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ESS : intent

Capture the interplay between individual and collective behaviour in a large
population of identical agents.

• Biology: behavioral ecology and evolution John Maynard-Smith

• Routing in communication networks John Glen Wardrop

• Economy and sociology, learning

• ¿ Stock market ?
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Strategies

Pure strategy

Individual behavior: choice of a phenotye or trait (evolution) or strategy
(routing, sociology) x in a trait or strategy space X either finite or infinite.

Mixed strategy

p, q, . . . ∈ ∆(X)

• individual

• population monomorphic or polymorphic
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Generating function

An individual using strategy x in a population using p gets G(x, p)

Linear case G may be given via an pairwise encounter function H(x, y)

G(x, p) =
∫
X

H(x, y)p(dy).

Fitness function A mixed strategy q yields a fitness

F (q, p) =
∫
X

G(x, p)q(dx) .
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ESS

Interpret “fitness” as reproductive success. Assume most of the popula-
tion behaves according to strategy p, while a small proportion ε behaves
according to q. The overall population then behaves according to

qε := (1− ε)p + εq.

A population strategy p will resist an invasion by a small enough population
with strategy q if there exists a population ratio ε0 such that

∀ε < ε0 , F (p, qε) > F (q, qε) .

In the linear case this is equivalent to

F (p, p) ≥ F (q, p) ,
[F (p, p) = F (q, p)] ⇒ F (p, q) > F (q, q) .
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A menagery of concepts

Other concepts, close to ESS, have been introduced : locally superior,
evolutioarily robust (ERS), uninvadable, continuously stable, etc.

Definition A strategy p is locally superior if there exists a neighborhood
N (p)

∀q ∈ N (p), q 6= p , F (p, q) > F (q, q) .

In the infinite cases, depends on the topology used on ∆(X).

Definition A strategy is Evolutionarily Robust if it is locally superior in the
weak topology of ∆(X).

Theorem In the linear case, ERS ⇒ ESS.
In the finite linear case, ESS ⇔ ERS.
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Relation with Nash

Define a non zero sum two players game on ∆(X)×∆(X) by

J1(p, q) = F (p, q) , J2(p, q) = F (q, p) .

Then the first ESS condition (linear case) is equivalent to (p, p) being a
Nash point of this game. As a consequence we get

Theorem [Von Neuman 1944, Kuhn 1950] Let p be an ESS.

1. ∀x ∈ X , G(x, p) ≤ F (p, p),

2. let N = {x ∈ X | G(x, p) < F (p, p)}, then, p(N) = 0.
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Finite linear case

Let X = {xi, i = 1, . . . , n}. ∆(X) is the simplex of Rn.

Let H(xi, xj) = aij, A = (aij), F (p, q) = 〈p, Aq〉

Wardrop ⇔ p =

(
p1
0

)
, Ap =

(
v1l
r2

)
, r2 < v1l ;

The second condition is a second order condition. Partition A according to
the partition of p. A sufficient condition is that the restriction of the quadratic
form 〈q1, A11q1〉 to the orthogonal subspace of 1l be negative definite.

A necessary condition is that the same restricted quadratic form for the
submatrix A22 of A corresponding to the strictly positive elements of p1 be
nonpositive definite.
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A second order criterion

Given a 2× 2 matrix

M =

(
a b
c d

)
define its symmetric difference σ(M) = a− b− c + d.

Given an n×n matrix M , define the n−1×n−1 matrix σ(M) by replacing
each block of four adjacent numbers in M by their symmetric difference.

The sufficient condition is that σ(A11) + σ(A11)
t < 0.

The necessary condition is that σ(A22) + σ(A22)
t ≤ 0.
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Example

A rare example of a non trivial ESS in a continuous setting.

X = [0,1], H(x, y) = max{x− y, λ(y − x)}, λ ∈ (0,1).

Theorem p is a global ERS:

p =
λ

1 + λ
δ0 +

1

1 + λ
δ1 .

For a given q ∈ ∆(X), define x0 [. . . ] such that q([0, x0]) = λ/(1 + λ),
and a =

∫ x0
0 xq(dx), x1 and b symmetrically in the neighborhood of 1. We

show

F (p, q)− F (q, q) ≥ (1 + λ)

(
a2

x0
+

b2

1− x1

)
.
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Hawk and Doves

Sharing a prey

Population p 1− p
Opponent D H

Him
D 1/2 0
H 1 −θ

Wardrop condition:

0.5pD = pD − θ(1− pD) ⇒ pD =
θ

θ + 0.5
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Replicator Dynamics

If G(x, q) measures the excess of births over deaths, like begets like, and
q is interpreted as the distribution of strategies among the population, it
follows that

q̇(t, x) = q(t, x)[G(x, q(t))− F (q(t), q(t))] .

This is called the replicator dynamics. “Evolutionary game ?”

Theorem In the finite linear case, every locally stable point of (1) is a Nash
point. Every ESS is a locally asymptotically stable point of (1) and its at-
traction basin contains a neighborhood of the relative interior of the lowest
dimensional face of ∆(X) it lies on.
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Proof

Use the Lyapunov function

V (q) =
∑
i

pi ln

(
pi

qi

)
.

lnx ≤ 1 + x ⇒ V (q) > 0 if q 6= p and

V̇ (q) = F (q, q)− F (p, q) .
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Stability in the infinite case

with A. J. Shaiju

We are investigating the stability of a differential equation over a space
of measures. The Lyapunov function used to prove the above theorem is
not continuous in the weak topology in the infinite case. We do not know
whether an ERS (even global) is necessarily a stable point of (1).

Theorem If H(x, y) = H(y, x), an ERS is locally asymptotically stable.

Proof: use the Lyapunov function F (p, p)− F (q, q).
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Two by two case

Players have only two pure strategies (two phenotypes in the population).
The game is described by a 2× 2 matrix

A =

(
a b
c d

)

Let σ = a− b− c + d, (assume here σ 6= 0.)

Candidate Nash (via Wardrop condition) p? = d−c
σ . Is an ESS iff σ < 0.

Example : for Hawk and Dove, σ = −0.5− θ < 0.
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2× 2 ESS

In this most simple context,

Definition p is an ESS if

1. (p, p) is Nash, ⇐⇒

∀q ∈ [0,1] , ( p− q q − p )A

(
p

1− p

)
≥ 0 ,

and

2. If p /∈ {0,1}, then necessarily p = p? and the above is 0,

∀q 6= p? , ( p? − q q − p? )A

(
q

1− q

)
> 0 .
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2× 2 ESS continued

Corollary If a 6= c and b 6= d, there always exists an ESS

1. If σ = 0 or σ 6= 0, but p? /∈ (0,1), the unique ESS is pure,

2. If σ 6= 0 and p? ∈ (0,1),

(a) If σ < 0, p? is the only ESS,

(b) If σ > 0 there are two pure ESS and no mixed ESS.

Proof

( p? − q q − p? )A

(
p?

1− p?

)
= −σ(q − p?)2 .
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Replicator equation

If “fitness” measures the reproductive efficiency, i.e. the rate of the ex-
cess of births over deaths (possibly negative), p evolves accordingly to the
simple replicator equation which becomes here

If σ 6= 0,

ṗ = σp(1− p)(p− p?)

If σ = 0,

ṗ = (b− d)p(1− p)
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ṗ = σp(1− p)(p− p?)

If σ = 0,
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Elementary replicator equation analysis

-

6

σ < 0

p?0 1 p

-

6

σ > 0

p?0 1 p
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Population game

Two populations, with two behaviors each, interacting with each other.
States p1 and p2, proportions of individuals using the first behavior.

Fitness accrued by an individual of population i using its first behavior
aipj + bi(1− pj), and with its second behavior cipj + di(1− pj).

Replicator equations become

ṗi = σipi(1− pi)(pj − p?
j) .
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Phase portrait

1. Unique (pure) Nash equilibria are stable,

2. If (p?
1, p?

2) ∈ (0,1)× (0,1),

(a) If σ1σ2 < 0, the unique Nash equilibrium (p?
1, p?

2) is a center, and
all trajectories are periodic.

(b) If σ1σ2 > 0, the Nash equilibrium (p?
1, p?

2) is a saddle, the two
pure Nash are stable.

Proof The following function is a first integral:

V (p1, p2) =
2∑

i=1

(−1)iσi

[
p?
i ln

p?
i

pi
+ (1− p?

i ) ln
1− p?

i

1− pi

]
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Lynxes and wolves

L\W cow. agr.
1− λ 1

cow. λ 0
0 −θ

agr. 1− µ 1− ν

λ + µ > 1 > ν

σ1 = λ + µ− ν , p?
2 = (1− ν)/(λ + µ− ν) ,

σ2 = −λ− θ , p?
1 = θ/(λ + θ) .

Draw case λ = ν = 0,5, µ = 0,75, θ = 1,5.
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Two identical populations

Two identical but distinct populations. Potentially, p1 6= p2.
But A1 = A2, hence σ1 = σ2. Assume further that σi < 0. The single
population replicator equation is stable at p?, but σ1σ2 > 0 hence (p?, p?)

is not stable.

The diagonal p1 = p2 = p represents the solution of the one-population
game. Highly unstable in the two-population game.
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