ESS and Replicator Dynamics

Tutorial

Pierre Bernhard
I3S
University of Nice-Sophia Antipolis and CNRS

RTP M3D, june 16, 2008

Bibliography

John Maynard-Smith and G.R. Price: "The logic of animal conflict", Nature 246, pp 15-18, 1973

John Maynard-Smith: Evolution and the theory of games, Cambridge University Press, Cambridge, U.K., 1982

Bibliography

John Glen Wardrop: "Some theoretial aspects of road traffic research" Proceedings of the Institution of Civil Engineers, pp 325-378, 1952.

John Maynard-Smith and G.R. Price: "The logic of animal conflict", Nature 246, pp 15-18, 1973

John Maynard-Smith: Evolution and the theory of games, Cambridge University Press, Cambridge, U.K., 1982

Bibliography

John Glen Wardrop: "Some theoretial aspects of road traffic research" Proceedings of the Institution of Civil Engineers, pp 325-378, 1952.

John Maynard-Smith and G.R. Price: "The logic of animal conflict", Nature 246, pp 15-18, 1973

John Maynard-Smith: Evolution and the theory of games, Cambridge University Press, Cambridge, U.K., 1982

Taylor and Jonker: "Evolutionarily stable strategies and game dynamics", Mathematical Bioscience, 40, pp145-156, 1978

ESS : intent

Capture the interplay between individual and collective behaviour in a large population of identical agents.

ESS : intent

Capture the interplay between individual and collective behaviour in a large population of identical agents.

- Biology: behavioral ecology and evolution John Maynard-Smith

ESS : intent

Capture the interplay between individual and collective behaviour in a large population of identical agents.

- Biology: behavioral ecology and evolution John Maynard-Smith
- Routing in communication networks John Glen Wardrop

ESS : intent

Capture the interplay between individual and collective behaviour in a large population of identical agents.

- Biology: behavioral ecology and evolution John Maynard-Smith
- Routing in communication networks John Glen Wardrop
- Economy and sociology, learning

ESS : intent

Capture the interplay between individual and collective behaviour in a large population of identical agents.

- Biology: behavioral ecology and evolution John Maynard-Smith
- Routing in communication networks John Glen Wardrop
- Economy and sociology, learning
- ¿ Stock market?

Strategies

Pure strategy

Individual behavior: choice of a phenotye or trait (evolution) or strategy (routing, sociology) x in a trait or strategy space X either finite or infinite.

Strategies

Pure strategy
Individual behavior: choice of a phenotye or trait (evolution) or strategy (routing, sociology) x in a trait or strategy space X either finite or infinite.

Mixed strategy
$p, q, \ldots \in \Delta(X)$

Strategies

Pure strategy

Individual behavior: choice of a trait (evolution) or strategy (sociology) x in a trait space or ... X either finite or infinite.

Mixed strategy
$p, q, \ldots \in \Delta(X)$

- individual

Strategies

Pure strategy
Individual behavior: choice of a trait (evolution) or strategy (sociology) x in a trait space or ... X either finite or infinite.

Mixed strategy
$p, q, \ldots \in \Delta(X)$

- individual
- population monomorphic or polymorphic

Generating function

An individual using strategy x in a population using p gets $G(x, p)$

Generating function

An individual using strategy x in a population using p gets $G(x, p)$

Fitness function A mixed strategy q yields a fitness

$$
F(q, p)=\int_{X} G(x, p) q(\mathrm{~d} x)
$$

Generating function

An individual using strategy x in a population using p gets $G(x, p)$

Linear case G may be given via an pairwise encounter function $H(x, y)$

$$
G(x, p)=\int_{X} H(x, y) p(\mathrm{~d} y) .
$$

Fitness function A mixed strategy q yields a fitness

$$
F(q, p)=\int_{X} G(x, p) q(\mathrm{~d} x)
$$

ESS

Interpret "fitness" as reproductive success. Assume most of the population behaves according to strategy p, while a small proportion ε behaves according to q. The overall population then behaves according to

$$
q_{\varepsilon}:=(1-\varepsilon) p+\varepsilon q
$$

ESS

Interpret "fitness" as reproductive success. Assume most of the population behaves according to strategy p, while a small proportion ε behaves according to q. The overall population then behaves according to

$$
q_{\varepsilon}:=(1-\varepsilon) p+\varepsilon q .
$$

A population strategy p will resist an invasion by a small enough population with strategy q if there exists a population ratio ε_{0} such that

$$
\forall \varepsilon<\varepsilon_{0}, \quad F\left(p, q_{\varepsilon}\right)>F\left(q, q_{\varepsilon}\right) .
$$

ESS

Interpret "fitness" as reproductive success. Assume most of the population behaves according to strategy p, while a small proportion ε behaves according to q. The overall population then behaves according to

$$
q_{\varepsilon}:=(1-\varepsilon) p+\varepsilon q .
$$

A population strategy p will resist an invasion by a small enough population with strategy q if there exists a population ratio ε_{0} such that

$$
\forall \varepsilon<\varepsilon_{0}, \quad F\left(p, q_{\varepsilon}\right)>F\left(q, q_{\varepsilon}\right) .
$$

As soon as $q \mapsto F(p, q)$ is continuous for all p, this yields

$$
F(p, p) \geq F(q, p)
$$

ESS

Interpret "fitness" as reproductive success. Assume most of the population behaves according to strategy p, while a small proportion ε behaves according to q. The overall population then behaves according to

$$
q_{\varepsilon}:=(1-\varepsilon) p+\varepsilon q .
$$

A population strategy p will resist an invasion by a small enough population with strategy q if there exists a population ratio ε_{0} such that

$$
\forall \varepsilon<\varepsilon_{0}, \quad F\left(p, q_{\varepsilon}\right)>F\left(q, q_{\varepsilon}\right) .
$$

As soon as $q \mapsto F(p, q)$ is continuous for all p, this yields

$$
F(p, p) \geq F(q, p)
$$

and in the linear case

$$
[F(p, p)=F(q, p)] \Rightarrow F(p, q)>F(q, q) .
$$

A menagery of concepts

Other concepts, close to ESS, have been introduced : locally superior, evolutioarily robust (ERS), uninvadable, continuously stable, etc.

Definition A strategy p is locally superior if there exists a neighborhood $\mathcal{N}(p)$

$$
\forall q \in \mathcal{N}(p), q \neq p, \quad F(p, q)>F(q, q) .
$$

In the infinite cases, depends on the topology used on $\Delta(X)$.
Definition A strategy is Evolutionarily Robust if it is locally superior in the weak topology of $\Delta(X)$.

Theorem In the linear case, ERS \Rightarrow ESS. In the finite linear case, ESS \Leftrightarrow ERS.

Relation with Nash

Define a non zero sum two players game on $\Delta(X) \times \Delta(X)$ by

$$
J_{1}(p, q)=F(p, q), \quad J_{2}(p, q)=F(q, p) .
$$

Then the first ESS condition (linear case) is equivalent to (p, p) being a Nash point of this game. As a consequence we get

Relation with Nash

Define a non zero sum two players game on $\Delta(X) \times \Delta(X)$ by

$$
J_{1}(p, q)=F(p, q), \quad J_{2}(p, q)=F(q, p) .
$$

Then the first ESS condition (linear case) is equivalent to (p, p) being a Nash point of this game. As a consequence we get

Theorem [Von Neuman 1944, Kuhn 1950, Wardrop 1952] Let p be an ESS.

1. $\forall x \in X, \quad G(x, p) \leq F(p, p)$,
2. let $N=\{x \in X \mid G(x, p)<F(p, p)\}$, then, $p(N)=0$.

Finite linear case

Let $X=\left\{x_{i}, i=1, \ldots, n\right\} . \Delta(X)$ is the simplex of \mathbb{R}^{n}.
Let $H\left(x_{i}, x_{j}\right)=a_{i j}, \quad A=\left(a_{i j}\right), \quad F(p, q)=\langle p, A q\rangle$
Wardrop $\Leftrightarrow \quad p=\binom{p_{1}}{0}, \quad A p=\binom{v \mathbb{1}}{r_{2}}, \quad r_{2}<v \mathbb{1} ;$

Finite linear case

Let $X=\left\{x_{i}, i=1, \ldots, n\right\} . \Delta(X)$ is the simplex of \mathbb{R}^{n}.
Let $H\left(x_{i}, x_{j}\right)=a_{i j}, \quad A=\left(a_{i j}\right), \quad F(p, q)=\langle p, A q\rangle$

$$
\text { Wardrop } \Leftrightarrow \quad p=\binom{p_{1}}{0}, \quad A p=\binom{v \mathbb{1}}{r_{2}}, \quad r_{2}<v \mathbb{1} ;
$$

The second condition is a second order condition. Partition A according to the partition of p. A sufficient condition is that the restriction of the quadratic form $\left\langle q_{1}, A_{11} q_{1}\right\rangle$ to the orthogonal subspace of $\mathbb{1}$ be negative definite.

Finite linear case

$$
\begin{aligned}
& \text { Let } X=\left\{x_{i}, i=1, \ldots, n\right\} . \Delta(X) \text { is the simplex of } \mathbb{R}^{n} . \\
& \text { Let } H\left(x_{i}, x_{j}\right)=a_{i j}, \quad A=\left(a_{i j}\right), \quad F(p, q)=\langle p, A q\rangle \\
& \qquad \text { Wardrop } \Leftrightarrow \quad p=\binom{p_{1}}{0}, \quad A p=\binom{v \mathbb{1}}{r_{2}}, \quad r_{2}<v \mathbb{1} ;
\end{aligned}
$$

The second condition is a second order condition. Partition A according to the partition of p. A sufficient condition is that the restriction of the quadratic form $\left\langle q_{1}, A_{11} q_{1}\right\rangle$ to the orthogonal subspace of $\mathbb{1}$ be negative definite.

A necessary condition is that the same restricted quadratic form for the submatrix A_{22} of A corresponding to the strictly positive elements of p_{1} be nonpositive definite.

A second order criterion

Given a 2×2 matrix

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

define its symmetric difference $\sigma(M)=a-b-c+d$.
Given an $n \times n$ matrix M, define the $n-1 \times n-1$ matrix $\sigma(M)$ by replacing each block of four adjacent numbers in M by their symmetric difference.

The sufficient condition is that $\sigma\left(A_{11}\right)+\sigma\left(A_{11}\right)^{t}<0$.
The necessary condition is that $\sigma\left(A_{22}\right)+\sigma\left(A_{22}\right)^{t} \leq 0$.

Example

A rare example of a non trivial ESS in a continuous setting.
$X=[0,1], H(x, y)=\max \{x-y, \lambda(y-x)\}, \lambda \in(0,1)$.
Theorem p is a global ERS:

$$
p=\frac{\lambda}{1+\lambda} \delta_{0}+\frac{1}{1+\lambda} \delta_{1} .
$$

For a given $q \in \Delta(X)$, define $x_{0}[\ldots]$ such that $q\left(\left[0, x_{0}\right]\right)=\lambda /(1+\lambda)$, and $a=\int_{0}^{x_{0}} x q(\mathrm{~d} x), x_{1}$ and b symmetrically in the neighborhood of 1 . We show

$$
F(p, q)-F(q, q) \geq(1+\lambda)\left(\frac{a^{2}}{x_{0}}+\frac{b^{2}}{1-x_{1}}\right) .
$$

Hawk and Doves

Sharing a prey

Opponent Him	D	H
D	$1 / 2$	0
H	1	$-\theta$

Hawk and Doves

Sharing a prey

Population Opponent Him	D	$1-p$
D	$1 / 2$	0
H	1	$-\theta$

Hawk and Doves

Sharing a prey

Population Opponent Him	D	$1-p$
D	$1 / 2$	0
H	1	$-\theta$

Wardrop condition:

$$
0.5 p=p-\theta(1-p) \quad \Rightarrow \quad p=\frac{\theta}{\theta+0.5}
$$

Replicator Dynamics

If $G(x, q)$ measures the excess of births over deaths, like begets like, and q is interpreted as the distribution of strategies among the population, it follows that

$$
\dot{q}(t, x)=q(t, x)[G(x, q(t))-F(q(t), q(t))] .
$$

This is called the replicator dynamics.

Replicator Dynamics

If $G(x, q)$ measures the excess of births over deaths, like begets like, and q is interpreted as the distribution of strategies among the population, it follows that

$$
\dot{q}(t, x)=q(t, x)[G(x, q(t))-F(q(t), q(t))] .
$$

This is called the replicator dynamics. "Evolutionary game ?"

Replicator Dynamics

If $G(x, q)$ measures the excess of births over deaths, like begets like, and q is interpreted as the distribution of strategies among the population, it follows that

$$
\begin{equation*}
\dot{q}(t, x)=q(t, x)[G(x, q(t))-F(q(t), q(t))] . \tag{1}
\end{equation*}
$$

This is called the replicator dynamics. "Evolutionary game ?"
Theorem In the finite linear case, every locally stable point of (1) is a Nash point. Every ESS is a locally asymptotically stable point of (1) and its attraction basin contains a neighborhood of the relative interior of the lowest dimensional face of $\Delta(X)$ it lies on.

Proof

Use the Lyapunov function

$$
V(q)=\sum_{i} p_{i} \ln \left(\frac{p_{i}}{q_{i}}\right)
$$

In $x \leq 1+x \Rightarrow V(q)>0$ if $q \neq p$ and

$$
\dot{V}(q)=F(q, q)-F(p, q)
$$

Stability in the infinite case

with A. J. Shaiju

We are investigating the stability of a differential equation over a space of measures. The Lyapunov function used to prove the above theorem is not continuous in the weak topology in the infinite case. We do not know whether an ERS (even global) is necessarily a stable point of (1).

Stability in the infinite case

with A. J. Shaiju

We are investigating the stability of a differential equation over a space of measures. The Lyapunov function used to prove the above theorem is not continuous in the weak topology in the infinite case. We do not know whether an ERS (even global) is necessarily a stable point of (1).

Theorem If $H(x, y)=H(y, x)$, an ERS is locally asymptotically stable.

Proof: use the Lyapunov function $F(p, p)-F(q, q)$.

Two by two case

Players have only two pure strategies (two phenotypes in the population). The game is described by a 2×2 matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Let $\sigma=a-b-c+d$, (assume here $\sigma \neq 0$.)
Candidate Nash (via Wardrop condition) $p^{\star}=\frac{d-c}{\sigma}$. Is an ESS iff $\sigma<0$.

Example : for Hawk and Dove, $\sigma=-0.5-\theta<0$.

2×2 ESS

In this most simple context,
Definition p is an ESS if

1. (p, p) is Nash, \Longleftrightarrow

$$
\forall q \in[0,1], \quad\left(\begin{array}{cc}
p-q & q-p
\end{array}\right) A\binom{p}{1-p} \geq 0
$$

and
2. If $p \notin\{0,1\}$, then necessarily $p=p^{\star}$ and the above is 0 ,

$$
\forall q \neq p^{\star}, \quad\left(\begin{array}{ll}
p^{\star}-q & q-p^{\star}
\end{array}\right) A\binom{q}{1-q}>0
$$

2×2 ESS continued

Corollary If $a \neq c$ and $b \neq d$, there always exists an ESS

1. If $\sigma=0$ or $\sigma \neq 0$, but $p^{\star} \notin(0,1)$, the unique ESS is pure,
2. If $\sigma \neq 0$ and $p^{\star} \in(0,1)$,
(a) If $\sigma<0, p^{\star}$ is the only ESS,
(b) If $\sigma>0$ there are two pure ESS and no mixed ESS.

2×2 ESS continued

Corollary If $a \neq c$ and $b \neq d$, there always exists an ESS

1. If $\sigma=0$ or $\sigma \neq 0$, but $p^{\star} \notin(0,1)$, the unique ESS is pure,
2. If $\sigma \neq 0$ and $p^{\star} \in(0,1)$,
(a) If $\sigma<0, p^{\star}$ is the only ESS,
(b) If $\sigma>0$ there are two pure ESS and no mixed ESS.

Proof

$$
\left(\begin{array}{cc}
p^{\star}-q & q-p^{\star}
\end{array}\right) A\binom{p^{\star}}{1-p^{\star}}=-\sigma\left(q-p^{\star}\right)^{2} .
$$

Replicator equation

If "fitness" measures the reproductive efficiency, i.e. the rate of the excess of births over deaths (possibly negative), p evolves accordingly to the simple replicator equation which becomes here

If $\sigma \neq 0$,

$$
\dot{p}=\sigma p(1-p)\left(p-p^{\star}\right)
$$

Replicator equation

If "fitness" measures the reproductive efficiency, i.e. the rate of the excess of births over deaths (possibly negative), p evolves accordingly to the simple replicator equation which becomes here

If $\sigma \neq 0$,

$$
\dot{p}=\sigma p(1-p)\left(p-p^{\star}\right)
$$

If $\sigma=0$,

$$
\dot{p}=(b-d) p(1-p)
$$

Elementary replicator equation analysis

Population game

Two populations, with two behaviors each, interacting with each other. States p_{1} and p_{2}, proportions of individuals using the first behavior.

Fitness accrued by an individual of population i using its first behavior $a_{i} p_{j}+b_{i}\left(1-p_{j}\right)$, and with its second behavior $c_{i} p_{j}+d_{i}\left(1-p_{j}\right)$.

Replicator equations become

$$
\dot{p}_{i}=\sigma_{i} p_{i}\left(1-p_{i}\right)\left(p_{j}-p_{j}^{\star}\right) .
$$

Phase portrait

1. Unique (pure) Nash equilibria are stable,
2. If $\left(p_{1}^{\star}, p_{2}^{\star}\right) \in(0,1) \times(0,1)$,
(a) If $\sigma_{1} \sigma_{2}<0$, the unique Nash equilibrium $\left(p_{1}^{\star}, p_{2}^{\star}\right)$ is a center, and all trajectories are periodic.
(b) If $\sigma_{1} \sigma_{2}>0$, the Nash equilibrium ($p_{1}^{\star}, p_{2}^{\star}$) is a saddle, the two pure Nash are stable.

Proof The following function is a first integral:

$$
V\left(p_{1}, p_{2}\right)=\sum_{i=1}^{2}(-1)^{i} \sigma_{i}\left[p_{i}^{\star} \ln \frac{p_{i}^{\star}}{p_{i}}+\left(1-p_{i}^{\star}\right) \ln \frac{1-p_{i}^{\star}}{1-p_{i}}\right]
$$

Lynxes and wolves

$L \backslash W$		cow.		agr.
cow.		$1-\lambda$		1
	λ		0	
agr.	$1-\mu$	0		$-\theta$
			$1-\nu$	
$\lambda+\mu>1>\nu$				

$$
\begin{array}{ll}
\sigma_{1}=\lambda+\mu-\nu, & p_{2}^{\star}=(1-\nu) /(\lambda+\mu-\nu) \\
\sigma_{2}=-\lambda-\theta, & p_{1}^{\star}=\theta /(\lambda+\theta)
\end{array}
$$

Lynxes and wolves

$L \backslash W$		cow.	agr.	
cow.		$1-\lambda$		1
	λ		0	
agr.		0		$-\theta$
	$1-\mu$		$1-\nu$	
$\lambda+\mu>1>\nu$				

$$
\begin{array}{ll}
\sigma_{1}=\lambda+\mu-\nu, & p_{2}^{\star}=(1-\nu) /(\lambda+\mu-\nu) \\
\sigma_{2}=-\lambda-\theta, & p_{1}^{\star}=\theta /(\lambda+\theta)
\end{array}
$$

Draw case $\quad \lambda=\nu=0,5, \quad \mu=0,75, \quad \theta=1,5$.

Wolves and Lynxer

Two identical populations

Two identical but distinct populations. Potentially, $p_{1} \neq p_{2}$.
But $A_{1}=A_{2}$, hence $\sigma_{1}=\sigma_{2}$. Assume further that $\sigma_{i}<0$. The single population replicator equation is stable at p^{\star}, but $\sigma_{1} \sigma_{2}>0$ hence (p^{\star}, p^{\star}) is not stable.

The diagonal $p_{1}=p_{2}=p$ represents the solution of the one-population game. Highly unstable in the two-population game.

Two identical populations

