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Abstract

Max plus algebra, cost measures, and mathematical fear have proved
usefull tools in dynamic optimization. Indeed, the first two have even
become a central tool in some fields of investigation such as discrete
event systems. We first recall the fundamentals of max plus algebra
with simple examples of max-plus linear models, and simple conse-
quences of that remark. We then introduce cost measures, the natural
equivalent of probability measures in the max-plus algebra, and their
fundametal properties, including the definition of the mathematical
fear (the equivalent of the mathematical expectation), induced mea-
sures and conditioning. Finally, we concentrate on those aspects that
are put in use in dynamical optimization and state a separation theo-
rem which was first derived using these tools.

1 Introduction

The max plus algebra is just a special case of Maslov’s idempotent algebras,
exactly as cost measures are a special case of his idempotent measures.
It was the merit of Quadrat to stress the importance of this special case
and to develop with his coworkers a beautiful theory. Rather than attempt
an exhaustive bibliography here, we have rather refer the reader to the
magnificent book [2], from which the begining of this presentation is inspired.

We have used that aparatus, stressing the role of mathematical fear!,
a concept parallel to mathematical expectation, to derive results in partial
information min-sup dynamic optimization problems with partial informa-
tion. It was implicitly at the basis of our derivation of the minimax certainty
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equivalence theorem, and explicitly in the more recent theory of L! /L con-
trol that we sketch here. We shall therefore develop more specifically the
tools that lead to that result.

Notice that extending the parallel with mathematical expectation to the
minimization of such quantities is made possible by the simple remark of
the subsection “mathematical fear” beneath, that if ¢(w) < 9(w) for all w,
then Fp < ip. An almost trivial remark, but not completely naive though.

Simultaneously with the development of our theory, James and Baras
introduced their “informational state”, the exact equivalent of our “cost to
go” in [3]. This informational state is an unnormalized conditional state
cost measure, easier to calculate than the normalized one, exactly as Zakai’s
equation is simpler than the non linear filter equation. We showed in [5]
that using the “true” (normalized) conditional state cost measure leads to
more appealing formulas downstream, as the last section shows.

2 Max plus algebra and linearity

2.1 Max-plus algebra

Consider the set R := RU{—o00} endowed with the two operations (max, +).
It shares a certain number of resemblances with the “classical” algebra
(+,x%) on R. To make them more apparent, we shall for a while write
a ® b for max{a,b} and a ® b for a + b. Simultaneously, we shall write e for
0 and € for —oo. Notice then the following properties :

Property classical max-plus
Associativity (a+b)+c=a+(b+c¢) (adb)dec=ad (bdc)
Neutral el. a+0=a ade=a
Associativity (axb)xc=ax(bxc) (a®@b)®@c=a® (b®c)
Neutral el. axl=a a®e=a
Inverse ax(1/a) =1 a®(—a)=e
Distributivity | a X (b+¢)=(axb)+ (axc) | a® (bdc)=(a®b) D (a®c)
Absorbption ax0=0 aRe=¢

Of course, some properties do not carry over so nicely. For one thing
the first operation, max, has no inverse in that new algebra. Thus we do
not have a ring, or a fortiori a field, but an algebraic structure sometimes
called a dioide or semifield. Also, we have that for all a, a ® a = a, hence
the name of idempotent algebra.

We can of course carry out vector and matrix calculations in that algebra.
If A={ay},i=1,...,mand j =1,...,nisan m xn matrix and z = {z;},



j =1,...,n a vector, then y = A ® z in that algebra means, in classical
notations, that
Y = mjax{aij +x;}

and it is a simple matter to write a matrix product.
An eigenvalue in that algebra is a number A such that there exists a
vector « with coordinates not all —oo satisfying

ARQr=AQ®u
i.e., componentwise and in classical notations

max{a;; +2;} = A+ z;, i=1,...n.
J

An important tool in the analysis of square matrices is their preced-
ence graph. It is a theorem that the largest mean weight of any cycle of
its precedence graph is an eigenvalue of a square matrix, and the only one
if this graph is strongly connected. There also is, in the new algebra, a
characteristic equation and a Cayley-Hamilton theorem.

Many applications lead to equations like z = A ® x ® b, that we shall
write £ = Az @ b, ignoring the multiplication sign as in classical algebra.
If all eigenvalues of A satisfy A < e —there is no cycle of positive weight
in its graph— it is possible to give a precise meaning to the classical series
expansion of (I — A)™!, thus definig a linear operator A* such that the
previous equation has x = A*b as its solution.

2.2 Examples
2.2.1 Discrete events systems

Consider a production scheduling problem. The classical tool to describe
the system is that of Petri nets. This paragraph is intended to a reader
somewhat familiar with such a description. It can be skipped with no harm
for the rest of this paper. However this is currently the main application of
the max plus algebra. We find it worthwhile to give a short glimpse at it.

We shall limit ourselves to the special case where the system is described
by an event graph, i.e. a Petri net where there is only one transition up-
stream and downstream of any place. More precisely, to describe a schedul-
ing problem, we need a timed event graph, where each place is associated
with a positive number : the time a token must stay in it before it is available
to fire the next transition.

Consider the event graph? of figure 1. Here, v and w are two inputs

2The tradition of Petri nets is to draw nice curly arcs.
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Figure 1: A production scheduling timed event graph

(parts coming into the shop), v and wy, are the epoch at which parts enter
the graph for the k-th time. Similarly, the letters y and z denote the two
transitions of this graph, meaning that y; and z; denote the epoch at which
their respective firings number k£ occur. The positive numbers a, b, ¢, and d
are the delays induced in the places they mark.

It is a simple matter to write equations for yi; and 2zx41 :

Yk+1 = max{a + zp, Vgi1}),
Zk+1 = max{b+ ygi1,d+ 2g, ¢+ wri1}.

In the notations of the new algebra, this can be written in terms of the

vectors
z w
and the matrices

£ € £ a e €
w=(G e 2= (a) (D)

Tpt1 = AoZpq1 © Az © Bugy
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Hence we have an implicit linear system, and provided that Ay has nonpos-
itive eigenvalues, this can be transformed into an explicit one

Ty1 = Az ® Bugyr,

with A = AjA and B = AyB.

Thus we have a linear system. A new timed event graph can be associ-
ated with this new formulation. One can deduce from the matrices of the
system its asymptotic throughput, its stability, stablize it if it is not stable,
etc.

2.2.2 Dynamic Programming

Let X be a finite state space, of cardinal |X| = N, z € X the state of a
controlled machine, for any y,z € X, let L(y, z) the cost of transitioning
from state y to state z, (hence L : X x X — R) and K : X — R be a final
cost, so that the cost of a trajectory {zp},k=0,...,T is

T
J({z}) = K(or) + > L(ze—1, 1) -
k=1

We wish to mazimize the cost for a given initial state. Let Vr(z) be the
return function of this T' step dynamic decision problem with initial state
z9. The dynamic programming equation is

Vi(z) = g/rlea;\zc[L(x,y)vLVk_l(y)],

Wol(z) = K(x).

Let V be the vector of RN whose coordinates are the Vi (z),z € X and let
L be the matrix of the L(z,y), z,y € X. In our new algebra, the dynamic
programming equation becomes

Vi=LVyp_1, W=K

so that this system has an obvious “explicit” solution Vy = L™ K, provided
that the matrix products be understood in the sense highlighted above.

We shall see below that Quadrat [9] has drawn on that remark and the
next section to derive new results concerning the asymptotic behaviour of
dynamic programming.



3 Cost measures

3.1 Axioms

Maslov introduced measures in idempotent algebras which were specialized
to cost measure, the equivalent of probability measures, by Quadrat and co-
workers. Cost measures are functions of subsets of a set (2. We show here
how the axioms of cost measures follow naturaly from those of probability
measures by substituting (max, +), (or equivalently (&, ®), but we choose
to switch back to traditional notations, leaving it to the reader to convince
himself that this is indeed the natural parallel) to (+, x). We write p(A)
and c(A) respectively for the probability or the cost of a subset A C €2, with
A belonging to a given sigma algebra in the first case, to the borelian of a
topology in the second case.

Property ‘ Probability ‘ Cost

Empty set p(0) =0 c(0) = —o0
Disjoint sets | p(AUB) =p(A) +p(B) | c(AU B) = max{c(A),c(B)}
Normalisation p(2) =1 c(2) =0

Bayes’ rule | p(A|B) =p(AUB)/p(B) | c(A|B)=c(AUB)—c¢(B)

One better understands the axioms of the cost measures once densities
are introduced. Let p have a density P and ¢ have a density Q. (It is a
theorem of Mariane Akian [1] that in some sense, every cost measure has a
density. See also [4].) Then we have

pA)= [ Pwdw, c(A)=supQw).
wEA wEA

This last definition induces the first two properties of the above table. To-
gether with the third one, it implies that Q(w) is nonpositive for all w € Q.

There would be much more to say on conditioning. Notice that the
knowledge that w € B naturaly leads to the operation maxycanp Q(w),
which is ¢(A N B). The extra term —c(B) is exactly what is needed to
normalize the conditional cost distribution.

Two events A and B are said to be independent if ¢(A|B) = ¢(A), which
in view of Bayes’rule leads, as one would expect, to ¢(ANB) = ¢(A) + ¢(B).
As a consequence decision variables (see below) will be called independant
if their joint cost distribution is the sum of their individual (marginal) cost
distributions.



3.2 Decision variables
3.2.1 Probability distribution

A continuous real function over € is called a decision variable. It is asso-
ciated with a cost measure and a cost probability in the natural way : if
x = X (w) is a decision variable, its cost density can be obtained as

Qx(@) =c(XH(z)) = sup Qw). (1)

w| X (w)=x

This same technique propagates an induced cost density on functions of
xz : if y = h(z), (h continuous) it is a decision variable with a density
R(y) = sup,p(z)=y Q).

The equivalent of the gaussian law is the normal cost distribution, a
quadratic form N, ,(z) = —(1/2)(z — m)?/o?, or its vector form if the
decision variable is a vector.

The equivalent of the convolution of probability measures is the sup-
convolution, and the equivalent of the Fourier transform is the Fenchel trans-
form. Using these tools, Quadrat was able to show a “law of large numbers”
and a “central limit theorem”. In turn, these induce original results on the
limit behaviour of the return function of our dynamic programming example
of paragraph 2.2.2, at least in the case where L(z,y) is a function of y — z
only. This goes as follows (see [9]) :

Let a scalar simple system be given by

Tyl = T + Uy,

and a cost function to be maximized be given by

N—-1
J(zo, {ut}) = K(zn) + L(uy) .
t=0

Assume that L and K are concave C? functions, with 0 as their maximum.
Let m be the point where L reaches its maximum : L(m) = 0, and let
M = (d*L/du?)(m) < 0. Let Vy(-) be the return function of the N step
maximization problem. Quadrat’s central limit theorem states that

1
lim Vi (\/ﬁ(x n Nm)) = —5Ma?.

N—x



3.2.2 Mathematical fear

Let ¢ be a decision variable over 2. The natural equivalent to the mathe-
matical expectation Ep of ¢ is the mathematical fear3, denoted Fy :

Ep =] ¢ := /Qw(w)P(w) dw, Fp=Fl¢p:= Slelg[w(w) +QWw)].

Of course, if ¢ depends on w through another decision variable, say = of cost
density QQx, then we also have

Fp =F¢p = suplip () + Qx ()]

(It is a useful exercise at this stage to check that last formula, using the
definition (1) of the cost density of the variable x, as this reasoning occurs
very often in the use of cost measures.)

The first property to stress for the mathematical fear operator is that it
is linear, in the (max, +) algebra of course. As a matter of fact, we do have
that for two functions ¢ and 1 and a real number A

F(max{p,¢}) = max{Fp,Fi},
FA+¢) = X+TFp.

This will be of prominent importance in the sequel.
The second property we want to stress is that,

if VweQ, opw) <9Pp(w), then Fo <TFy. (2)

While this is clearly true from the definition of F, it may be noticed that
formally the reason is not the same as that of the same inequality for the
expectation. The latter follows from the fact that the expectation of a
nonnegative function is nonnegative and from the classical linearity of the
expectation. But a substraction is involved in the proof, an operation with
no equivalent in the new algebra. Here, the basic fact is that, if p(w) < ¥(w),
then max{p, 1} = 1, so that with (max, +) linearity,

max{Fp, Fy} = Flmax{p,¥}) = Fy,

hence the desired result. (No substraction is involved.)

3Quadrat et al. call it the mean, often denoted M



4 Minimax optimization

4.1 Context
4.1.1 An alternative paradigm ?

Although this is not the feature we shall stress here, one should strongly
object to the often heard assertion that “Nature is stochastic”, in so far as
the word “stochastic” refers to the use of probability theory. Nature is full
of unpredictable events. Using the tools of probability to make a metaphor
of them is our choice, not Nature’s. Stated in other words, the famous
probability space (€2,.4, P) is in our heads, not in Nature. Constructing a
cost space (2, B,Q) (with B for the Borelian of a topology) is not more or
less artificial. And, depending on the problem at hand and the modelization
context, trying to minimize the fear of a performance index may be no less
meaningful than trying to minimize an expectation.

Granted, the stochastic approach has a strong rooting in repeated ex-
periments and average frequencies of occurences. This is directly related
to the law of large numbers which does have an equivalent in cost mea-
sure theory. It remains to better understand if some situations, and which,
take better advantage of this form of the law of large numbers, imposing
an analysis in terms of cost measure, and a decision in mathematical fear.
Some sort of Von Neumann’s rationality axioms... There has been work in
that direction, and recent work in artificial intelligence (e.g. [7, 11]), orin
fuzzy measure theory (e.g. [13]) has revived earlier investigations of “games
against nature” (see [8]) or of the foundations of statistics (see [12]).

4.2 A powerful tool

Independently of the motivation, we stress here that the concepts intro-
duced so far constitute a powerful tool for the analysis of minimax decision
problems. Indeed, a problem of the form

minFJ(u,w),
u
is in itself a minimax problem, since it is equivalent to

rrhinsgp[J(u, w) + Qw)].

As a consequence, the parallel with known approaches of stochastic con-
trol will be a way to derive results in minimax control. Moreover, the fun-
damental tool we want to extend to mathematical fear is that of dynamic



programming, which lends itself to such generalizations as having state de-
pendant cost densities and the like.

As a matter of fact, the derivation of a theory of minimax control in
the absence of the certainty equivalence theorem (see e.g. [10]) was directly
inspired by that parallel. But the first result formally obtained that way,
as far as we know, is the one we recall below on L'/L> control [6], first
reported in part at Sils Maria in 1997.

4.3 Dynamic minimax decision problems
4.3.1 The system

Let a discrete time partially observed disturbed control system be given by

Tit4+1 = ft($tyut7wt)7 (3)

ye = hi(zy,we), (4)

where z; € R" is the state vector at time ¢, u; is the control vector at time
t, to be chosen within a set U € R™, w; € R¢ is a disturbance vector at time
t, may be constrained to belong to a set W, and i, € Y C RP is the observed
output at time t.

We shall write u € U for the time sequence {u;};cior—1] € UT (The
upper index 7' is indeed a cartesian power, as it should, and contrary to the
notations we introduce next and use in the rest of the paper) and similarly
forweWandye).

We shall need partial sequences defined as follows:

ul = (wp, g, .., ug),

and similarly for all time sequences. (as a consequence, u = u7=1)) We
shall let u’ € U* (%), w' € W, 4! € YL
Let also w = (z9,w) denote the disturbances a priori unknown to the
controller, and w € Q = R® x W. We also use w' = (zg, w') € Qf = R"* x W',
We shall need the input-state and input-output maps of system (3)(4),
that we call ¢ and 7 respectively, meaning that

ry = (pt(xﬂﬁut_lawt_l) = (pt(ut_l’wt_l)’ (5)
Yy = nt(wo,ut_lawt_l) = nt(ut_lawt_l) . (6)

“It is here that our notations are inconsistent, since U’ therefore stands for the cartesian
power t + 1 of U.
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Finally, we shall use ¢' and 7' to mean the sequences {¢;},—1 + and
{nT}TZI,...,t'

The problem shall always be to choose a control sequence to achieve a
certain goal, based upon the knowledge of the noise corrupted output. And
of course, the controller shall have to be causal, but with perfect recall:
no past information is forgotten at any time. We shall even restrict it to
be strictly causal. Thus an admissible strategy will be a sequence of maps
{pg : UL yi=t U}eo,r—1] defining the control sequence through

up = py(ut oyt

We shall let M denote the class of such admissible strategies.

To any admissible strategy and any w € €2 corresponds a unique trajec-
tory x and a unique control sequence u. So that, although this is an abuse
of notations, we shall write such things as ¢7(u, w) where what we mean is
the final state on the trajectory generated by that p and w.

4.3.2 The performance index

The set € is assumed to be endowed with a cost measure governing the
decision variable w. We assume that 2y and w are independent, and that w
is a white sequence, so that the cost measure is entirely specified by a cost
density )y over R" governing z, and a sequence of cost densities {I';} over
W governing the w;’s.

Remember also that cost densities are always normalized with their max-
imum at zero. We shall assume that all functions we use are upper semi
continuous, and that the maxima are well defined. (For instance, the cost
densities might have a compact domain.)

The natural equivalent to the classical performance index is

J(u,w) = max{M(zT), Orgtfg(TLt(xtaUtawt)} = max Li(zg, ug,wy), (7)

where we have, for convenience, let Ly = M, as we shall from now on.
Therefore, the criterion we shall strive to minimize will be

H(p) =FJ(p, w) (8)
It is worthwhile, to point out the following fact. We are interested in
T—1

FJ(u,w) = Fp Fy J(u,w) = max max [J(u,w) + Z Ty (wyg) + Q()((II())] .
k=0

o wo...WrT-—1

11



The above expression involves the quantity Fy, J which can be expanded into

T-1
FoJ = max max|L(z,us, wy) + Z Fk(wk)} .
wg..wr—1 t 0

Now, this is equal to the same expression where we limit the summation
sign to t instead of T' — 1:

Proposition 1

t
FwJ = max maX[Lt(:rt,ut,wt) + ZFk(wk)] )

wo..wr—1 t
k=0

We leave the detailed verification of this proposition to the reader. It
follows from the fact that after the maximizing ¢, w; can always be chosen
so as to maximize I', making it zero.

It is also useful to notice that this may be written in terms of

Li(z,u) :=Fy Li(z,u,w) = muz)ix[Lt(x, u,w) + I'i(w)].

We also have

Proposition 2

t—1
Fw J = max max [Et(xt,ut) + ;Fk(wk)} - (9)

This last form is usefull in that it shows that there is indeed no gain in
generality in taking L; to depend on w;. We might as well consider only the
problem in L.

Finally, it only takes a carefull reading to check that in all the sequel, the
I'y’s may depend as well on x; and u, without invalidating our calculations.
So that although we shall write I';(w), the problem we consider is really to
minimize over M

T—1
H(M) :]FJ(M’ UJ) :mgx{ gl[oa};] LT(xTa Ur, wT) +Z FT(xTa Ur, wT) + Q(xﬂ)
T =0
(10)
or any of the equivalent forms given by the propositions above. However, at
this time, the I';’s are restricted to be normalized, i.e. max,, I'/(z,u,w) =0

for all (z,u). The reference [6] shows how to waive that restriction.
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4.3.3 Perfect information

Let us first consider the simpler problem where the controller (choosing u)
has access to the exact state, and therefore may control in state feedback.
We can assume that xg is fixed, since it is known by the controller. It may
always be made into a decision variable afterward.

We have an (extended) Isaacs equation:

Ve e R", Vp(z) = M(z), (11)
Vte[0,T—1],Vz R,
Vi(z) = nfF, max{Vipi (fi(z,u,w)), Li(z,u, w)}(12)

We may state the following theorem

Theorem 1 If the backwards recursion (11),(12) generates a bounded Value
function V', then, the infimum of the problem (8) is given by FVy(zg) (recall
that the initial state cost density Qo is given). Moreover, if the minimum
in u is reached at ¢*(t,x) in (12), then this is an optimal state feedback
strateqy.

Proof Let us sketch the proof of the theorem. Let u be a fixed control
sequence, and {z;}, t = 0,...T the associated trajectory for a w. We have

Vioi(or—1) < F' " max{M(zr), Lr—(#7—1, ur—1,w)}
Vis(ers) < B max{Vioy (o7 1), Ly o(or o, ur 2, w)}
D<o
Vi(z1) < F{UI max{Va(z2), L1(z1,u,w)}
Vo(zo) < FLo max{Vi(z1), Lo(zo,ug, w)}

There are two operations to perform on this sequence of inequalities.
The first one is to take the fear of both sides of each with respect to the
whole w. This is possible preserving the inequalities thanks to (2). The fear
appearing in the right hand side is in fact conditioned by the value taken by
z¢. Even so, it is true that

FoFlt =Ry .

We shall come back on a deeper form of that property further. Now, taking
it in this simple form, and using the linearity of the fear, it comes, in short

13



hand notations (here F means Fy )

]FVT,1 S max{]FM(:L“T), ]FLT,1 }
]FVT,Q S max{]FVT,l , ]FLT,Q}
o<
F‘/l S max{]FVg ) ]FLl }
‘/0 S max{]FV1 ) ]FLO }

The second operation is to get rid of the intermediate FV;’s. In the
stochastic control case, one sums (equivalent to taking the max of the left
sides and the max of the right hand sides above) and then substracts the
terms appearing on both sides. We cannot do that here because we have no
substraction. But instead, we may substitute. Substituting the second last
inequality in the last one yields

Vo < max{FVsy,FLy,FLy},
and so on, until we end up with

< FL
Vo(zo) < té{lft_ffT{ ¢}

with Ly(z,u,w) = M(z) using (11). Use the proposition to conclude that
a fortiori
Vo(zo) < By J(z0,u, w) . (13)

But if u; is chosen minimizing the r.h.s of (12), the < signs above are all
replaced by = signs, showing that that strategy yields Vy(zo) = J (o, u, w)
for the sequence w that provides the max at each step of the above proce-
dure.

There remains to assume that u keeps using that state feedback strategy
and chosing an arbitrary sequence w to have the opposite inequality signs in
the above calculations, that reduce to equal signs if w choses the maximizing
one, to conclude that indeed the value of this game is

%(IO) = ]FWJ(J:Ov ()0*7W) )

which, together with (13), concludes the proof upon taking the mathematical
fear with respect to zy of both sides.

14



4.3.4 Imperfect information

We shall not develop the complete theory of the imperfect information case
here, too long a topic for an introduction. The idea again is to follow the
stochastic case according to the following program.

1. Compute in forward time a conditional state cost distribution Q:(x)
using the available information.

2. Take that quantity and its dynamic equation (a “filter”) as the new
“state”. It is known to the controller. Thus one can in principle
develop a dynamic programming argument in the infinite dimensional
space of state cost densities. Call Uy(Q) the return function.

3. Check under what conditions the quantity U;(Q) := FQV; satisfies the
dynamic programming equation. When it does, this yields a separation
theorem.

The critical argument to carry out this program is as follows. As time
goes on, the available information confines w to belonging to a sequence of
subsets of the perturbations compatible with the available information at
each instant of time. In our case, the available information at time ¢ is
(u!~1,y'~1), and those conditioning subsets can be described as follows. Let

Qt($ | ut—l,yt—l) _ {w | (pt(ut_l,wt_l) — ¢ and ﬂt_l(ut_l,wt_l) _ yt—l}

The conditional state cost density of z at time ¢ given the information
u?™1, 4~ is the cost measure of that set, normalized by its maximum over

R™. And the conditioning subset at time % is

Qt — Qt[utflyytfl] — U Qt($ | utfl,ytfl)
TER™

Whether the available information is generated through an instantaneous
output as here or otherwise, the important feature is that it be full memory :
nothing is forgotten, so that, the sequence of conditioning sets Q0 generated is
decreasing. (The equivalent of the imbedded algebras property of stochastic
control.) If so, it is true that conditional fears compose as

T>t = F¥F" =F",

Thanks to that fact, we can indeed carry out the above program and end up
with a valid theory. (We also need to ascertain that the available information

15



is strictly causal, i.e. the condition w € €2 only places constraints on the
restriction w'™! of w to [1,...,t —1].)

The full development of that theory, and its continuous time counterpart,
as it stands now, can be found in [6].

5 Conclusion

At this stage, mathematical fear is above all a useful tool to extend to
minimax control results and intuitions coming from the more ancient world
of stochastic control, or of probability theory. Whether it will turn out to
be more than that is a matter of conjecture, and of hard work !

Mathematical rigour has been dealt with in a light mood here. Although
it is a concern, of course, things are by far less technical than in probability
theory. As a matter of fact, the discrete time case raises little difficult
questions. The situation is very different with the continuous time case. In
[6], we assume that the Value function is smooth, an hypothesis known to be
too restrictive. Since we really need the approach of dynamic programming
followed here, we need more powerful tools of set valued analysis.
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