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Summary. We propose a new method for anisotropic polygonal surface remeshing.
Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular
metric, defined at each triangle facet of the input mesh, is derived from both a
user-specified normal-based tolerance error and the requirement to favor rectangle-
shaped polygons. Our algorithm uses a greedy optimization procedure that adds,
deletes and relocates generators so as to match two criteria related to partitioning
and conformity.

1 Introduction

Polygon surface meshes are preferred over triangle meshes in a number of
applications related to geometric modeling and reverse engineering. Among
those, anisotropic meshes are preferred over isotropic ones when seeking
faithful surface approximation for a low number of elements. Inspired by T-
meshes [17], the initial motivation of our work is an extension of the variational
shape approximation method [7] to generate rectangle-shaped polygons.

In the following we denote by S the input surface triangle mesh.
A subdomain is defined as a connected subset of facets of S. A
discrete domain decomposition of S is a decomposition of S into
subdomains, possibly with overlaps and orphans. A generator is
a facet of S that induces a subdomain through its associated
anisotropic rectangular metric (see inset).

Problem statement. Assume an input surface S given as a surface trian-
gle mesh approximating a piecewise smooth surface, with or without bound-
aries. We wish to generate a polygon surface mesh where all elements i) are
nearly rectangle-shaped, ii) are sized and oriented in accordance to a user-
specified tolerance error expressed in local maximum normal deviation to S,
and iii) are partitioning S while favoring conforming configurations where
possible, i.e., ideally with no T-junctions. In addition, we wish to minimize



2 Bertrand Pellenard, Jean-Marie Morvan, and Pierre Alliez

the number of polygons for the specified tolerance. This goal is equivalent to
maximize the polygon areas.

While strict local accordance to both sizing and cross fields is already noto-
riously delicate in the isotropic case, seeking for anisotropic rectangle-shaped
polygons with arbitrarily aspect ratios adds other challenges to guarantee
island-free and orphan-free partitioning and favor conformity so as to avoid
T-junctions [17].

1.1 Previous Work

A common way to state the surface remeshing problem is to say that we wish
to decompose the input surface S with elements that i) partition S (with no
overlaps nor orphans), ii) meet at edges, iii) are well shaped and iv) approx-
imate well S. For specific applications additional criteria may also be sought
after, such as regularity, simplicity of the domain structure [3, 22] and more
recently, preservation of a remeshing style [23].

Requirements. While the requirements listed above are now relatively
well understood for meshing smooth surfaces with isotropic triangle surface
meshes, remeshing piecewise smooth surface with anisotropic polygons reveals
substantially more difficulty due to more complex requirements that may in-
teract and conflict. We now review each of these requirements:

• Partitioning: decomposing the domain into subdomains with no overlaps
nor orphans. In our context each triangle of S must be covered once.

• Meet at edges: this requirement translates the desire to avoid T-junctions
where possible. This requirement conflicts with a graded metric.

• Well shaped: in our context we wish to generate a majority of rectangle-
shaped polygons. Note that more basic shape requirements include disc-
topology (the later being already not direct for anisotropic partitions [14,
2, 5]) and convexity.

• Approximate well: in our context we wish to approximate well the normals
to the input surface S. This translates into control over the (coupled) no-
tions of orientation and size. As we also wish to approximate piecewise
smooth surfaces this requires control over alignment, which is not shift
invariant contrary to orientation [15]. The approximation requirement, to-
gether with the rectangular shape requirement, leads to generate subdo-
mains in accordance to a local anisotropic rectangular metric.

Metric. A common way to compute an anisotropic metric is from cur-
vature estimates [1, 20, 16]. However, this requires choosing a scale such as
neighborhood or integration domain, which is not related to an intuitive pa-
rameter. In addition, local curvature estimates may lead to incorrect metric
such that, e.g., a parabolic zone may dictate an infinite dimension in zero-
principal-curvature direction, while the input surface is obviously bounded.
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These approaches often require, e.g., bounding anisotropy [16], typically in
the range 1 to 5. Furthermore, local curvature tensor estimation is relevant
for smooth asymptotic analysis, but anisotropic meshing is often used for
generating coarse meshes from piecewise smooth surfaces where the approx-
imation rates drop near sharp creases. Another way to derive an anisotropic
metric is to measure normal deviation to the tangent plane [13] or to several
tangent planes near sharp features [16]. This is also combined with bounded
anisotropy, again in the range 1 to 5 [13].

Remeshing. For quadrangle remeshing much effort has been carried out
to control alignment and orientation so as to orient edges to salient directions
(often derived from curvature estimates) and align them to features such as
sharp creases and boundaries [9, 4]. These approaches construct meshes that
are mostly regular, by construction conforming and partitioning but local
sizing is hard to control and hence anisotropy is often not matched. Recent
progress has been made on decimation methods [10, 21] but the resulting
meshes are still mostly isotropic.

Another way to guarantee partitioning by construction consists of con-
structing centroidal Voronoi diagrams through relaxation with anisotropic
L2 [8] or L∞ [16] metrics. Conformity is however not optimized for when
using the Lloyd iteration as the optimized energy does not relate to confor-
mity. In addition, anisotropy is in general limited to low aspect ratios or to
metrics with smooth grading to avoid partitioning defects [5]. Another draw-
back of such relaxation methods is that control over sizing is only relative
such that the optimized cells are sized not strictly in accordance to the input
metric but rather proportionally. This requires a special care on providing
the relaxation process with the right number of generators. Another relax-
ation method is the variational shape approximation method [7]. Being solely
error-driven the latter is not devised to generate rectangle-shaped polygons
and does not optimize for conformity.

A conforming relaxation method has been recently proposed [19] to im-
prove conformity but it also suffers from partitioning defects when employed
with strongly anisotropic metrics. The inset depicts a common
defect that arises when a generator with a large metric competes
with a nearby generator with a small metric. While the method
is guaranteed to partition by construction, the local metrics that
highly differ may greatly alter the partitioning process and lead
to poor accordance to the metric. A better placement algorithm
for the generators would not generate such partition defects, but
the main issue with relaxation methods is that they rely on such
defective partitioning for relocating generators. This suggests that building
upon a guaranteed partitioning may not be the best option when seeking
meshes with widely anisotropic metrics.

In summary, anisotropic surface remeshing is facing the dilemma between
conformity and anisotropy, even more so for rapidly varying metrics where
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anisotropy and conformity are highly conflicting. Some algorithms guarantee
partitioning and conformity but this often comes at the price of relaxing the
metric, either in aspect ratio or in size. Instead of relaxing the metric, we
depart from previous work by relaxing partitioning and conformity during
the placement of generators and optimize an objective function related to
these requirements.

(a) Input (b) Metric

(c) Decomposition (d) Mesh

Fig. 1. Overview. Input surface triangle mesh (a). Anisotropic rectangular metric
shown for only 20% of the mesh facets to avoid visual cluttering (b). Decomposition
induced by generators after greedy optimization favoring partitioning and confor-
mity (c). Final polygon mesh (d).

1.2 Positioning and Contributions

Our approach bridges the gap between error-driven and metric-driven meth-
ods so as to generate anisotropic rectangle-shaped polygons. Our two main
contributions are as follows:

1. We derive an anisotropic metric at each facet of the input mesh from
both a user-specified maximum tolerance error over the normals, and the
requirement to favor rectangle-shaped polygons. In addition to offer arbi-
trarily aspect ratios, this metric is rectangular and not centered at each
facet. Departing from the common approach which uses an elliptic cen-
tered metric, such off-centered metric is shown to preserve sharp features.
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2. For placing generators we propose a greedy optimization procedure which
adds, relocates and deletes generators – in accordance to the absolute met-
ric – so as to optimize for both partitioning and conforming requirements.

2 Overview

The algorithm comprises three steps. We first compute an anisotropic rectan-
gular metric at each facet of the input surface mesh S = (V, E ,F). We then
generate a decomposition of S in accordance to the metric through a greedy
optimization procedure that optimizes for partitioning and conformity. The
final mesh is obtained through discrete Voronoi partitioning followed by a se-
ries of local edge collapse operators. The two first steps of the algorithm act
on the discrete input surface triangle mesh. The main input parameter is a
maximum tolerance error ε expressed in local normal deviation to S. Figure 1
depicts the steps of our algorithm, summarized as follows:

Algorithm 1: Anisotropic polygonal surface remeshing Algorithm.
Data: Surface triangle mesh S.
begin

1. Metric (3)
2. Decomposition (4)
3. Meshing (5)

Result: Polygon surface mesh.

3 Metric

An anisotropic rectangular metric is computed at each facet f of S. It is
derived from the initial requirement to generate rectangle-shaped subdomains
while being close to the input triangle surface mesh S. Close herein means
within the maximum tolerance error (ε > 0), the latter being expressed in
angular deviation to the local normal to S. On defect-laden input meshes we
first perform feature-preserving smoothing of the normals [11].

Each facet f of S is endowed with a canonical unit normal vector −→nf ,
compatible with the outward orientation. The deviation between two facets
f1 and f2 of S is the (positive) angle ˆ(−→nf1 ,−→nf2) between their normals −→nf1 and
−→nf2 , in the range [0;π].

ε-tolerance region. Let f be a facet of S. The ε-tolerance region B2,1(f, ε)
of f is the set of facets of S, connected to f , whose deviation with respect to
f is lower than ε :
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B2,1(f, ε) = {g ∈ S, ˆ(−→ng,−→nf ) ≤ ε}.

This region may be seen as the reciprocal image of a unit ball of radius
ε > 0 centered at f for the L2,1 semi-metric [7]. It may also be related to the
mean curvature.

The anisotropic metric Mf,ε of a facet f with tolerance ε is the rectangle
constructed as follows:

• Let −→n be the average normal vector of B2,1(f, ε).
• Let −→n⊥ be the (affine) 2-plane orthogonal to −→n add passing through the

center of f : c(f).
• Let Π−→n⊥(B2,1(f, ε)) be the orthogonal projection of B2,1(f, ε) on −→n⊥.

The anisotropic rectangular metricMf,ε is the largest rect-
angle inscribed in Π−→n⊥ (B2,1(f, ε)) containing Π−→n⊥(c(f)). The
key justification for choosing the largest rectangle inscribed in
Π−→n⊥ (B2,1(f, ε)) containing Π−→n⊥(c(f)) is that the tolerance re-
gion is in general not rectangle-shaped. The inset depicts the
largest rectangle (blue) inscribed in the tolerance region (gray) containing
the query facet (red). We extended an existing algorithm for computing the
largest axis-aligned rectangle empty of query points [18] such that the largest
rectangle is constrained to contain a given query point (here c(f)), and is not
necessarily axis-aligned through a simple uniform sampling of the directions.
Figure 2 depicts the anisotropic rectangular metric evaluated at a single facet
for both smooth and piecewise smooth shapes.

Figure 3 depicts the set of shift vectors for all facets of S. Note that on
the 6 faces of a parallelepiped all shift vectors point to the center of the face,
which is intrinsically redundant. We explain next how our greedy optimiza-
tion procedure takes advantage of such redundancy to pick the best generator
among the many degrees of freedom offered by this redundancy. Note also
that near sharp creases the usual anisotropic metric described as an ellipse or
rectangle centered at the query facet would not preserve the crease.

We now define some notions behind the anisotropic rectangular metric,
the L∞ distance in the anisotropic metric and the corners for each metric.

Metric. The anisotropic rectangular metric of facet f , denoted by Mf,ε,
is defined by a shift vector from c(f) to Γ (f) (the rectangle center, in general
not inside f) and two non-unit orthogonal vectors ~uf and ~vf .

L∞ distance. The L∞ distance between p and q in the metric Mf,ε is
defined as follows :

d
Mf,ε
∞ (q, p) = max

{
| ~pq · ~uf |
|| ~uf ||2

,
| ~pq · ~vf |
|| ~vf ||2

}
,
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Fig. 2. Example metrics shown for a single query facet. We first compute the
tolerance region (gray) for the query facet (red), then compute the largest inscribed
rectangle (blue) in this tolerance region, that contains the facet. On these examples ε
is set to 15 degrees. Note how the tolerance region can be far from being rectangular
(elliptic for ellipsoid, ring for the torus, triangle for the cone, u for the anchor), and
the metric can be far from being centered at the query facet. On the cone the metric
varies in shape and area depending on the location of the query facet.

where · denotes the usual dot product in R3. In order to take into account the
shift vector of a metric, the L∞ distance of a facet h from the center of the
metricMf,ε is given by dMf,ε

∞ (c(h), Γ (f)), where c(h) denotes the centroid of
facet h.

Metric corner vertices. For each facet f , the corner vertices of its metric
Mf,ε are defined as the four vertices of S which are respectively the closest
from the four corner points of its unit rectangle in the local metric. These four
corner points have as approximate L∞ distance coordinates (−1,−1), (−1, 1),
(1,−1) and (1, 1) in metric Mf,ε.

Figure 4 depicts the anisotropic rectangular metric evaluated at some
facets of the hippo model. The metric can be locally redundant (if several
shift vectors point to the same area), and conflicting both in size and in ori-
entation.

4 Decomposition

We now wish to generate a decomposition in best accordance to the precom-
puted anisotropic rectangular metric while matching the requirements listed
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(a) (b) (c)

(d) (e) (f)

Fig. 3. For each input mesh (a),(d), we show some metrics (b), (e) and draw all
shift vectors between a facet and its associated metric center (c),(f).

Fig. 4. Metric shown for only 10% of the facets to avoid visual cluttering.

in Section 1. The decomposition is obtained by placing generators through a
greedy optimization procedure that optimizes for partitioning and conformity.

At each facet f of the input surface mesh S is associated a generator with
the corresponding anisotropic rectangular metric. Local metrics may greatly
overlap and conflict. Our goal bears some similarity with the set-cover problem
as we search for the minimum set G of generators such that the decomposition
best matches the requirements. Remind that the general set-cover problem,
shown to be NP -hard, consists in finding the minimum number of subsets
of a set that cover the input domain [12]. Instead of guaranteeing partition-
ing by construction when using, e.g., L∞ Voronoi diagrams [16, 19], we favor
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during optimization the absolute matching of the metric while allowing a de-
composition with both overlaps and orphans. In other words, the partitioning
requirement now becomes an objective function to optimize through the no-
tion of coverage.

Coverage. We define a coverage energy which measures how the current
generators satisfy the requirement to cover each facet of S once. We first
define the covering set CMg,ε

of a generator g as the connected set of facets
containing g, within the ε-tolerance region of g and whose L∞ distance in the
metric Mg,ε to g is lower than 1:

CMg,ε
= B2,1(g, ε)

⋂{
f ∈ F : dMg,ε

∞ (c(f), Γ (g)) ≤ 1
}
.

In addition, we define for each facet f
of S its coverage v(f) as the number of
generators that cover f :

v(f) = {g ∈ G : f ∈ CMg,ε
}.

The inset depicts the facet coverage when
placing two generators.

The total coverage energy is defined as: Ev =
∑
f∈F

(v(f)− 1)2 .

Conformity. A subdomain corner is a vertex of S adjacent to three subdo-
mains or more in the interior, or to two or more subdomains on the boundary
of S. A decomposition is said conforming when the domain decomposition
contains no T-junctions. In our setup a relaxed version of this notion means
that all subdomain corners nearly coincide with metric corner vertices (de-
fined above). We define a conformity energy which favors close metric corners
for all generated subdomains. This energy is computed for each vertex of S
and depends on the generators placed in its neighborhood. The latter requires
defining the coverage of a vertex as the set of generators that cover it accord-
ing to a loose L∞ distance (set to 2). We denote this coverage by Nv. The
conformity energy of a vertex is defined as :

Ef(v) =
1(|Nv|
2

) ∑
g1,g2∈Nv
g1 6=g2

||χv,g1 − χv,g2 ||2
(
Φg1(χv,g1 , v)

ḡ1
+
Φg2(χv,g2 , v)

ḡ2

)
,

where χv,g denotes the closest corner of g from v (in the metric of g), ḡ denotes
the average norms of the two metric vectors of g (such that the distance
between two interacting corners is normalized to the local metrics),

(|Nv|
2

)
denotes the number of oriented pairs (g1, g2), and

Φg(p, q) = 4.1{(p,q):dMg,ε
∞ (p,q)≤ 1

2}

(
1
2
− |
−→pq · −→ug|
|| ~ug||2

)(
1
2
− |
−→pq · −→vg |
||~vg||2

)
,

where 1 is the indicatrix function, and −→ug and −→vg are the two metric vectors
of g. Φg(p, q) is an importance function valued 1 at each subdomain corner
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that decreases to zero with bilinear interpolation at the L∞
distance 0.5 (see inset: from white to black by increasing im-
portance). The rationale behind this formula is to penalize
distant corners between all oriented pairs of neighboring sub-
domains, for all vertices of S, and with a higher importance
coefficient for vertices near the metric corners. Choosing ori-
ented instead of unoriented pairs allows us to measure the
distance between corners in the metric of both g1 and g2.

As defined above the conformity energy Ef(v) is non-zero only if at least
two subdomains interact, i.e., overlap according to their 2-L∞ distance. As
we wish to penalize the generation of isolated subdomain we add a special
case when a subdomain does not interact with any subdomain. In this case
we set Ef(v) = 1, which amounts to consider a highly penalizing corner dis-
tance. During the first phase of the optimization procedure – which mostly
adds generators – this tends to favor an advancing front instead of a random
placement of isolated subdomains, the latter revealing detrimental to confor-
mity. The total conformity energy is defined as: Ef =

∑
v∈V

Ef(v).

Global energy. The global optimized energy has terms on facets of S
and on vertices of S: E = Ev + αEf, where α is used to trade conformity for
partitioning (set to 0.5 in all examples shown).

Energy minimization. The global energy is minimized through a greedy
optimization procedure which adds, relocates and deletes generators, such that
the corresponding overlapping decomposition is optimized for partitioning and
conformity. More specifically, we use a modifiable priority queue with poly-
morphic operators (addition, relocation, deletion), sorted by decreasing order
of energy changes, referred to as the operator cost. While the addition and
deletion operators are defined per generator, the relocation operator is defined
for each feasible pair of generators. To avoid dealing with a large combina-
torial complexity we thus restrict relocation of each generator g to a random
subset (set to 20% in all examples shown) of the (unused) generators only
among the ones covered by g. During optimization, and to efficiently update
the priority queue, we dynamically maintain for each generator the list of gen-
erators covered by it as well as the list of generators that cover it. We perform
the same book-keeping for vertices but with a looser notion of covering: the
2-L∞ distance with respect to the metric of each generator.

Initially we insert no generators on S, and the priority queue is initialized
with only addition operators that correspond to all generators (as many as
the number of facets of S). At each step of the algorithm (an operator popped
out of the queue) we update the priority queue by removing unfeasible op-
erators, updating the cost of the modified feasible operators, and adding all
new feasible operators. The algorithm stops when no decrease of the energy
is possible. Algorithm 2 summarizes the optimization process.
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Algorithm 2: Greedy optimization
Data: Triangle surface mesh S.
Result: Set of generators G on S.
begin

G = ∅;
Enumerate C operators (addition, deletion, relocation);
Fill priority queue with C;
while next operator in queue decreases energy do

Pop operator from queue;
Apply operator;
Update G;
Update queue;

As expected this greedy algorithm starts by a vast majority of addition
operators (with the largest subdomains first to improve coverage), before auto-
matically switching to a relaxation phase where a large majority of relocation
operators are chosen. Figure 5 depicts the energy decrease during optimiza-
tion. The curves shows a faster decrease of the coverage than of the conformity
term of the energy. Most relocation operators occur toward the end. Only a
few deletion operators occur especially on isotropic areas where the metric is
rapidly varying in direction but not in size.

Fig. 5. Energy decrease. The curves show the coverage and the conformity compo-
nents of the energy. The iterations on the horizontal axis corresponds to the number
of operators popped out of the priority queue.

Figure 6 illustrates the role of the conformity term in the energy. The
subdomains are not perfectly conforming but conformity is largely improved
where the metric offers enough degrees of freedom among all generators.

Figure 7 illustrates a little more subtle behavior of the conformity term
of the energy. On this isotropic example all metrics are equally sized but
there is no favored direction due to isotropy. This makes the metric highly
incompatible in orientation. When running the greedy optimization without
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Fig. 6. Optimizing for conformity. On this anisotropic saddle (shown left) we com-
pare the placement of generators without (middle) and with (right) the conformity
term in the energy. The saddle is shown from above.

the conformity term the algorithm favors only coverage and hence pops addi-
tion operators in decreasing order of area without choosing locally compatible
directions. When running the optimization with the conformity term the al-
gorithm pops operators in an order which balances coverage and conformity.
This induces a decomposition locally more compatible in orientation as the
priority can pick a good subset of generators among all feasible generators.

Fig. 7. Placement on a sphere. Left: the metric is uniformly sized but highly not
compatible in orientation. Top: decomposition without conformity term in the en-
ergy. Bottom: decomposition with the conformity term.
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5 Meshing

From the current decomposition we now wish to generate a polygon surface
mesh. Note that the greedy optimization procedure optimizes for it, but does
not guarantee the partitioning requirement: generally, Ev 6= 0. We first gen-
erate a partition of S through a discrete Voronoi partitioning computed over
the triangles of S. We then generate a polygon surface mesh, denoted by M,
induced by this partition. As post-processing we then apply a series of local
edge collapse operators to M in order to eliminate some of the T -junctions
(Figure 8).

Discrete Voronoi Partitioning. Similarly to previous work [19, 7] we
generate a partition by flooding the input mesh S one triangle at a time from
the set of generators placed during decomposition. We use a global priority
queue initialized with all feasible triangles incident to the generators. The
triangles are popped out of the queue and added to the partition in increasing
order of anisotropic distance to the off-center of their respective generator.
Each distance is measured with respect to its respective metric.

Each vertex of S is now located either at the interior of a partition sub-
domain or at the interface between 2 or more partition subdomains. A vertex
is said of degree n (with n > 1) if it is adjacent to n subdomains. Following
the terminology of Pellenard et al. [19], we tag as meta-vertices the vertices
of S with degree ≥ 3 in the interior, and ≥ 2 on the boundary of S. We
then generate the polygon surface mesh M induced by the partition and its
meta-vertices.

Local operators. Note that the greedy optimization procedure optimizes
for it, but does not guarantee the conformity requirement. In some places
M thus contains nearby T-junctions connected by short edges which can be
easily eliminated through edge collapse operators. Using a priority queue we
thus recursively collapse short edges by increasing length, where the length is
expressed in the local anisotropic metric. The length of short edges is limited
to a small fraction of the unit local length (set to β = 0.25 in all experiments
shown).

6 Results

The parameters of our algorithm are summarized as follows:

• ε: tolerance error
• α: trade coverage for conformity (Section 4)
• β: maximum length of collapsed edges (Section 5)

Our algorithm is implemented in C++ using the CGAL library [6]. All
examples are computed on a PC with 4 cores clocked at 2.40GHz. Computa-
tional times are in the order of 30mn for pre-computing the anisotropic metric
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Fig. 8. Meshing. Generators and induced decomposition with overlaps and orphans
(left). Partition after discrete Voronoi partitioning (middle left). Induced polygon
mesh with short edges depicted in red (middle right). Final polygon mesh after
collapsing short edges.

and 40mn for placing generators on an input mesh with 200K triangles (resp.
5 and 2.5 minutes for a mesh with 20K triangles). During the computation
of the metric 95% of the time is spent at finding the largest rectangles. Dur-
ing the placement of generators 90% of the time is spent at measuring the
conformity energy.

Figure 9 is a sanity check on canonical shapes. On the cylinder the polygons
have an aspect ratio close to 10. Aspect ratios of 100 are obtained when using
a smaller normal tolerance error in combination with a finer input mesh. On
the torus the metric varies in size and thus the final meshing conforms only
where possible. On the capsule the spherical caps conform where possible to
the parabolic area. The conformity term of the energy favors one arbitrary
direction on the spherical caps.

(a) Cylinder (b) Torus (c) Capsule

Fig. 9. Remeshing for canonical shapes.

Figure 10 illustrates the behavior of our algorithm on the Fandisk model
where the rectangular metric highly conflicts on surface patches with concave
boundaries.

Figure 11 illustrates the behavior of our algorithm when varying the nor-
mal tolerance error on the ellipsoid.

Figure 12 compares our approach with VSA [7]. Our method behaves well
even on nearly planar areas as well as on the turning parabolic areas such as
the arms. VSA generates during the optimization phase a partition which is
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Fig. 10. Fandisk. Top: input mesh, metric and decomposition by generators placed.
Bottom: partition defect, partition and final polygon mesh.

(a) ε = 15 degrees (b) ε = 10 degrees (c) ε = 6 degrees

Fig. 11. Ellipsoid. Remeshing for decreasing normal tolerance errors: 15 degrees
(a), 10 degrees (b) and 6 degrees (c).

hampered with noise on nearly planar areas, and composed of curvy regions
on the arms which are far from being convex and hence challenges the meshing
step.

Figure 13(b) illustrates our approach on the elephant model. Figure 13(a)
illustrates a case of rapidly varying metric. The distribution of angular devi-
ations depicted by Figure 13(b) shows a rapid drop beyond the user-specified
tolerance error.

Limitations. One limitation of our approach is the computational time
to compute the metric (in the order of several minutes for 30K vertices),
with most of the time spent at computing the largest inscribed rectangle.
Computing the conformity term of the energy during optimization is also
labor-intensive, mostly due to the time and book-keeping required to detect
the neighboring subdomains of each vertex. Another limitation lies into the
fact that the orphan parts of the input mesh (not covered by generators during
decomposition) which are partitioned during the discrete Voronoi partitioning
step may lead to concave polygons. Finally, our greedy optimization performs
one operator at a time, and thus often finds local minima except for simple
canonical shapes.
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(a) Our method (b) VSA

Fig. 12. Comparison with VSA [7].

(a) Mushroom (b) Elephant

Fig. 13. Mushroom and Elephant. Left: metric, decomposition and mesh for mush-
room. Right: metric, decomposition, mesh, and distributions of angular deviation
between the input and the final meshes.

7 Conclusion

We introduced a novel feature-preserving anisotropic rectangular metric based
on finding the largest inscribed rectangle inside a normal-based local toler-
ance region. This metric is defined at each facet of the input surface mesh by
a rectangle and a shift vector which helps preserving features and generat-
ing large polygons. We proposed a simple greedy optimization procedure for
placing generators which departs from previous work by using an overlapping
decomposition instead of a partition, and by simultaneously optimizing for
partitioning and conformity.

The added value of our approach is its capability to generate polygo-
nal meshes where the polygons are nearly rectangle-shaped with arbitrary
anisotropic aspect ratios. Our domain decomposition algorithm proceeds in
absolute accordance to the metric, and automatically switches from refinement
to relaxation.

As future work we wish to investigate how the vector field formed by the
metric shift vectors can be analyzed to accelerate the placement of genera-
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tors. We also wish to use not just largest rectangles but also largest triangles
and ellipses so as to adjust the degree of the polygons to the local surface
geometry. We also want to find a way to process the metric through, e.g.,
quantization, so as to further reinforce conformity in cases where strict accor-
dance to the metric is not a priority. Finally, we will investigate a dynamic
programming approach capable of placing more than one generator at a time
during optimization so as to reach lower minima of the energy.
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