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Abstract

We review several control problems, all related to robust control in some way,
that lead to a minimax linear quadratic problem. We stress the fact that although
an augmented preformance index appears, containigarorm of a disturbance
signal, only thenon augmenteduadratic performance index is of interest per se in
each case.

Keywords : linear-quadratic, robust control, Riccati equatioAs,-optimal con-

trol.



1 Introduction

Robust control has been one of the most active areas of control research for the
last twenty years or so. By the phrase “robust control”, one means those control
mechanisms that explicitly take into account the fact that the system model (or the
noise model) is unprecise. Of course, one has to know something about this model.
A distinctive feature of most of robust control theory is that the a priori information
on the unknown model errors (or signals) is hon probabilistic in nature, but rather
in terms ofsets of possible realizatiohsTypically (though not always), bounded
errors of some kind. (Yet we shall show a strange parallel with a stochastic problem
formulation in the so calledisk aversecontrol problem.) As a consequence, ro-
bust control aims at synthesizing control mechanisms that control in a satisfactory
fashion (e.g. stabilize, or bound an outpufamily of models.

If so calledH .-optimal control has been the subject of the largest share of that
research, it is by no means the only approach to robust control. Most prominent
among other approaches are thoadd' Kharitonov”. Kharitonov’s theorem states
a sufficient condition for a particular family of polynomials to have all their roots
in the left half complex plane. Applied to the characteristc polynomial of a family
of linear time invariant (LTI) systems, it yields interesting robust control results.
The so called “edge theorem” is an attempt at a similar result for more interesting
families of polynomials. It is the starting point of some robust control results. We
shall not review that line of thought here. For a nice review, see Barmish 1988.

Ho-optimal control started with the work of G. Zames 1981, although some
other papers such as Doyle and Stein 1981 can be seen as forerunners of the new
theory. It was developped in the context of LTI systems and frequency domain rep-
resentation, where it won its name. A good review of that approach can be found in
Francis 1987. It was with the important paper of Doyle, Glover, Khargonekar, and
Francis 1989, first given at the 1988 Conference on Decision and Control (CDC),
that the first link with state space was established, the role of a game-like Ric-
cati equation shown, and an observer-like form, reminiscent of the linear quadratic
gaussian (LQG) theory, exhibited. The link with games was elucidated the next
year independently by Basar 1989, Papavassilopoulos and Safonov 1989, Tadmor
1989. At that time, the available game theory did not allow one to explain the
full result of Doyle, Glover, Khargonekar, and Francis 1989 and its observer-like
structure. This was to be explained by our minimax certainty equivalence theorem
in Bernhard 1990, 1991 and Bernhard and Rapaport 1995 and exploited to its full
strength by Basar and Bernhard 1991.

'0One may argue a posteriori that this is because being concerned with disturbances in the coef-
ficients of the model, a stochastic formulation would lead to a differential equation with stochastic
coefficients, a technically complex object, difficult to use.



This allowed us to develop a theory entirely in state space, indeed in the realm
of the classical linear quadratic theory, with the same type of tools. It also let
us extend the theory to non time invariant systems, finite horizon criterions, and
successfuly deal with such features as sampled data control, timéflageptimal
estimation, etc.

Other important works were conducted in parallel on the time domain ap-
proach, such as Limebeer, Green and Walker 1989, Stoorvogel 1992 or Kwak-
ernaak 1991, most of them, however, restricted to LTI systems.

Consideration of.? norms in a linear system with stateand controku nat-
urally leads to the consideration of a quadratic perforamce index, specifically the
integral of a quadratic form im(¢) andu(t), that we callJ. In some sense, we
wish to keep it small in spite of unknown factors, disturbances and/or model er-
rors. For technical reasons there shall appear an augmented performance index
Jy = J —~*Jw(-)||* and its minimax. Our presentation is intended to stress the
fact that this is for pure technical reasons, and that the real problems at hand are
only concerned withy and its being kept small.

In section 2, we first show a simple noise attenuation problem, that shows up
as an alternative to the gaussian noise model to deal with the control of a disturbed
linear system. No uncertain model in that problem, and no set of models per se.
But it shares a feature of robust control in as much as the noise description is in
terms of an admissible set of time functionk?2, the set of finite “energy” signals.
(The set of finite “power” signals leads to the same theory).

In section 3, we consider a slightly generalized version of Zames’original ro-
bust control formulation. Here lies the claim Bf,,-optimal control to solve ro-
bust control problems. The second edition of Basar and Bernhard 1991 (1995) will
serve as the basis of sections 2 and 3.

In a fourth section, we show the link with so called “risk averse” control. As
a matter of fact, Whittle's separation theorem largely predates our certainty equiv-
alence theorem. It is a version of the latter restricted to the discrete time, time
invariant, linear quadratic case (with a simple observation equation). We introduce
the relationship betweeH ..-optimal control and risk averse control via what we
nickname “Whittle’s magic formula”. This in a way makes that relationship look
at best accidental, at worst magic. Some deeper reason is probably at work, but not
completely clear to us at this time.

A final section gives a couple of elementary examples to show how the mathe-
matics deal with model uncertainty. We want there to emphasizedhastis not
synonym tocautious Robust control may be more or less cautious than classical
LQG, depending on the structure of the model uncertainties.

To keep the exposition as short and simple as possible, we shall restrict it to
continuous-time models. There exist discrete time parallels to (essentially) every-
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thing we shall discuss. In some instances the mathematics are even simlper, but the
formulas are always more complicated there.

2 Robust noise attenuation

2.1 System and notations

Consider a linear system with statec R"™, two inputs : the control, € R™ and a
disturbance signab € R¢, and two outputs : a measurement output R? and a
controlled output € RY :

& = Azx+ Bu+ Dw, 1)
= Cxzx + Fw, 2)
z = Hzx+Gu . (3)

The matricesA, B, D, C, E, H, andG are of appropriate sizes. In infinite horizon
problems, they will be assumed constant. In finite horizon problems, they may be
time varying, say piecewise continuous, right-continuous and left-limited. But we
shall always omit that possibility in our notations. Notice that the follovepstem
matrix can be built from them :

A B D
s=(c o E|. (4)
H G 0

The 0 matrix in the definition ofy is of no consequence. As a matter of fact,
y will be the measured output, i.e. the information available to the controller to
chooseu. If there were a termi-F'u in it, one, knowingu(t), could instantly
substract out that term and recover gurTherefore there is no loss of generality
here. This is not so for the matrix in z. We shall keep it because the theory is
simpler that way. But T. Basar has extended the theory to the case where this extra
term is present (see the second ed. of Basar and Bernhard 1991). See also Bernhard
2000 for a discussion of that question in the framework of minimax control.

Also to keep things simple, we shall always make the following assumptions :

Assumptions A

1. the matrixG is injective, and has its:th (smallest) singular value bounded
away from zero, (hence: < q),

2. the matrixE is surjective, and has ifgh (smallest) singular value bounded
away from zero, (hence < /).



We shall also use the notations

H'H H'G\ _[(Q S 5)
G'H G'G) "\S'" R)’

so that hypothesia1l translates inta? > 0 and R~! bounded, and
DD! DE'\ (M L! ®)
ED' EE') "\ L N)’

so that hypothesia2 translates intdV > 0 and N ~! bounded.

In many applications, one has = 0 (no cross terms iu in J below) and
L = 0 (the dynamics nois®w and measurement noi¢éw are unrelated). This
simplifies somewhat the various equations below, but not by much.

We shall write||u||% = (u, Ru) = u'Ru, |w|% = (w, Nw) = w'Nw and
likewise for other quadratic forms, even when the weighting matrix shall not be
positive definite.

We shall consider infinite horizon problems wheres (—oo, +00), where
implicitly what is meant is that the state at timec was zero :

t
x(t) = exp(At)/ exp(—As)[Bu(s) + Dw(s)] ds.
(This is well defined provided that the system be stable, or adequately stabilized
by feedback.) Therefore;(-) is then a function of.(-) andw(-) alone, and there
is no consideration of final state either, we shall always require that the system be
stabilized :z(t) — 0 ast — oco. We shall then have(-) € L?(—oo, +00) and use
the notation

J(u(),w() = [l2()* = /_m[llx(t)llé +2a(1)' Su(t) + u(t)[Z] dt,  (7)

and for any positive number

Ty = J = lw()|? = /OO[H:U(t)HzQ +22(t)"Su(t) + [u(®)|7 = 7*lw(®)]*] dt .

- ®
For the finite horizon case, whetes [0, T'], we shall need the notations
c=( 29 e 2o, 1] - R™) x R 9)
l‘(T) ) )

for a given non negative definite mattk, so that
T
I = ll=(D) 1% +/0 [ (®)1E + 22(t)" Su(t) + [u(®)|F]dt,  (10)
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and

Zo n 2 l
= € RE x L2(]0,T] — RY) =: Q, 11
o= (o)) e R x 220,71 R (1)
wherexy = z(0) andY is a given positive definite matrix, so that
T
HWIIQ=/0 ()| dt + [|o][3 - (12)
And we shall write
(o, u(-),w() = J(u(),w) = [I¢]1?, (13)
and
Ty (u(),w) = J(u(-),w) = 7 |lwl]|?, (14)
hence

Iy = IIfU(T)||2+/_OOH|x(t)||2Q+2w(t)tSU(t)+!U(t)II%—VQIIM(t)IIQ] dt |0 13-

o

2.2 The problem

In an unprecise statement, the aim is to “choe&g, knowing only the pasy(s),

s < t”,in such a way as to “keep(-) small in spite of the unpredictable dis-
turbances”. All we shall assume concerning these disturbances is that the time
functionw(-) is square integrable over the time interval considered, either finite or
infinite.

The aim of the mathematical models is to propose mathematical metaphors of
that problem, more or less well suited to various experimental or logical contexts.
One very famous metaphor has been to construct a probabilistic model for the
disturbances, and accordingly for the state trajectory, with the necessary aparatus
to account for the causality of the admissible control laws. One then strives to
minimize theexpceted valuef .J. This leads to the famous LQG theory.

This is known to be a very usefull piece of theory, and a very brilliant one, but
the point here is that it is onlgnepossible way of making a mathematical metaphor
of the basic problem. Itis well suited if, on the one hand, one has reasons to believe
that the disturbances qualitatively resemble a random walk, and on the other hand,
the average value of over several experiments is of interest. But assume that it
be known, for instance, that the distrbance Has a constant over time. (Still of
zero expectation.) There is ho way by which this can resemble a random walk, nor
be represented as the output of a linear system driven by such a process, because
it is not ergodic. (The time average differs from the ensemble average.) This is
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one situation, and others may arise, where the foregoing approach might be better
suited.

We shall stick with the decision that “keeping-) small” will be juged by
looking at theL? norm of that ouput function, either of-) in the infinite horizon
case, or, to be slightly more generalin the finite horizon case. Thus our aim is,
as previously, to keep as given by (7) or (13) small.

Admissible control laws will becausalfunctions of the measured output, i.e.
of the forn?

u(t) = u(t,y(s);s <t) (15)

and such that when substituted foiin (1), (2) it yields for allw € Q a unique
solutionz(-). Let M be the set of all such admissible controls.

Assume for awhile that we are restrictediteear control lawsy. Then, once
1 is substituted into the dynamicg,becomes a linear function of alone, say
¢ = T,w. Hence, there is no way to avoid thdt= ||¢||* grow as|w]|/?. A
reasonable mathematical problem, which indeed is a valid metaphor of the original
problem, is to try to keep the ratify ||w||? as small as possible. Equivalently, since
the norm of a linear operatdi, is defined as the smallest numijdr, || such that

Vo e, <l < [Tullllwl

the problem at hand is ind an admissible control lay that maked|7}, || small

Thus, it would be nice to be able to solve the probbein,,c 1 |7,||. Unfor-
tunately, this problem is not well behaved and does not admit a simple solution. In
particular, the discussion of whether the min is reached or not is difficult.

It turns out that it is usefull to rephrase that problem in the following way :

ProblemP,, Given a positive numbey, does there exist an admissible
control law p that will insure that|T,|| < ~, or equivalently (16)
below, and if yes find one.

Equivalently, this reads (remember that hére T),w)
Vo e, ] <llwll. (16)
Now, the above property is equivalent to

2 2 2
VweQ,  |[CIF = lwl]” = Jy(p,w) <0,
2Roxin has proposed the following equivalent definition of causality : an applicatitom
L2([0,T] — RP) to L2([0, T] — R™) is causal it € [0, T], the equalityy(s) = /() for allmost
all s < timpliesu(y)(t) = ply')(t).




and thus also to
sup J(p, w) <0.
we
Finally, existence of an admissible control law that achieves (16) is equivalent to
(if the min exists)
min sup J~(p,w) <0, 17
e weg (1 w) (17)
(and this does not depend arbeing linear).

Hence, we end up solving a differential game, or minimax control problem, for
the cost function/,,. But only because checking whether (17) holds is a means of
answering the question of problef,, or equivalently to attempt to insure (16),
and because if the answer is yes, then the minimizing(17) solves it.

2.3 Solution

For the sake of completeness, we recall here the solution of that game problem.

2.3.1 Finite horizon

Let us first consider the finite horizon case. The solution of the problem involves
two matrix Riccati equations, for symmetric matride&) andX(¢) :

P+PA+A'P—(PB+S)R(B'P+S")+~+*PMP+Q =0, P(T)=X,
(18)
and

Y = AN DA - (RO LYNTHCSH L) +4728Q8+M, %(0) = Z, (19)

where we have sef := Y1
The main theorem df{.-optimal control is as follows. (For any square matrix
K, p(K) stands fospectral radiusof &)

Theorem 1 If equations (18) and (19) have solutiof¥-) and X(-) over [0, T,
and if furthermore these solutions satisfy the following inequality :

Vte[0,T] p(S()P(t)) <+2,

then the answer to proble, is positive, and a control law that achieves the de-
sired disturbance attenuation levglis given by equations (20) and (21) hereatfter.

Conversely, if one of the above conditions fails, then forany~ the problem
P has no solution.



The control law proposed is obtained as a “certainty equivalent” feedback on a
“worst possible statef(¢) :

u(t) = —R™Y(B'P(t) + S'(t))2(t), (20)
wherez is the solution of the following differential equation :

&= (A— BRY(B'P+S") + vy 2MP)i
+(I =~7?2P) N(SC' + LY)N 'y — (C+~°LP)d],  (21)
#(0)=0.

One may notice the similarity with the optimal LQG control. Indeed, the feed-
back law (20) has exactly the same form (though with a diffetesftcourse), and
equation (21) has the same structure as a Kalman filter. The differences with the
latter case are in the presence of a "worst” disturbance y~2D! Pz in the dy-
namics and in the corrective term (it disappears from the correcting tdirs-iD),
and in the fact that the gain matrix of the corrective term is premultiplied by the co-
efficient(I — 42X P)~!. Notice that the spectral radius condition of the theorem
precisely guarantees the required invertibility.

As a matter of fact, one way of showing this theorem is through a certainty
equivalence theorem that states that under some conditions satisfied here, a min-
imax control in imperfect information is obtained by substituting in the minimax
state feedback (i.e. the optimal control law in the case of perfect state information)
a “worst current state compatible with the past measurements”, that (21) provides.

It is a worthwhile fact to state (amibt a corollary of the above) that

Theorem 2 If the available measurement igt) (exact state measurement), the
theorem 1 holds wihout the condition on equation (19) (existené®,ofvith the
spectral radius condition restricted to initial timep( Z P(0)) < 2, and withz(t)
instead ofz:(¢) in (20). (Hence equation (21) is not required either.)

2.3.2 Infinite horizon

The stationary theory, which predated the finite horizon one, can be obtained as
a limiting case of the above, with some care though. We assume now tisat
constant. And we need an extra set of assumptions :

Assumptions B

1. The pair(A, D) is stabilizable?

®Recall that(A, D) stabilizable means that there exists a feedback matsxich thatd — DF
be asymptotically stable, ar{di, D) controllable suffices.
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2. the pair(H, A) is reconstructiblé.
Then we have the following result :
Theorem 3 Under assumption8 andB, if the following three conditions hold :

1. The Riccati equation (18) integrated from(0) = 0 has a solution that
converges to somB* ast — —oo,

2. the Riccati equation (19) integrated frai{0) = 0 has a solution that con-
verges to som&* ast — oo,

3. p(Z*P*) <,

then the answer to the problem, is positive, an admissible controller is given by
equations (20) and (21) witR(t) andX(t) replaced byP* andX~* respectively. In
that case P* andX* are theleast positive definite solutioms thealgebraic Riccati
equationbtained by placing® = 0 and>. = 0 in (18) and (19) respectively.

Conversely, if one of the above three conditions fail, for@any ~, the problem
P5 has no solution.

Furthermore, if in addition to assumptioswe have that A, B) is stabiliz-
able and(C, A) reconstructible, then there will always be a positiyesuch that
the conditions of the theorem be satisfiedfar +* and violated fory < ~*.

A carefull analysis of the problem shows that usually;das decreased from
values larger than*, the first condition of the theorem to be violated will be the
third one. What happens for = ~* is more complicated (a reduced order con-
troller may exist), but is of little practical importance.

3 Robust stabilization and control

3.1 Model uncertainty

We now turn to the original problem that brought,-optimal control to life, a
real robust control problem in that it deals with model uncertainty. To justify the
description we shall use of plant uncertainty, we begin with an example.

Let a linear system be of the form

& = Ax+ Bu,
y = Cx.

4(H, A) is reconstructible if A", H') is stabilizable. Thu$H, A) observable suffices.



Assume that the matrice4, B andC are not exactly known. All we know are
approximate valued,, By, andC and bounds on how bad these approximations
may be, in terms of norms of matrices : three positive numbers, and~ are
given, together with the information

|A— Al <o, [[B-DBl|<p, ||C—-Col <.

We shall be concerned with the problem of stabilizing and controlling that system,
hence the family of all models thus described.
We rewrite the system’s equations as

& = Aox+ Bou+[I Olw,
y = Coz+1[0 Iw,

) T N 0 (22)
z = 0 X I u
with the added relation
AA AB
w = (AC’ 0 ) z, (23)

whereAA := A — Ay, and likewise forAB and AC. This is indeed the same
system.
The system (22), called thrminalsystem, is of the form

(2)=9(2)

whereg is entirely known: there is no uncertain coefficient in it. Only an unknown
disturbance inputv. Furthermore, it is exactly of the form of our system of the
previous section. (Witly = 0 andL = 0.) All the uncertainty has been placed in
a the feedback term (23). We rewrite that last term as

w = AGz

and the available information on the uncertainties translates into (as a matter of
fact, is degraded into)
I1AG| <o (24)

for some numbed, function of the given uncertainty boundgls.
The above example is meant to substantiate the claim that the following uncer-
tainty description is indeed very general. For the sake of convenience however, we

®Itis an elementary matter to check thdt= (a®+ 5% ++2 ++/(a? + 32 +72)2 — 43292) /2.
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shall rename respectivelyands the input and outpuiy andz above, that play a
special role in the uncertainty description

We consider a linear system described as a linear opayaaating on inputs
to deliver outputs. One may think ¢f as meaning an abstract operator frémh
spaces intd.? spaces, or, equivalently, as meaning the transfer function as a con-
crete representation of a linear operator (that last interpretation is restricted to a
infinite horizon time invariant problem, not the former one). We shall use three
(vector) inputs now w renamed- andu as above, and an exogeneous disturbance
v. Likewise, we may use three (vector) outputs renameds andy as above,
and a to-be-controlled output(an “error” signal seen as the deviation of an actual
output from a desired one, that should be kept small). By linearity, the system may
be written as

5 = Ggr+ G+ Gau s (25)
e = gerr + gevv + geuu y (26)
Yy = Gur+Gyuv+ Gyuu. (27)

The uncertainty in the system resides in the fact that we know that
r=AGs (28)

for some linear operatakG of which we only know a norm boundlas in (24).
The outputy is the measurement available to choose our comtralhose aim
is to stabilize this family of models —this is the topic of the next subsection— and
if possible, in doing so to attenuate as much as possible the effect of the exogeneous
disturbance in the controlled output, this is dealt with in a later subsection.

3.2 Robust stabilization

Because we want to deal with stability, we restrict our attention here to linear time
invariant systems and infinite horizon controls.

Assume we are constrained to linear operators (this restriction may be waived,
but we shall not consider that question here) of the form (15), that we rewrite

U= py. (29)

to stress the linearity. Then, substituting into (27) one may, formally solve,for
and thusu, in terms ofv andr, and substitute this form af in (25), leading to a
linear expression of the form

s="T,r+ Suv. (30)
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This is indeed exactly the same argument as in section 2.2. Thutimlled
system is now given by (30) (28).

How to chooseg: to insure stability of this controlled system for afy within
the norm bound ? The fundamental remark is as follows : under suitable assump-
tions, that are satisfied by a standard canonical state variable model, the system
is stable if and only if the above equations have a solutioh?rfor any v in L2.
(Sufficiency stems from the fact that if all inputs arelihso is:, thusz is in H!
and hence:(t) — 0 ast — oo. Necessity requires some observability.)

Now, substitute (28) into (30). It comes

s =T,AGs+ S,v. (31)

This is a fixed point equation for. By Banach’s theorem, a sufficient condition
for the existence of a (unique) solution is thdl, AG|| < 1. Notice that we have

1T AGI < ITulllAGI < I Tyll6

so that a sufficient condition of stability of all our models is tha,|| < 6.

The so called “small gain theorem”, states tha$ ifis onto, this condition is
also necessary to insure existence of a solution to (30)(28) fdx@lbf norm no
more thar .

Hence, the search for a controllethat stabilizes all the models in the family
may in practice be replaced by the requirement {{1at| < ~ for a well chosen
~. Of course, the remarkable fact is that this is the problem considered for another
reason in the previous section.

3.3 Robust stabilizing control

We now want to simultaneously stabilize and control our family of models. Con-
sider now the combined input
(+)
w =
v

-(3)

for some positive3 (and the samé as above). Assume a control lawis chosen,
and letT}, be the ensuing linear operator franmto z. Choosey < 1 (but very close

and the combined output

®Assume||T,|| = v > 6~ '. There exists as of norm 1 such thaf},T}; § = 7*5. ChooseAG
defined byAGu = v~ 2T};3(3, u), and pickv such thatS,v = 3. Here|[AG|| = v~' < 4. And it
is readily seen that if were the solution of (31), one would have= [(5, s) + 1]3, and taking the
scalar product witl$, (3, s) = (8, s) + 1, a contradiction.
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to one). If it is possible to chooge such thatHfM\ < ~, then this in particular
implies that, on the one hand, the operator froto 6s has norm less than one,
hence the operatdr, from r to s has norm less thadt !, insuring robust stability,
and on the other hand that the operator fromo Ge also has norm less than one,
insuring a disturbance rejection ratio of at least'. Thus, the larger the for
which this is possible, the better the control law.

Again, we are back to a problem of the form treated to begin with in section 2.

One should notice however that up to this point, the control problem addressed
by this approach is not completely satifactory, because the system norm we have
strived to control to insure noise attenuation is that ofrtbminalsystem. It would
be interesting to be able to say something of the operator fréme in the per-
turbedsystem, where indeetl= §Gs. It is a late and surprising theorem (Chilali
1996) that indeed, in that case we haso insured that the perturbed system
admits the same norm bound. Thus this does provide simultaneous robust stabi-
lization and control.

This is still an elementary stage of the theory however. Two important exten-
sions have been developed. On the one hand, it is possible to exploit a more refined
knowledge on the disturbance system than just a norm bound, typically in terms of
a frequency dependant bound. This is done using shaping filters, very much like
what is done with the classical LQG theory to deal with colored noise. On the other
hand, we have stressed in the example that by reducing our knowledge about the
disturbance to a single operator norm, we degrade our information. Thus, means
have been developed to distinguish several channels insbaitial s, with a diag-
onal structure orAG, and separate norm bounds on each block of that structure.
This is the aim of ji-synthesis”, after the name of the “structured singular value”
oftentimes calledk.

4 Risk averse control

We now outline a seamingly completely different problem that leads to the consid-
eration of the same minimax problem as in (17).

Consider a linear model as in (1)(2) (3), but for the time being, and following
Whittle 1981, in discrete time :

z(t+1) = Ax(t)+ Bu(t) + Dw(t), (32)
y(t) = Cux(t) + Fw(t), (33)
z(t) = Hx(t) + Gu(t) : (34)

This will make things simpler on technical grounds, but the theory has since been
extended to the continuous time problem, though with much technical difficulties,
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by Bensoussan and Van Schuppen (1985). We also restrict our attention to a finite
horizon problem. Thusu(-) is now a finite sequence, thus a finite dimensional
variable, that we shall still writev when no confusion is possible. It norm is
exactly the euclidean norm of the composite vector of dimengibmade of all
thew(t)’s.

As in classical LQG theory, we modelize the disturbancég as a normalized
white noise, i.e. a sequence of independant normal gaussian random variables.

We want to modelize a risk averse controller. One way of doing so is to assume
that the controller seeks to minimize the expected value of the exponential of the
classical quadratic performance index. Because the exponential function is convex,
this penalizes upwards deviations from the mean more than it saves on downwards
deviations, making itimportant to reduce the variance of the quadratic performance
index.

More precisely, we take as the performance index

G (zo,u) = Eexp (#J(mo,u,wo ) (35)

(For obvious reasons, it is customary to consider more pred@gly& 272 InG,,
but it is clearly equivalent to minimiz€&€', or G.)
Expanding the expectation operator, this leads to

G ane) = (2) % [exp (55 1000) =52l ) do.

The exponent involves the familiak, = J — +?||w||?. It is @ non homogeneous
quadratic form in, andw, and can be written as

Iy = (u, Ru) + 2(w, Su) — v (w, Tw) + 2(a, u) + 2(b,w) + ¢

with7 =1 — #wa, and for some linear operatdRs S, some time functions
andb and a numbee. We have used a minus sign in front of the quadratic term in
w to stress the fact that the expectation is defined (finite) if and only if the operator
7T is positive definite. Otherwise the integrahindiverges.

Itis a classical fact that one may “complete the square”, i.e. re-write the above
quadratic form in terms of the linear operatdvs= 27 1S andv = v 27 ~1b
as

Iy = 3w — Nu—v,T(w—Nu—v)) + K (u). (36)

The remaindefs, is easily computed. The important fact is that it does not depend
onw. Because we need to be positive definite, the form (36) immediately shows
that

K, (u) = max Jy(u, w) . (37)
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But also, we have

1 1
G = exp (536, 0)) (20 % [exp (=g~ ol ) do.

and a simple change of variable shows that the last integral does not depend on
yielding

1 1
G, = JieT exp (2—72K7(u)) .
Therefore, the problem of minimizing, is equivalent to minimizing«’, (u), of
which we have seen that it is the max oweof J,. Hence we are indeed back to
problem (17).

The above assumes an open loop conir(d prior commitment), but we have
a similar situation if we want to accept a control law of the form (15). Let us again
restrict the control law to be linear. It amounts to an affine map Fw + f
in an admissible family of such maps (in particular, the matrixfFowill be tri-
angular to insure causality). Substituting this.Jn, we again obtain a non ho-
mogeneous quadratic form in. The same technique of completing the square
will lead to the same conclusion, théat, is proportional to the exponential of
(1/29?) max,, Jy (u(y), w).

The above result is what we like to call “Whittle’s magic formula”. P. Whittle
was able to go further, proving, in a slightly simpler case, a separation theorem
which implies our certainty equivalence theorem in that case. This approach was
used by James Barras and Elliott 1993 and 1994 to derive a solution to the partial
information minimax control problem when the certainty equivalence theorem does
not hold. Their derivation was contemporaneous to, and independant from, our own
derivation of the same result using tools introduced in Basar and Bernhard 1991,
and since generalized in the framework of theax,+) algebra (see Bernhard
2000).

5 “Robust” is not necessarily “cautious”

Among the missconceptions concerning robust control, one is that it is by nature
cautious, because it does not rely on an uncertain model. This is not necessarily
so, and the following examples are meant to illustrate that point. We shall all along
assume perfect state information, and concentrate on the state feedback gain.

5.1 Disturbance attenuation

Let us consider the simple system where all variables are scalar :

r = —zr+utw,
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Consider as a reference LQG control theory, with) taken as a normalized
“white noise”. The corresponding algebraic Riccati equation is

2P —-P?2+1=0.

The positive root isP = /2 — 1 ~ .414. This is also the optimal feedback gain
F = P as well as the expectation of the (limit of the) integrand in the quadratic
performance index, i.e.

1 T
lim E||z(t)||> = E lim —/ |2(t)||?dt = V2 —1=0.414.
t—o00 T—oo T 0

Using essentially the same theory (or thattef,norms), one can also check

that with that control, the noise attenuation frano z isy = /2 — v/2 ~ .765.

Let us now use the theory of “robust” noise attenuation. The Riccati equation

is

2P - (1-~"HP2+1=0.
It has a positive real root down to= 1/1/2 = 0.707, for which the positive real
rootis unique and i® = 1. Since again, the feedback gairfis= P, we see that it
is larger than in the previous case. Of course, the noise attenuation, as measured by
L? norms, is better (it is optimized here): .707 versus .765, while correlatively, if
we assume that is a normalized “white noise” as previously, this leads to a worse
output covariance (it was minimized in the previous case), specifiEafty= 1/4,
and thus (since = —z) E||z||? = .5 versus .414.

To summarize, the “robust noise attenuation” control leads to more control
effort, for a betterL?-norm noise attenuation, at the expense of a larger control
power that degrades the output covariance in the case where the disturbance is
(looks like) a normalized white noise.

5.2 Robust stabilization

Let us now examine how the theory of robust stabilization (still with perfect state
measurement) works on such simple examples. We consider two situations de-
pending on whether the plant uncertainty resides with the free dynamics or the
control channel efficiency.
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5.2.1 Uncertain free dynamics

Let us consider the system
t=—-z+dax+u, |al<a,

to be stabilized not knowing the exact valuedaf
Application of the above theory leads to the consideration of the system

T = —rv+u+tr,
(&)
S =
cu
with the uncertain feedback
r=AGs, AG =[— 0].
The bound on the uncertainty is now
IAG] < 1. (38)

We were obliged to introduce the extra component ins to insure that the equi-
valent of theG matrix of equation (3) be injective. We shall use it as a tuning
parameter of the design method.

The Riccati equation is now

—2P — (2 -1)P?+a*=0.

Its smaller positive root is, for smadls

1

P=
e2 -1

<\/1 ta2(z2-1) - 1) .

The corresponding feedback gainfis= ¢~2P. We see that for smak’s, it is
close toa/e. Hence, the theory says : if you want to stabilize the above uncertain
system, just use a large nagative feedback gain. The larger the uncergittig (
larger the feedback gain. But we may make it arbitrarily large, since we did not
attempt to simultaneously control an output containing

If we are interested in limiting the feedback gain, we may look at the same
design procedure for larges. We see that there exists a positive root to the Riccati
equation if and only il — (1—c=2)a? > 0. Thusifa < 1, we may take arbitrarily
large, and correlatively arbitrarily small. We do not have to control at all, the
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system is spontaneously stable whatevewithin its bounds. Ifa. > 1, however,
the limiting ¢ is a/v/a2 — 1, and the corresponding feedback gaitis= o — 1.
As a matter of fact, this leads to the closed loop system

i=—(a?—da)x

which is stable for evenja < o, and a fortiori for the bound (38).

That we do not find” = « — 1 is only a reflexion on the fact that our design
procedure is conservative. As a matter of fact, with (38), we have allowed any
AG =[p q]with \/p?+ ¢*> < 1. Thus we have controlled the family of systems

t=—(1-pa)r+ (14 qe)u, P+ <.

Itis a simple exercise to plage= — F'x in that system, and investigate for which
there is arnF’ that insures-1+pa — (1+¢¢)F < 0. One indeed finds thatshould
not be larger than/v/a? — 1, and that at this limiting value, the only satisfactory
Fis a? — 1. (Avoiding that degree of conservatism is the aim pfdynthesis”.)

5.2.2 Uncertain control channel efficiency

We use a similar approach to stabilize the unstable system
t=z+ (14 db)u, |0b] < .

(Applying the design procedure to a stable system would lead to no control.) We
proceed in the same fashion, using the system

T = x+u+r,
s — ET
= )

r = AGs, AG =10

with
&

g I
and again the bound (38). The teemin s is now needed to insure the observabil-

ity condition of the theory.
The Riccati equation is now

(1-p"HP?+2P+*=0.
For 8 < 1 it always has a positive root
1

P= gy (1+ VI+e2(52 _1))
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leading to the feedback gaili = P/3?, the limit of which ass — 0 is now
F =2/(1 - %). The worst closed loop system is then, for= — 3,

1-8
114"

which is indeed stable since hefe< 1.

Again for 3 close to 1, we need a large feedback gain to compensate for the
fact that the control channel may be very inefficient.

For3 > 1, the problem clearly has no solution : our system is unstable, and we
do not know the sign of the coefficient afin the dynamics. The Riccati equation
always has two negative roots.

5.2.3 Mixed case

We consider the uncertain system
t=—(1-da)r+ (1+db)u, (6a)? + (6b) < p?.

We may expect that fgs < /2 that family of systems can be stabilized, because
if 1 —da < 0, making the free system unstable, then the sigh-ebHb is known to
be positive, so that it is possible to control the system.

As a matter of fact, the Riccati equation associated to that problem is

(1-p 2 )P?=2P+p* =0,

which has a positive root provided that< V2. Forp > 1, that root leads to a
feedback gaifF = (1 — /2 — p2)/(p? — 1), equal to 1 ifp = /2.

We do not have large gains any more, this is indeed a cautious control, because
one has to balance the risk of not compensating an unstable free dynamics and that
of exerting a “positive feedback”.

Notice that if the a priori bound on the uncertainty is of the fdom < «
and|éb| < 3, within the current simplét..-optimal control theory, we cannot do
better than the above, wilt = o2 + 3.

5.3 Robust stabilizing control

At last, we consider the simultaneous stabilization and control of our simple sys-
tem.
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5.3.1 Uncertain free dynamics

We want to controk in the disturbed uncertain system

& = —z+(0a)z+utw, |0al <

z—@).

We may seek to minimize the system norm frgm w) to z, and check
whether this norm is less than«, which, in view of the small gain theorem, is
sufficient to insure stability. One finds that the limitinndgs 1. Thus this procedure
suceeds only ifv < 1.

Fora > 1, we can apply the standard procedure advocated above : introduce
boths = axz andz’ = (1/v)z, i.e. an output inR3. Then seek for whichy
we can insure that the operator normm frém w) to (s 2’) be less than one,
guaranteeing both robust stability and a disturbance attenuatignfroim w to
z. We propose a slightly different approach, which turns out to give much better
results. (This also serves the purpouse of showing that this whole theory is to be
applied with cleverness.)

We write the system

T = —rv+utr+w,

(ax>
s = 1 3
,Y'LL

againr = AGs with ||[AG|| < 1. We attempt to insure an operator norm from
(r w)toslessthan 1. This insures that the system is stable, and;ifi/a, (as
will occur for o« > 1) a fortiori an operator norm fromu to z less thany. (Since
121 <~lsl)

The Riccati equation associated to that new problem is

(2—93)P? —2P+a? =0,

wich has a positive root provided that > 2 — o 2. (Notice that this gives back

~ > 1if a = 1, we recover the same limiting case as above.) For the limitjrwge

haveP = o? andF = v2P = 2a2 — 1. Thus, this solution rules out “large gains”.

In that respect it embodies a degree of caution. But as compared to the smallest
gain obtained in the robust stabilization section, with no regard for an output, we
use a larger feedback gairza? — 1 versusa? — 1. In that respect, robust control

is not cautious control.
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5.3.2 Uncertain control channel

A symmetric situation results for the uncertain control channel case :
t=—-x+ (14 db)u+w, |0b] < 3,

with the same controlled output, leading whgn- 1//2 to the limity? < 2— 372
and a feedback gaifl = 232 — 1.

5.3.3 Mixed case

As a last example, we consider the system with uncertainties on both the free dy-
namics and the control channel, that we want to simultaneously satbilize and con-
trol :

i = —(1-da)z+(1+dbu+w, |da|<a, [db] <5,

z:(z).

Again, the standard approach proposed in the general theory would have us intro-
duce a two dimensional outpst in addition to the controlled output and thus
apply H~.-optimal control theory with a four dimensional output. We avoid that
higher dimension via another trick. We need to have a way to tune the relative
weight of the two objectives : stabilization and controlz0fin such a way as to
achieve the best possible disturbance attenuationviithout sacrificing stabili-
ty. A way to achieve that goal is to introduce an outpumodeled as previously,
embodying bothr andwu, and introduce a scaling weight~ on the disturbance’s
input channel, i.e. let = (1/v/2v)w. (The/2 is there for normalisation purpos-
es.) Then we apply thE .-control theory to the system fro(m v) to s.

We shall therefore work with the system

1
T = —r+ut+r+-—=v,
W2
s - (o=
= \gu )

with the uncertainty model

da Ob
r=[—

D= A
- ﬂ]s Gs,

and the bound AG|| < /2. Stability is insured if the norm of the operator from
(r wv)tosislesstharl/\/2. Inthat case, the disturbance attenuation factak?in
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norm, is better thary/ min{«, 5}. (Of course, this is an efficient design procedure
only if « andg are of the same order of magnitude.)
The Riccati equation of that problem is

2+~ 2-p2)P2—2P+a’=0.
It has a positive solution provided that
a4 >2 (39)

and
yP<a i+ g2
and the feddback gain that yields the limiting attenuation factor is

a2

That this gain is indeed stabilizing can be checked directly : it leads to
. _ _ da  Ob
x:—aQ(a2+ﬁ2—?—@)x+w (41)

and it is easily seen that

ot % <ot <VEVaTEE
so that the condition (39) is precisely sufficient to insure that (41) be stable.

Formula (40) has an interesting interpretation : the feedback gain should be
chosen large or small depending on whether the larger uncertainty is in the free
dynamics or the control channel respectively. If we trust the control channel, we
may use it to correct an uncertain free dynamics. If, on the contrary, we trust more
a stable dynamics than the control channel, we should exert control with care.
Hence H .-optimal control theory appears as more or less cautious depending on
where the uncertainties in the system lie.
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