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Abstract— In this work we investigate a (seasonal) prey-
predator model where the system evolves during a season whose
length is fixed. Predators have the choice between foraging
the food (eating preys) and reproducing (laying eggs at a rate
proportional to their energy). Preys can either eat, which would
maintain their population in the absence of predators, or hide
from the predators but they then suffer a positive mortality rate.
In this case the population size can decrease even faster than
if they were not hiding and were foraged by the predators. In
their own turn they lay eggs at a constant rate whether they are
hiding or eating. Following Darwin’s principle that the fittest
population will survive we postulate that both populations must
maximize the number of their offspring, which yields a nonzero-
sum differential game.

I. INTRODUCTION
Prediction of the population dynamics plays a significant

role in pest management and other fields of biological
control, which is the use of predators or more generally
natural enemies of pests in order to eradicate its population.
Therefore we should predict the changes in the size of
the pest population and describe how it evolves along the
seasons. The formulation of the prey-predator model which
will describe the relevant properties of the system and will
be close to the experimental data obtained in fields is an
important problem faced by mathematical biologists.

The most classical representation of these interactions are
ordinary differential equations (e.g. Lotka-Volterra model)
and difference equations (e.g. Nicholson-Bailey model). In
our case we will study seasonal insects whose dynamics are
continuous during the season and discrete between seasons.
Such a system can not be described by the classical models
recalled above [1]. In the literature, the classical approach is
to consider explicitly the continuous and discrete dynamics,
what produces a hybrid or more precisely impulsive model
[2]. We follow the notations of [3] and call such models
semi-dicrete. Indeed we suppose that the natural process is
subdivided into separate seasons and periods of hibernation
when all species die and the initial population for the next
season is determined by the number of eggs produced by the
species in the past.

The model presented in the paper describes the specific
form of prey-predator interaction within a season. Both

A. R. Akhmetzhanov is with Institute for Problems in Mechanics of the
Russian Academy of Sciences, Vernadsky Ave. 101-1, Moscow 119526,
Russia akhmetzhanov@gmail.com

P. Bernhard and F. Grognard are with INRIA,
Project COMORE, F-06902 Sophia Antipolis, France
Pierre.Bernhard@sophia.inria.fr and
Frederic.Grognard@sophia.inria.fr

L. Mailleret is with INRA, UR880, F-06903 Sophia Antipolis, France
Ludovic.Mailleret@sophia.inra.fr

populations of predators and preys are active and they can
choose the appropriate tactic that gives the best response to
the behavior of the opponent. Predators can either increase
their energy by feeding on the preys or produce some
offspring by laying eggs. However their reproduction rate
depends on this reproductive energy which can be increased
by feeding. If the preys can notice that the size of their
population decreases very fast and it can become critically
small, they can hide from the predators. But in this case
they do not eat and their mortality rate becomes non-zero.
We suppose also that the preys lay eggs at a constant rate
all the time and it does not depend on their choice of the
behavioral strategy either to hide or to eat. By eating they
keep their mortality rate equal to zero. Such a model can
be stated in terms of a nonzero-sum differential game such
that both players (predators and preys) tend to maximize the
amount of offspring they produce during a season. The work
presented here actually follows a previous study in which
the preys were not considered as capable of hiding and that
reduced to an optimal control problem (one-player game) for
the predators [4].

II. MAIN MODEL
A. Formulation of a nonzero-sum differential game

Let one consider a closed system of two species: predators
and preys. The period of time when both populations are
active is fixed at T . We will refer to T as a season. We make
use of two variables to describe the population of predators:
the reproductive energy p in average and the number of
predators z. To describe the population density of preys we
introduce the variable n. We suppose that both populations
consist of two parts: a mature and an immature part. During
the season, mature insects can invest in immatures by laying
eggs. Between the seasons all matures die and immatures
become matures for the next season. In this paper we are
interested only in the within season dynamics.

At the beginning of the year all predators are small and
p equals to zero. Since predators are laying eggs with a
rate proportional to the value of the energy p, it seems
intuitive that most of them will try and forage the preys at the
beginning and reproduce at the end, once they have gathered
enough energy. We consider the case where the predator has
a choice between feeding on the preys (u = 1) and laying
eggs (u = 0). From the other side the preys have a choice
either to hide (v = 0) or to eat (v = 1). Here the variables
u and v play the role of the controls.

From the previous considerations and after rescaling the
states and time so as to limit the number of parameters, we



can then assume that the within season dynamics can be
written in the form

ṗ = −p + nuv, ṅ = −µn(1− v)− nzuv (1)

where the parameter µ > 0 is the mortality rate of the preys.
The value of z is supposed to be constant during the season
which is more or less relevant to the real situations in nature.

The number of offspring produced by the predators and
preys along the season depends on the current size of the
population

Ju =
∫ T

0

p(t)z(1− u(t)) dt, Jv =
∫ T

0

n(t) dt (2)

where the variable z can be omitted as a constant.
The goal of the mathematical analysis is to define the

optimal (or rational) strategy of the players and predict the
actual behavior in real-life situations. A major step in the
understanding of such game problems with several players
has been done by John Nash. One says that the profile of
strategies constitute a Nash equilibrium if: whenever one
of the players deviates from his initial strategy he will not
increase his own payoff. In the case of two players the pair
of controls

u = u∗(p, n, t), v = v∗(p, n, t)

is called a Nash equilibrium solution if the following in-
equalities hold

Ju(p, n, τ, u, v∗) ≤ Ju(p, n, τ, u∗, v∗),

Jv(p, n, τ, u∗, v) ≤ Jv(p, n, τ, u∗, v∗)

for every alternative strategies u and v. Let one introduce
the value functions Ũ and Ṽ for the predators and preys
correspondingly. Roughly speaking the function Ũ(p, n, t)
(or Ṽ (p, n, t)) give the equilibrium payoff expected by the
player, if the game were to start at time t in the state
(p(t), n(t)) = (p, n). Assume that both value functions exist.
Under regularity conditions (see [5, p. 292]), the functions Ũ
and Ṽ provide a solution to the system of Hamilton-Jacobi-
Bellman (HJB) equations

− ∂Ũ

∂τ
+ max

0≤u≤1

[∂Ũ

∂p
(−p + nuv∗)+

∂Ũ

∂n
(−µ(1− v∗)n− nzuv∗) + (1− u)p

]
= 0

− ∂Ṽ

∂τ
+ max

0≤v≤1

[∂Ṽ

∂p
(−p + nu∗v)+

∂Ṽ

∂n
(−µ(1− v)n− nzu∗v) + n

]
= 0

where u∗ and v∗ provide the maximum in the other equation,
τ is the reverse time, τ = T − t. Regarding the terminal
conditions

Ũ(p(T ), n(T ), T ) = 0, Ṽ (p(T ), n(T ), T ) = 0

B. Transformation to 2D

One can show that all the data are homogeneous of degree
one in the state variables, and on the other hand, one of
the state variables is always positive. This is a particular
case of Noether’s theorem in the calculus of variations
about problems whose data is invariant under a group of
transformations. Therefore we can reduce the phase space of
the problem on degree one and study only the trandsformed
system. To do so let one change the value function Ũ and Ṽ
to Ũ(p, n, τ) = nU(x, τ) and Ṽ (p, n, τ) = nV (x, τ) where
the new variable x is introduced, x = p/n. In this case the
system of HJB-equations transforms to

hu , −πτ + max
0≤u≤1

[
πx(−x(1−µ(1−v∗)−zuv∗)+uv∗)+

U(−µ(1− v)− zuv∗) + (1− u)x
]

= 0

hv , −ντ + max
0≤v≤1

[
νx(−x(1−µ(1−v)−zu∗v)+u∗v)+

V (−µ(1− v)− zu∗v) + 1
]

= 0

where we introduce the following notations for the conjugate
variables πx = ∂U/∂x and πτ = ∂U/∂τ , νx = ∂V/∂x and
ντ = ∂V/∂τ . The optimal behavior is the following

u∗ = Heav(Au), Au = πx(xz + 1)v − Uvz − x

v∗ = Heav(Av), Av = νx(u(xz + 1)− µx) + V (µ− uz)

We can see that only two variables τ and x are left in the
equations.

In order to solve the HJB equations, a characteristic system
can be written as follows

x′ = −∂hu

∂πx
= x(1− µ(1− v)− zuv)− uv,

π′x =
∂hu

∂x
+

∂hu

∂U
πx = −πx + 1− u,

π′τ =
∂hu

∂τ
+

∂hu

∂U
πτ = −πτ (µ(1− v) + zuv),

ν′x =
∂hv

∂x
+

∂hv

∂V
νx = −νx,

ν′τ =
∂hv

∂τ
+

∂hv

∂V
ντ = −ντ (µ(1− v) + zuv),

U ′ = −πx
∂hu

∂πx
− πτ

∂hu

∂πτ
=

− U(µ(1− v) + zuv) + (1− u)x,

V ′ = −νx
∂hv

∂νx
− ντ

∂hv

∂ντ
= −V (µ(1− v) + zuv) + 1

where the prime denotes the derivative w.r.t. reverse time.
If we know the values of πi, νi (i = x, τ ), we can obtain

the value functions U and V directly from the system of
HJB-equations hi = 0 (i = u, v).

Terminal conditions at t = T give U(x, T ) = 0 and
V (x, T ) = 0. This leads to the equality πx(T ) = νx(T ) = 0.
From a biological point of view we can also state that
u(T ) = 0 and v(T ) = 1 since it would not makes sense for
the predators to try and increase their reproductive energy



just before dying. They should consume their energy for
reproduction (u(T ) = 0) which allows the preys to safely eat
(v(T ) = 1). This can also be shown through mathematical
considerations. Then

πτ (T ) = (1− u(T ))x(T ) = x(T ), ντ (T ) = 1

III. PRIMARY SOLUTION

A. Appearance of the switching curve

At τ = 0 we have

x′ = x,

π′x = 1− πx, π′τ = 0,

ν′x = −νx, ν′τ = 0,

U ′ = x, V ′ = 1

or

x = x0e
τ , πx = 1− e−τ , νx = 0, πτ = x0, ντ = 1

U = x− x0, V = τ

There is a switching curve S1 that appears in the solution.
The switching condition for the first player is the following

Au = (1−e−τ )(xz+1)−x(1−e−τ )z−x = (1−e−τ )−x = 0

Then
S1: x = 1− e−τ

for x ≤ 1
2 ; indeed, the curve x = 1 − e−τ can only be

crossed by solutions if x(T ) ≤ 1
4 , which corresponds to an

intersection at x = 1
2 .

First step of the construction of the characteristics is shown
on Fig. 1. The blue line S1 is the switching curve for the
first player. Moving from the left side of S1 to the right
one the values πx and πτ are changing smoothly. But the
values of νx and ντ have a jump, because the corresponding
HJB-equation is changing. On the right side of it, the HJB-
equation has the form

−ν+
τ + ν+

x (1− x + xz)− V z + 1 = 0

where the + superscript denotes the values “after” the jump
in reverse time.

A normal vector to the switching surface S1 equals to

ν = ∇S1 = (∂S1/∂x, ∂S1/∂τ) = (−1, 1− x)

Due to the continuity of the value function ∇V + = ∇V −+
kν or(

ν+
x

ν+
τ

)
=

(
ν−x
ν−τ

)
+ k

( −1
1− x

)
=

( −k
1 + k(1− x)

)

with (ν−x , ν−t ) = (0, 1). Substitution into the HJB-equation
gives

k = − τz

2(1− x) + xz

Then

ν+
x =

τz

2(1− x) + xz
, ν+

τ = 1− (1− x)τz

2(1− x) + xz
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Fig. 1. Appearance of the switching curve S1
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The argument in the Heaviside function of the second
control v becomes equal to

Av
+ =

(2(1− x)µ− (1− 2x)z)τ
2(1− x) + xz

The expression in the denominator xz + 2(1− x) is always
positive since x < 1/2 on S1. Then Av

+ > 0 if 2(1−x)µ−
(1−2x)z > 0 or x > x∗ = (z−2µ)/2(z−µ). This holds for
all possible x if z < 2µ. Otherwise there is an internal point
x = x∗ such that Av

+ < 0 for 0 ≤ x < x∗ and Av
+ > 0

for x∗ < x ≤ 1/2.
The following situation corresponding to the values z = 8

and µ = 2 is shown on Fig. 2.

B. Segment AB

Suppose that the coordinate x∗ exists (0 < x∗ < 1/2) and
consider the characteristic field emitted from the segment
AB. In addition let’s denote the coordinate of the switch on
S1 as (x1, τ1). Both controls equals to one (predators are
feeding, preys continue to eat), u(τ1 + 0) = v(τ1 + 0) = 1,
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Fig. 3. The switching curve S2

and the characteristic system is written in the form

x′ = −(z − 1)x− 1, x(τ1) = x1,

π′x = −πx, πx(τ1) = 1− e−τ1 = x1,

π′τ = −πτz, πτ (τ1) = x1e
−τ1 = x1(1− x1),

ν′x = −νx, νx(τ1) =
τ1z

2(1− x1) + x1z
,

ν′τ = −ντz, ντ (τ1) = 1− (1− x1)τ1z

2(1− x1) + x1z
,

U ′ = −Uz, U(τ1) = x1(1− e−τ1) = x2
1,

V ′ = −V z + 1, V (τ1) = τ1

Then

x = x1e
−(z−1)(τ−τ1) − 1− e−(z−1)(τ−τ1)

z − 1

πx = x1e
−(τ−τ1), πτ = x1(1− x1)e−z(τ−τ1)

νx = νx(τ1)e−(τ−τ1), ντ = ντ (τ1)e−z(τ−τ1)

U = x2
1e
−z(τ−τ1), V = τ1e

−z(τ−τ1) +
1− e−z(τ−τ1)

z

The switching surface for the second player can be ob-
tained from the equality

Av = νx(1 + x(z − µ))− V (z − µ) = 0

or

S2:
τ1ze−(τ−τ1)

2(1− x1) + x1z
(1 + x(z − µ))

−
(
τ1e

−z(τ−τ1) +
1− e−z(τ−τ1)

z

)
(z − µ) = 0

where

x = x1e
−(z−1)(τ−τ1)− 1− e−(z−1)(τ−τ1)

z − 1
, x1 = 1− e−τ1

Finally, we have the situation shown on Fig. 3.

C. A singular arc

Since the unchanged continuation of the terminal solution
that is tangent to S1 and solutions that lead to S2 leave an
empty space between them, there must exist a singular arc Sσ

that is emitted from this point along which the first player
applies the intermediate control u = uσ while the control
of the second player remains the same v = 1. To define
such a curve Sσ let one write the necessary conditions of its
existence

hu = −πτ + x(1− πx) = 0

Au = πx(xz + 1)− Uz − x = 0, Au
′ = 0

We have

Au
′ = {Auhu} =

∂hu

∂πx

(∂Au

∂x
+ πx

∂Au

∂U

)
+ πτ

(∂Au

∂τ
+

∂hu

∂πτ

∂Au

∂U

)−
∂Au

∂πx

(∂hu

∂x
+ πx

∂hu

∂U

)− ∂Au

∂πτ

(∂hu

∂τ
+ πτ

∂hu

∂U

)
=

− 1 + x(1 + z(πx − 1)) + πx + zπτ = 0

where the braces {· ·} denote the Jacobi (Poisson) brackets.
Then the conjugate variables are expressed as follows

πx = 1− x, πτ = x(1− x)

The value function of the first player

U = x(1− x) +
1− 2x

z

The expression for the singular control uσ can be obtained
using the equality of the second derivative of Au to zero

Au
′′ = {{Auhu}hu} = {{(πx − 1 + x)hu}hu} =

− 2x + uσ(xz + 2) = 0

Then

uσ =
2x

xz + 2

We have also

x′ = − x2z

xz + 2
, x(τ̃1) =

1
2
, τ̃1 = ln 2

Finally we can integrate this differential equation with the
given initial conditions and obtain the following expression
for the singular arc

Sσ: − ln x +
2
xz

− 4
z

= τ, τ ≥ τ̃1

Consider the moment of switching from u = uσ to u = 1
at some point of the singular arc (xσ, τσ). The HJB-equation
is changed to the following equation

−νσ
τ + νσ

x (1− x + xz)− V z + 1 = 0

and there is a jump in the costate variables of the second
player.



Along the singular arc Sσ:

V ′ = 1− V zuσ = 1− V
2xz

xz + 2
, x′ = − x2z

xz + 2
,

V (ln 2) = ln 2, x(ln 2) =
1
2

This can be rewritten in the form

dV

dx
=

2V xz − xz − 2
x2z

, V (1/2) = ln 2

Therefore

V = 4x2 ln 2+
(1− 2x)(4 + 8x + 16x2 + 3xz(1 + 2x))

6xz
, V σ

Choose the variable s = x as a parameter of the singular
arc. In this case

∂τ

∂s
= − 1

x
− 2

x2z

and

∂V

∂s
= −2 + 4x3(8− 3z(2 ln 2− 1))

3x2z
= νσ

x−νσ
τ

(
1
x

+
4

x2z

)

After the substitution to the changed HJB-equation we
have the following values of conjugate variables

νσ
τ =

2 + 3xz + 4x3(8− 3z(2 ln 2− 1))
6(xz + 1)

,

νσ
x =

4 + 3xz − 4x3(8− 3z(2 ln 2− 1))
6x(xz + 1)

These values are the initial conditions of characteristic
trajectories emitted from the singular curve Sσ in the domain
11. For this domain we have again

x′ = −(z − 1)x− 1, x(τσ) = xσ,

π′x = −πx, πx(τσ) = 1− xσ,

π′τ = −πτz, πτ (τσ) = xσ(1− xσ),
ν′x = −νx, νx(τσ) = νσ

x ,

ν′τ = −ντz, ντ (τσ) = νσ
τ ,

U ′ = −Uz, U(τσ) = xσ(1− xσ) +
1− 2xσ

z
,

V ′ = −V z + 1, V (τσ) = V σ

The switching condition

Av = νx(1 + x(z − µ))− V (z − µ) = 0

or

Sσ
2 : νσ

x e−(τ−τσ)(1 + x(z − µ))−(
V σe−z(τ−τσ) +

1− e−z(τ−τσ)

z

)
(z − µ) = 0

where

x = xσe−(z−1)(τ2−τσ) − 1− e−(z−1)(τ2−τσ)

z − 1

This curve is indicated on Fig. 4 by the segment CD.
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IV. BI-SINGULAR SOLUTION

A. Derivation of the Hamilton-Jacobi (HJ) equations

A simple Nash argument shows that it is not possible to
have the region 00 inside the domain 0ACD (see Fig. 4).
Indeed, let us consider the segment 0A; in forward time, a
solution initiated on the right of 0A with the controls (0, 0)
would be such that the predators only reproduce until the
final time, while the preys first hide until reaching 0A and
then eat until the final time. Obviously, the preys can improve
their situation from there by instead choosing to eat all the
time, since they are not threatened by the preadtors, which
are reproducing. The controls (0, 0) can therefore not be part
of a Nash solution on the right of 0A. Further analysis of
A+

u and A+
v shows that no solution with bang-bang control

values can be emitted from 0A.
The phenomenon of the appearance of the bi-singular

solution for the class of nonzero-sum differential games has
been recently investigated [6]. To define necessary equations
for the value function in the bi-singular domain let one
eliminate the controls v and u from the pairs of the equations

hu = −πτ − πxx(1− µ(1− v))− µU(1− v) + x = 0,

Au = πx(xz + 1)v − Uvz − x = 0

hv = −ντ − νxx(1− µ)− µV + 1 = 0,

Av = νx(u(xz + 1)− µx) + V (µ− uz) = 0

This leads to the following PDEs which are denoted HJ-
equations (instead of the previous HJB-equations):

ĥu , −πτ −πxx(1−µ)−µU +x− µx(πxx− U)
πx(xz + 1)− Uz

= 0

ĥv , −ντ − νxx(1− µ)− µV + 1 = 0

The bi-singular controls can be obtained from the solution
of these PDEs

uσ =
µ(νxx− V )

νx(xz + 1)− V z
, vσ =

x

πx(xz + 1)− Uz

B. Solution of the second HJ-equation

Consider the HJ-equation regarding the second player

ĥv = −ντ + νxx(µ− 1)− µV + 1 = 0



with singular control

uσ =
µ(νxx− V )

νx(xz + 1)− V z
(0 ≤ uσ ≤ 1)

The Characteristic system has the form

x′ = −∂ĥv

∂νx
= −x(µ− 1),

ν′x =
∂ĥv

∂x
+ νx

∂ĥv

∂V
= −νx,

ν′τ =
∂ĥv

∂τ
+ ντ

∂ĥv

∂V
= −µντ ,

V ′ = −νx
∂ĥv

∂νx
− ντ

∂ĥv

∂ντ
= −µV + 1,

x(τ1) = x1, V (τ1) = τ1

If we take the segment 0A as the boundary we need to
recalculate the values of the costate variables νx(τ1) and
ντ (τ1): (

νx(τ1)
ντ (τ1)

)
=

( −k
1 + k(1− x)

)

regarding the HJ-equation

−ντ (τ1) + νx(τ1)(µ− 1)x1 − µτ1 + 1 = 0

Then
k = − µτ1

µx1 + 1− 2x1

and

νx(τ1) =
µτ1

µx1 + 1− 2x1
, ντ (τ1) = 1− (1− x1)µτ1

µx1 + 1− 2x1

Then
x = x1e

−(µ−1)(τ−τ1),

νx = νx(τ1)e−(τ−τ1), ντ = ντ (τ1)e−µ(τ−τ1),

V = τ1e
−µ(τ−τ1) +

1− e−µ(τ−τ1)

µ

By substitution of this solution we can write the expression
for the singular control uσ. On the segment 0A it equals to

uσ(τ1) =
µνx(τ1)x1 − µτ1

νx(τ1)(x1z + 1)− τ1z
=

µ(1− 2x1)
(1− 2x1)z − µ

which belongs to the interval between zero and one. The
singular control equals exactly one at the boundary point A:

uσ(τ1)
∣∣∣
x1=x∗

= 1

The result is shown on Fig. 5. The horizontal line for x = 0
is at level uσ = µ/z.

Now let’s take the segment AC into account. If we denote
the coordinates of the point on AC as (x2, τ2) ∈ S2 and
corresponding to it the point on AB as (x1, τ1) we can write

x2 = x1e
−(z−1)(τ2−τ1) − 1− e−(z−1)(τ2−τ1)

z − 1

νx(τ2) =
τ1ze−(τ2−τ1)

2(1− x1) + x1z
,
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Fig. 5. Solution of the 2nd HJ-equation with a boundary at 0A
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Fig. 6. Solution of the 2nd HJ-equation with a boundary at 0AC

ντ (τ2) =
(

1− (1− x1)τ1z

2(1− x1) + x1z

)
e−z(τ2−τ1)

V (τ2) = τ1e
−z(τ2−τ1) +

1− e−z(τ2−τ1)

z

with uσ(τ2) = 1. Then

x = x2e
−(µ−1)(τ−τ2)

νx = νx(τ2)e−(τ−τ2), ντ = ντ (τ2)e−µ(τ−τ2)

V = V (τ2)e−µ(τ−τ2) +
1− e−µ(τ−τ2)

µ

Using these expressions we can obtain the value of the
singular control uσ. The solution is shown on Fig. 6 by the
set of blue curves started from the segment AC. The surface
closer to us indicates the previous solution.

The characteristics of the bi-singular field (which are not
the game trajectories) intersect the field (11) coming, in
backward time, from the singular arc. Therefore we can
construct the singular line of the dispersal type such that
Vσ = V11 on it, where the value Vσ denotes the solution
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in the bi-singular domain, V11 – in the domain (11). This
gives the following construction shown on Fig. 7, where the
dispersal line is indicated by the segment CE. The details
of its construction are presented in the following subsection.

Construction of the dispersal line CE

For one part of CE we should compare characteristics
emitted from 0A and characteristics emitted from the singu-
lar arc. They will give a lower part of CE. For another part
we should consider the field (11) and bi-singular character-
istics emitted from segment AC.

For the characteristics from 0A we have

x11 = x1e
−(µ−1)(τ−τ1), V11 = τ1e

−µ(τ−τ1)+
1− e−µ(τ−τ1)

µ

for the characteristics from AC

x11 = x2e
−(µ−1)(τ−τ2)

V11 =
(
τ1e

−z(τ2−τ1) +
1− e−z(τ2−τ1)

z

)
e−µ(τ−τ2)+

1− e−µ(τ−τ2)

µ

where (τ1, x1) ∈ 0B and (τ2, x2) ∈ AC.
If we consider a primary domain we can write

xσ = xσe−(z−1)(τ−τσ) − 1− e−(z−1)(τ−τσ)

z − 1
,

Vσ =
1− e−z(τ−τσ)

z
+ e−z(τ−τσ)

(
4(xσ)2 ln 2+

(1− 2xσ)(4 + 8xσ + 16(xσ)2 + 3xσz(1 + 2xσ))
6xσz

)

where the coordinates (xσ, τσ) belong to the singular arc
Sσ.

The coordinates (τ3, x3) of the point on CF can be
obtained through equations

V11

∣∣∣
τ=τ3

= Vσ

∣∣∣
τ=τ3

and x11

∣∣∣
τ=τ3

= xσ

∣∣∣
τ=τ3

C. Solution of the first HJ-equation

Consider the following PDE

ĥu = −πτ + x(1− πx)+

µ(πxx− U)
(

1− x

πx(xz + 1)− Uz

)
= 0

with respect to singular control in the form

vσ =
x

πx(xz + 1)− Uz

The corresponding characteristic system can be written anal-
ogously to the previous case

x′ = −(µ− 1)x +
µxU

(πx(xz + 1)− Uz)2
,

π′x = 1− πx − µ(πxx− U)
πx(xz + 1)− Uz

,

π′τ = −µπτ

(
1− πxx

(πx(xz + 1)− Uz)2

)
,

U ′ = x− µU − µx(U2z + π2
xx(xz + 1)− 2Uπx(xz + 1))

(πx(xz + 1)− Uz)2

with initial condition on the segment 0A

x(τ1) = x1, πτ (τ1) = x1(1−x1), πx(τ1) = x1, U(τ1) = x2
1

Notice that
(

∂Ũ

∂n

)′

= (πxx− U)′ = −µ(πxx− U)

But in our case (πxx−U)
∣∣∣
τ=τ1

= 0. Therefore πxx−U =
0 all the time. This leads to the characteristic equation for
πx of the form π′x = 1 − πx with initial condition on 0A:
α(τ1) = 1−e−τ1 = x1. Then πx = 1−e−τ and the singular
control can be written in the form directly depending on x
and τ :

vσ =
x

1− e−τ

For the characteristic field emitted for the segment AC the
situation is more complicated since the conjugate variables
have a jump on it. Suppose that the segment S2 is defined
through the following conditions

S2:
τ1ze−(τ−τ1)

2(1− x1) + x1z
(1 + x(z − µ))

−
(

τ1e
−z(τ−τ1) +

1− e−z(τ−τ1)

z

)
(z − µ) = 0

x = x1e
−(z−1)(τ−τ1) − 1− e−(z−1)(τ−τ1)

z − 1
(x1 = 1− e−τ1)

Suppose that τ1 = τ1(x, τ). If we differentiate the last
equation for x we obtain

∂τ1

∂x
=

1− x1 + x1z

(1− x + xz)(2(1− x1) + x1z)
,

∂τ1

∂τ
=

1− x1 + x1z

2(1− x1) + x1z
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To calculate the normal vector to S2 we need to calculate
the gradient

∇S2 = (∂S2/∂x, ∂S2/∂τ)

Then we can derive the expressions for ∂S2/∂x and ∂S2/∂τ
but we will omit this part since they have too complicated a
form. Taking into account that

π+
x = x1e

−(τ−τ1)+k
∂S2

∂x
, π+

τ = x1(1−x1)e−z(τ−τ1)+k
∂S2

∂τ

we can substitute these values into the HJ-equation

−π+
τ +x(1−π+

x )+µ(π+
x x−U)

(
1− x

π+
x (xz + 1)− Uz

)
= 0

with U = x2
1e
−z(τ−τ1) and obtain the equation w.r.t. the

scalar k. After that, we can write the new values of the
conjugate variables π+

x and π+
τ .

We should notice that there are two possible solutions k1

and k2. The value of k1 is negative on AC and equals to
zero at point A. But this branch corresponds to the situation
when vσ ≥ 1. Another branch of the solution with k2 > 0
corresponds to the values vσ ∈ (0, 1), see Fig. 8.

The resulting characteristic field for the segment 0A and
AC is shown on Fig. 9.

D. Construction of the real game trajectories

Using the constructed solution of the decomposed system
of two HJ-equations, we can compute the pair of singular
controls uσ and vσ in the domain 0ACE. Thus, we can
construct the real game trajectories in the bi-singular domain.
They are shown on Fig. 10. We can identify our main
difficulty on this figure. Even though the whole space was
filled with the characteristics for the decomposed system of
two HJ equations, there is an empty subdomain in the final
portrait of optimal trajectories (shaded area of Figure 10).
This is a strong indication that some important things may
have been missed in the process of deriving the solution.

V. CONCLUSIONS

We did not finalize the solution and did not cover the
whole phase space by the field of characteristics. But our
work is still in progress and we will continue our research.
Nevertheless, we would like to point out that in the paper
we investigated the transition from bang-bang controls to bi-
singular ones and apply the method of characteristics to a
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Fig. 9. Characteristic field for the first HJ-equation

system of two HJB-equations. Although the fact that we did
not find the solution in a subdomain of the phase space can
be crucial and a new idea of the solution can change the
whole picture drastically we think that the proposed solution
will remain fulfilled in a sufficiently large area of the phase
space after.

The theory of nonzero-sum differential games is not well-
developed yet. There are no theorems of existence and
uniqueness of their solution [6], [7], [8] so that it might be
possible that no Nash equilibrium exist from the initial states
in the ”void” zone. There might also be several, may be an
infinity, of Nash equilibria. There is no strict classification of
possible singular surfaces as one has been done for zero-sum
differential games, see for example [9, p. 121]. Therefore this
work is only an attempt to study a particular nonzero-sum
differential games with an application in behavioral ecology.
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