurement isx(t) (exact state measurement), the
theorem 1 holds wihout the condition on equation (19) (existence ofΣ), with the
spectral radius condition restricted to initial time :ρ(ZP (0)) ≤ γ2, and withx(t)
instead of̂x(t) in (20). (Hence equation (21) is not required either.)

2.3.2 Infinite horizon

The stationary theory, which predated the finite horizon one, can be obtained as
a limiting case of the above, with some care though. We assume now thatS is
constant. And we need an extra set of assumptions :

Assumptions B

1. The pair(A,D) is stabilizable,3

3Recall that(A,D) stabilizable means that there exists a feedback matrixF such thatA −DF
be asymptotically stable, and(A,D) controllable suffices.
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2. the pair(H,A) is reconstructible.4

Then we have the following result :

Theorem 3 Under assumptionsA andB, if the following three conditions hold :

1. The Riccati equation (18) integrated fromP (0) = 0 has a solution that
converges to someP ∗ ast→ −∞,

2. the Riccati equation (19) integrated fromΣ(0) = 0 has a solution that con-
verges to someΣ∗ ast→∞,

3. ρ(Σ∗P ∗) ≤ γ2,

then the answer to the problemPγ is positive, an admissible controller is given by
equations (20) and (21) withP (t) andΣ(t) replaced byP ∗ andΣ∗ respectively. In
that case,P ∗ andΣ∗ are theleast positive definite solutionsof thealgebraic Riccati
equationsobtained by placingṖ = 0 andΣ̇ = 0 in (18) and (19) respectively.

Conversely, if one of the above three conditions fail, for anyγ̃ > γ, the problem
Pγ̃ has no solution.

Furthermore, if in addition to assumptionsB we have that(A,B) is stabiliz-
able and(C,A) reconstructible, then there will always be a positiveγ∗ such that
the conditions of the theorem be satisfied forγ > γ∗ and violated forγ < γ∗.

A carefull analysis of the problem shows that usually, asγ is decreased from
values larger thanγ∗, the first condition of the theorem to be violated will be the
third one. What happens forγ = γ∗ is more complicated (a reduced order con-
troller may exist), but is of little practical importance.

3 Robust stabilization and control

3.1 Model uncertainty

We now turn to the original problem that broughtH∞-optimal control to life, a
real robust control problem in that it deals with model uncertainty. To justify the
description we shall use of plant uncertainty, we begin with an example.

Let a linear system be of the form

ẋ = Ax+Bu ,

y = Cx .

4(H,A) is reconstructible if(At, Ht) is stabilizable. Thus(H,A) observable suffices.
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Assume that the matricesA, B andC are not exactly known. All we know are
approximate valuesA0, B0, andC0 and bounds on how bad these approximations
may be, in terms of norms of matrices : three positive numbersα, β, andγ are
given, together with the information

‖A−A0‖ ≤ α , ‖B −B0‖ ≤ β , ‖C − C0‖ ≤ γ .

We shall be concerned with the problem of stabilizing and controlling that system,
hence the family of all models thus described.

We rewrite the system’s equations as

ẋ = A0x+B0u+ [I 0]w ,
y = C0x+ [0 I]w ,

z =
(
I
0

)
x+

(
0
I

)
u

(22)

with the added relation

w =
(

∆A ∆B
∆C 0

)
z , (23)

where∆A := A − A0, and likewise for∆B and∆C. This is indeed the same
system.

The system (22), called thenominalsystem, is of the form(
y
z

)
= G

(
u
w

)
whereG is entirely known: there is no uncertain coefficient in it. Only an unknown
disturbance inputw. Furthermore, it is exactly of the form of our system of the
previous section. (WithS = 0 andL = 0.) All the uncertainty has been placed in
a the feedback term (23). We rewrite that last term as

w = ∆Gz

and the available information on the uncertainties translates into (as a matter of
fact, is degraded into)

‖∆G‖ ≤ δ (24)

for some numberδ, function of the given uncertainty bounds.5

The above example is meant to substantiate the claim that the following uncer-
tainty description is indeed very general. For the sake of convenience however, we

5It is an elementary matter to check thatδ2 = (α2 +β2 +γ2 +
√

(α2 + β2 + γ2)2 − 4β2γ2)/2.
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shall rename respectivelyr ands the input and outputw andz above, that play a
special role in the uncertainty description

We consider a linear system described as a linear operatorG acting on inputs
to deliver outputs. One may think ofG as meaning an abstract operator fromL2

spaces intoL2 spaces, or, equivalently, as meaning the transfer function as a con-
crete representation of a linear operator (that last interpretation is restricted to a
infinite horizon time invariant problem, not the former one). We shall use three
(vector) inputs now :w renamedr andu as above, and an exogeneous disturbance
v. Likewise, we may use three (vector) outputs :z renameds andy as above,
and a to-be-controlled outpute (an “error” signal seen as the deviation of an actual
output from a desired one, that should be kept small). By linearity, the system may
be written as

s = Gsrr + Gsvv + Gsuu , (25)

e = Gerr + Gevv + Geuu , (26)

y = Gyrr + Gyvv + Gyuu . (27)

The uncertainty in the system resides in the fact that we know that

r = ∆Gs (28)

for some linear operator∆G of which we only know a norm boundδ as in (24).
The outputy is the measurement available to choose our controlu, whose aim

is to stabilize this family of models —this is the topic of the next subsection— and
if possible, in doing so to attenuate as much as possible the effect of the exogeneous
disturbancev in the controlled outpute, this is dealt with in a later subsection.

3.2 Robust stabilization

Because we want to deal with stability, we restrict our attention here to linear time
invariant systems and infinite horizon controls.

Assume we are constrained to linear operators (this restriction may be waived,
but we shall not consider that question here) of the form (15), that we rewrite

u = µy . (29)

to stress the linearity. Then, substituting into (27) one may, formally solve fory,
and thusu, in terms ofv andr, and substitute this form ofu in (25), leading to a
linear expression of the form

s = Tµr + Sµv . (30)

11



This is indeed exactly the same argument as in section 2.2. Thus thecontrolled
system is now given by (30) (28).

How to chooseµ to insure stability of this controlled system for any∆G within
the norm bound ? The fundamental remark is as follows : under suitable assump-
tions, that are satisfied by a standard canonical state variable model, the system
is stable if and only if the above equations have a solution inL2 for anyv in L2.
(Sufficiency stems from the fact that if all inputs are inL2 so isẋ, thusx is inH1

and hencex(t)→ 0 ast→∞. Necessity requires some observability.)
Now, substitute (28) into (30). It comes

s = Tµ∆Gs+ Sµv . (31)

This is a fixed point equation fors. By Banach’s theorem, a sufficient condition
for the existence of a (unique) solution is that‖Tµ∆G‖ < 1. Notice that we have

‖Tµ∆G‖ ≤ ‖Tµ‖‖∆G‖ ≤ ‖Tµ‖δ ,

so that a sufficient condition of stability of all our models is that‖Tµ‖ < δ−1.
The so called “small gain theorem”, states that ifSµ is onto, this condition is

also necessary to insure existence of a solution to (30)(28) for all∆G of norm no
more thanδ.6

Hence, the search for a controllerµ that stabilizes all the models in the family
may in practice be replaced by the requirement that‖Tµ‖ ≤ γ for a well chosen
γ. Of course, the remarkable fact is that this is the problem considered for another
reason in the previous section.

3.3 Robust stabilizing control

We now want to simultaneously stabilize and control our family of models. Con-
sider now the combined input

w =
(
r
v

)
and the combined output

z =
(
δs
βe

)
for some positiveβ (and the sameδ as above). Assume a control lawµ is chosen,
and letT̃µ be the ensuing linear operator fromw to z. Chooseγ < 1 (but very close

6Assume‖Tµ‖ = γ ≥ δ−1. There exists an̂s of norm 1 such thatTµT ∗µ ŝ = γ2ŝ. Choose∆G
defined by∆Gu = γ−2T ∗µ ŝ(ŝ, u), and pickv such thatSµv = ŝ. Here‖∆G‖ = γ−1 ≤ δ. And it
is readily seen that ifs were the solution of (31), one would haves = [(ŝ, s) + 1]ŝ, and taking the
scalar product witĥs, (ŝ, s) = (ŝ, s) + 1, a contradiction.
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to one). If it is possible to chooseµ such that‖T̃µ‖ ≤ γ, then this in particular
implies that, on the one hand, the operator fromr to δs has norm less than one,
hence the operatorTµ from r to s has norm less thanδ−1, insuring robust stability,
and on the other hand that the operator fromv to βe also has norm less than one,
insuring a disturbance rejection ratio of at leastβ−1. Thus, the larger theβ for
which this is possible, the better the control law.

Again, we are back to a problem of the form treated to begin with in section 2.
One should notice however that up to this point, the control problem addressed

by this approach is not completely satifactory, because the system norm we have
strived to control to insure noise attenuation is that of thenominalsystem. It would
be interesting to be able to say something of the operator fromv to e in the per-
turbedsystem, where indeedr = δGs. It is a late and surprising theorem (Chilali
1996) that indeed, in that case we havealso insured that the perturbed system
admits the same norm bound. Thus this does provide simultaneous robust stabi-
lization and control.

This is still an elementary stage of the theory however. Two important exten-
sions have been developed. On the one hand, it is possible to exploit a more refined
knowledge on the disturbance system than just a norm bound, typically in terms of
a frequency dependant bound. This is done using shaping filters, very much like
what is done with the classical LQG theory to deal with colored noise. On the other
hand, we have stressed in the example that by reducing our knowledge about the
disturbance to a single operator norm, we degrade our information. Thus, means
have been developed to distinguish several channels in bothr ands, with a diag-
onal structure on∆G, and separate norm bounds on each block of that structure.
This is the aim of “µ-synthesis”, after the name of the “structured singular value”
oftentimes calledµ.

4 Risk averse control

We now outline a seamingly completely different problem that leads to the consid-
eration of the same minimax problem as in (17).

Consider a linear model as in (1)(2) (3), but for the time being, and following
Whittle 1981, in discrete time :

x(t+ 1) = Ax(t) +Bu(t) +Dw(t) , (32)

y(t) = Cx(t) + Ew(t) , (33)

z(t) = Hx(t) +Gu(t) . (34)

This will make things simpler on technical grounds, but the theory has since been
extended to the continuous time problem, though with much technical difficulties,
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by Bensoussan and Van Schuppen (1985). We also restrict our attention to a finite
horizon problem. Thusw(·) is now a finite sequence, thus a finite dimensional
variable, that we shall still writew when no confusion is possible. Itsl2 norm is
exactly the euclidean norm of the composite vector of dimensionT` made of all
thew(t)’s.

As in classical LQG theory, we modelize the disturbancesw(·) as a normalized
white noise, i.e. a sequence of independant normal gaussian random variables.

We want to modelize a risk averse controller. One way of doing so is to assume
that the controller seeks to minimize the expected value of the exponential of the
classical quadratic performance index. Because the exponential function is convex,
this penalizes upwards deviations from the mean more than it saves on downwards
deviations, making it important to reduce the variance of the quadratic performance
index.

More precisely, we take as the performance index

Gγ(x0, u) = E exp
(

1
2γ2

J(x0, u, w)
)
. (35)

(For obvious reasons, it is customary to consider more preciselyG̃γ := 2γ2 lnGγ ,
but it is clearly equivalent to minimizẽGγ orGγ .)

Expanding the expectation operator, this leads to

Gγ(x0, u) = (2π)−
T`
2

∫
exp

(
1

2γ2
[J(u,w)− γ2‖w‖2]

)
dw ,

The exponent involves the familiarJγ = J − γ2‖w‖2. It is a non homogeneous
quadratic form inu andw, and can be written as

Jγ = (u,Ru) + 2(w,Su)− γ2(w, T w) + 2(a, u) + 2(b, w) + c

with T = I − 1
2γ2Jww, and for some linear operatorsR, S, some time functionsa

andb and a numberc. We have used a minus sign in front of the quadratic term in
w to stress the fact that the expectation is defined (finite) if and only if the operator
T is positive definite. Otherwise the integral inw diverges.

It is a classical fact that one may “complete the square”, i.e. re-write the above
quadratic form in terms of the linear operatorsN = γ−2T −1S andv = γ−2T −1b
as

Jγ = −γ2(w −Nu− v, T (w −Nu− v)) +Kγ(u) . (36)

The remainderKγ is easily computed. The important fact is that it does not depend
onw. Because we needT to be positive definite, the form (36) immediately shows
that

Kγ(u) = max
w

Jγ(u,w) . (37)
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But also, we have

Gγ = exp
(

1
2γ2

Kγ(u)
)

(2π)−
T`
2

∫
exp

(
−1

2
‖w −Nu− v‖2T

)
dw ,

and a simple change of variable shows that the last integral does not depend onu,
yielding

Gγ =
1√

det T
exp

(
1

2γ2
Kγ(u)

)
.

Therefore, the problem of minimizingGγ is equivalent to minimizingKγ(u), of
which we have seen that it is the max overw of Jγ . Hence we are indeed back to
problem (17).

The above assumes an open loop controlu (a prior commitment), but we have
a similar situation if we want to accept a control law of the form (15). Let us again
restrict the control law to be linear. It amounts to an affine mapu = Fw + f
in an admissible family of such maps (in particular, the matrix ofF will be tri-
angular to insure causality). Substituting this inJγ , we again obtain a non ho-
mogeneous quadratic form inw. The same technique of completing the square
will lead to the same conclusion, thatGγ is proportional to the exponential of
(1/2γ2) maxw Jγ(µ(y), w).

The above result is what we like to call “Whittle’s magic formula”. P. Whittle
was able to go further, proving, in a slightly simpler case, a separation theorem
which implies our certainty equivalence theorem in that case. This approach was
used by James Barras and Elliott 1993 and 1994 to derive a solution to the partial
information minimax control problem when the certainty equivalence theorem does
not hold. Their derivation was contemporaneous to, and independant from, our own
derivation of the same result using tools introduced in Başar and Bernhard 1991,
and since generalized in the framework of the(max,+) algebra (see Bernhard
2000 ).

5 “Robust” is not necessarily “cautious”

Among the missconceptions concerning robust control, one is that it is by nature
cautious, because it does not rely on an uncertain model. This is not necessarily
so, and the following examples are meant to illustrate that point. We shall all along
assume perfect state information, and concentrate on the state feedback gain.

5.1 Disturbance attenuation

Let us consider the simple system where all variables are scalar :

ẋ = −x+ u+ w ,
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z =
(
x
u

)
.

Consider as a reference LQG control theory, withw(·) taken as a normalized
“white noise”. The corresponding algebraic Riccati equation is

−2P − P 2 + 1 = 0 .

The positive root isP =
√

2 − 1 ' .414. This is also the optimal feedback gain
F = P as well as the expectation of the (limit of the) integrand in the quadratic
performance index, i.e.

lim
t→∞

E‖z(t)‖2 = E lim
T→∞

1
T

∫ T

0
‖z(t)‖2 dt =

√
2− 1 = 0.414 .

Using essentially the same theory (or that ofH∞norms), one can also check
that with that control, the noise attenuation fromw to z is γ =

√
2−
√

2 ' .765.
Let us now use the theory of “robust” noise attenuation. The Riccati equation

is
−2P − (1− γ−2)P 2 + 1 = 0 .

It has a positive real root down toγ = 1/
√

2 = 0.707, for which the positive real
root is unique and isP = 1. Since again, the feedback gain isF = P , we see that it
is larger than in the previous case. Of course, the noise attenuation, as measured by
L2 norms, is better (it is optimized here): .707 versus .765, while correlatively, if
we assume thatw is a normalized “white noise” as previously, this leads to a worse
output covariance (it was minimized in the previous case), specificallyEx2 = 1/4,
and thus (sinceu = −x) E‖z‖2 = .5 versus .414.

To summarize, the “robust noise attenuation” control leads to more control
effort, for a betterL2-norm noise attenuation, at the expense of a larger control
power that degrades the output covariance in the case where the disturbance is
(looks like) a normalized white noise.

5.2 Robust stabilization

Let us now examine how the theory of robust stabilization (still with perfect state
measurement) works on such simple examples. We consider two situations de-
pending on whether the plant uncertainty resides with the free dynamics or the
control channel efficiency.
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5.2.1 Uncertain free dynamics

Let us consider the system

ẋ = −x+ δa x+ u , |δa| < α ,

to be stabilized not knowing the exact value ofδa.
Application of the above theory leads to the consideration of the system

ẋ = −x+ u+ r ,

s =
(
αx
εu

)
with the uncertain feedback

r = ∆Gs , ∆G = [
δa

α
0] .

The bound on the uncertainty is now

‖∆G‖ < 1 . (38)

We were obliged to introduce the extraεu component ins to insure that the equi-
valent of theG matrix of equation (3) be injective. We shall use it as a tuning
parameter of the design method.

The Riccati equation is now

−2P − (ε−2 − 1)P 2 + α2 = 0 .

Its smaller positive root is, for smallε’s

P =
1

ε−2 − 1

(√
1 + α2(ε−2 − 1)− 1

)
.

The corresponding feedback gain isF = ε−2P . We see that for smallε’s, it is
close toα/ε. Hence, the theory says : if you want to stabilize the above uncertain
system, just use a large nagative feedback gain. The larger the uncertainty (α) the
larger the feedback gain. But we may make it arbitrarily large, since we did not
attempt to simultaneously control an output containingu.

If we are interested in limiting the feedback gain, we may look at the same
design procedure for largeε’s. We see that there exists a positive root to the Riccati
equation if and only if1−(1−ε−2)α2 > 0. Thus ifα < 1, we may takeε arbitrarily
large, and correlativelyF arbitrarily small. We do not have to control at all, the
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system is spontaneously stable whateverδa within its bounds. Ifα > 1, however,
the limitingε is α/

√
α2 − 1, and the corresponding feedback gain isF = α2 − 1.

As a matter of fact, this leads to the closed loop system

ẋ = −(α2 − δa)x

which is stable for everyδa < α2, and a fortiori for the bound (38).
That we do not findF = α − 1 is only a reflexion on the fact that our design

procedure is conservative. As a matter of fact, with (38), we have allowed any
∆G = [p q] with

√
p2 + q2 < 1. Thus we have controlled the family of systems

ẋ = −(1− pα)x+ (1 + qε)u , p2 + q2 < 1 .

It is a simple exercise to placeu = −Fx in that system, and investigate for whichε
there is anF that insures−1+pα−(1+qε)F < 0. One indeed finds thatε should
not be larger thanα/

√
α2 − 1, and that at this limiting value, the only satisfactory

F is α2 − 1. (Avoiding that degree of conservatism is the aim of “µ-synthesis”.)

5.2.2 Uncertain control channel efficiency

We use a similar approach to stabilize the unstable system

ẋ = x+ (1 + δb)u , |δb| < β .

(Applying the design procedure to a stable system would lead to no control.) We
proceed in the same fashion, using the system

ẋ = x+ u+ r ,

s =
(
εx
βu

)
,

with

r = ∆Gs, ∆G = [0
δb

β
] .

and again the bound (38). The termεx in s is now needed to insure the observabil-
ity condition of the theory.

The Riccati equation is now

(1− β−2)P 2 + 2P + ε2 = 0 .

Forβ < 1 it always has a positive root

P =
1

β−2 − 1

(
1 +

√
1 + ε2(β−2 − 1)

)
18



leading to the feedback gainF = P/β2, the limit of which asε → 0 is now
F = 2/(1− β2). The worst closed loop system is then, forδb = −β,

ẋ = −1− β
1 + β

x

which is indeed stable since hereβ < 1.
Again for β close to 1, we need a large feedback gain to compensate for the

fact that the control channel may be very inefficient.
Forβ > 1, the problem clearly has no solution : our system is unstable, and we

do not know the sign of the coefficient ofu in the dynamics. The Riccati equation
always has two negative roots.

5.2.3 Mixed case

We consider the uncertain system

ẋ = −(1− δa)x+ (1 + δb)u , (δa)2 + (δb)2 < ρ2 .

We may expect that forρ ≤
√

2 that family of systems can be stabilized, because
if 1− δa < 0, making the free system unstable, then the sign of1 + δb is known to
be positive, so that it is possible to control the system.

As a matter of fact, the Riccati equation associated to that problem is

(1− ρ−2)P 2 − 2P + ρ2 = 0 ,

which has a positive root provided thatρ ≤
√

2. For ρ > 1, that root leads to a
feedback gainF = (1−

√
2− ρ2)/(ρ2 − 1), equal to 1 ifρ =

√
2.

We do not have large gains any more, this is indeed a cautious control, because
one has to balance the risk of not compensating an unstable free dynamics and that
of exerting a “positive feedback”.

Notice that if the a priori bound on the uncertainty is of the form|δa| < α
and|δb| < β, within the current simpleH∞-optimal control theory, we cannot do
better than the above, withρ2 = α2 + β2.

5.3 Robust stabilizing control

At last, we consider the simultaneous stabilization and control of our simple sys-
tem.
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5.3.1 Uncertain free dynamics

We want to controlz in the disturbed uncertain system

ẋ = −x+ (δa)x+ u+ w , |δa| < α ,

z =
(
x
u

)
.

We may seek to minimize the system norm from(r w) to z, and check
whether this norm is less than1/α, which, in view of the small gain theorem, is
sufficient to insure stability. One finds that the limitingγ is 1. Thus this procedure
suceeds only ifα < 1.

Forα > 1, we can apply the standard procedure advocated above : introduce
both s = αx and z′ = (1/γ)z, i.e. an output inR3. Then seek for whichγ
we can insure that the operator normm from(r w) to (s z′) be less than one,
guaranteeing both robust stability and a disturbance attenuation ofγ from w to
z. We propose a slightly different approach, which turns out to give much better
results. (This also serves the purpouse of showing that this whole theory is to be
applied with cleverness.)

We write the system

ẋ = −x+ u+ r + w ,

s =
(
αx
1
γu

)
,

againr = ∆Gs with ‖∆G‖ < 1. We attempt to insure an operator norm from
(r w) to s less than 1. This insures that the system is stable, and, ifγ > 1/α, (as
will occur for α > 1) a fortiori an operator norm fromw to z less thanγ. (Since
‖z‖ < γ‖s‖.)

The Riccati equation associated to that new problem is

(2− γ2)P 2 − 2P + α2 = 0 ,

wich has a positive root provided thatγ2 ≥ 2 − α−2. (Notice that this gives back
γ ≥ 1 if α = 1, we recover the same limiting case as above.) For the limitingγ, we
haveP = α2 andF = γ2P = 2α2−1. Thus, this solution rules out “large gains”.
In that respect it embodies a degree of caution. But as compared to the smallest
gain obtained in the robust stabilization section, with no regard for an output, we
use a larger feedback gain :2α2 − 1 versusα2 − 1. In that respect, robust control
is not cautious control.
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5.3.2 Uncertain control channel

A symmetric situation results for the uncertain control channel case :

ẋ = −x+ (1 + δb)u+ w , |δb| < β ,

with the same controlled output, leading whenβ > 1/
√

2 to the limitγ2 ≤ 2−β−2

and a feedback gainF = 2β2 − 1.

5.3.3 Mixed case

As a last example, we consider the system with uncertainties on both the free dy-
namics and the control channel, that we want to simultaneously satbilize and con-
trol :

ẋ = −(1− δa)x+ (1 + δb)u+ w , |δa| < α , |δb| < β ,

z =
(
x
u

)
.

Again, the standard approach proposed in the general theory would have us intro-
duce a two dimensional outputs, in addition to the controlled outputz, and thus
applyH∞-optimal control theory with a four dimensional output. We avoid that
higher dimension via another trick. We need to have a way to tune the relative
weight of the two objectives : stabilization and control ofz, in such a way as to
achieve the best possible disturbance attenuation inz without sacrificing stabili-
ty. A way to achieve that goal is to introduce an outputs modeled as previously,
embodying bothx andu, and introduce a scaling weight1/γ on the disturbance’s
input channel, i.e. letv = (1/

√
2γ)w. (The

√
2 is there for normalisation purpos-

es.) Then we apply theH∞-control theory to the system from(r v) to s.
We shall therefore work with the system

ẋ = −x+ u+ r +
1

γ
√

2
v ,

s =
(
αx
βu

)
,

with the uncertainty model

r = [
δa

α

δb

β
]s = ∆Gs ,

and the bound‖∆G‖ <
√

2. Stability is insured if the norm of the operator from
(r v) to s is less than1/

√
2. In that case, the disturbance attenuation factor, inL2
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norm, is better thanγ/min{α, β}. (Of course, this is an efficient design procedure
only if α andβ are of the same order of magnitude.)

The Riccati equation of that problem is

(2 + γ−2 − β−2)P 2 − 2P + α2 = 0 .

It has a positive solution provided that

α−2 + β−2 ≥ 2 (39)

and
γ−2 ≤ α−2 + β−2 − 2

and the feddback gain that yields the limiting attenuation factor is

F =
α2

β2
. (40)

That this gain is indeed stabilizing can be checked directly : it leads to

ẋ = −α2(α−2 + β−2 − δa

α2
− δb

β2
)x+ w (41)

and it is easily seen that

δa

α2
+
δb

β2
<

1
α

+
1
β
<
√

2
√
α−2 + β−2

so that the condition (39) is precisely sufficient to insure that (41) be stable.
Formula (40) has an interesting interpretation : the feedback gain should be

chosen large or small depending on whether the larger uncertainty is in the free
dynamics or the control channel respectively. If we trust the control channel, we
may use it to correct an uncertain free dynamics. If, on the contrary, we trust more
a stable dynamics than the control channel, we should exert control with care.
Hence,H∞-optimal control theory appears as more or less cautious depending on
where the uncertainties in the system lie.
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