A New Efficient Caching Policy for the World Wide Web

Nicolas Niclausse,

Zhen Liu,

Philippe Nain

INRIA Centre Sophia Antipolis
2004 Route des Lucioles

B.P. 93,

06902 Sophia Antipolis,

FRANCE

{Zhen.Liu, Philippe.Nain, Nicolas.Niclausse}@sophia.inria.fr

http://www.inria.fr /mistral /Les Gens-eng.html

Proc. Workshop on Internet Server Performance (WISP’98), Madison, WI,
USA, June 1998

Abstract

With the increasing popularity of the World Wide
Web, the amount of information available and the
use of Web servers are growing exponentially. In or-
der to reduce the overhead induced by frequent re-
quests to the same documents by local users, client
caching and, more generally, proxy-caching have
been proposed and are now widely used. Most im-
plementations use traditional memory paging poli-
cies, like the Least Recently Used (LRU) policy.
However, due to the heterogeneity of the requests of
Web traffic, both in the size of the documents and
in the network transfer delays, such caching poli-
cies are not very efficient. In this work, we propose
a new caching policy which takes into account the
network latency, the size of the documents, their ac-
cess frequencies, and the time elapsed since the last
reference to documents in the cache. Through trace-
driven simulations and for various standard cost cri-
teria (request hit rate, byte hit rate and latency ra-
tio) we show that our policy performs better than
several policies proposed in the literature.

1 Introduction

With the increasing popularity of the World Wide
Web, Web traffic has become one of the most re-
source consuming applications on the Internet. So-
lutions to improve bandwidth utilization of Web
traffic are currently an important issue. Different
directions of research are being investigated in this
area, including the use of compression and delta-

encoding [14], multicast, server-push and new con-
gestion avoidance algorithms.

Two most direct ways of reducing Web traffic have
been implemented recently. On the one hand,
improvements have been made in the HyperText
Transfer Protocol (HTTP), the most used transfer
protocol in the Web. The interaction with the lower
level protocol TCP has been modified in HTTP1.1
[10] to support, in particular, persistent connections
and pipelining, in order to reduce network use (up
to 10 times according to recent measurements [15])
and user perceived latency.

On the other hand, caching at different levels is pro-
posed and/or implemented: caching at the client
side [8] and in the backbone network [9]. Indeed,
according to statistical analysis (|3, 6]), some Web
servers and/or Web documents are much more pop-
ular than others. Thus, the request stream ex-
hibits some locality [1]: several clients in the same
area may require the same files to the same server
during a relatively short time interval. A proxy-
cache at the client side may therefore avoid superflu-
ous downloads of such files and hence save network
bandwidth and server capacity. In a proxy-cache, a
single host is used for several users (from one to sev-
eral hundred clients). Each client sends its requests
through the proxy which keeps copies of documents
in the cache, cf. Figure 1. A by product of a proxy-
cache (when it is well dimensioned) is the decrease
of the user perceived network latency. Again, as in
memory cache, a hierarchical system can be used in
proxy-cache [8].

As in traditional memory caching, a crucial ques-
tion in Web caching is to decide which documents

Server 1
Client 1

Server 2

Client 2 proxy-cache-WWW

Server 3

LAN

Figure 1: Web cache

must be kept in the cache. In other words, when a
new document must be brought into the cache and
that this one is full (or heavily loaded — see Section
3.1), which document(s) should be removed from
the cache ? The strategy to make such decisions is
referred to as caching policy. This paper focuses on
caching policies for proxy-caches.

Most current implementations use traditional mem-
ory paging policies like the Least Recently Used
(LRU) policy for proxy-caching. While LRU has
been shown to be very efficient for memory caching
(see [16, 17] for a survey), this policy is not as
good for Web caching, as already reported in sev-
eral trace-driven simulations studies ([2, 7, 19, 20]).
This follows from the high heterogeneity of both
the Web documents (their size varies from hundreds
of bytes to several megabytes) and of the transfer
delays on the Internet, which is in contrast with
memory caching where the objects (pages) have the
same size and the same communication delays. It
is therefore natural to search for caching policies
that integrate the specificities of Web caching. An-
other specificity of Web caching is that accesses to
the documents come from multiple users while they
originate from a single program in memory caching.

In this work, we propose a new caching policy — re-
ferred to as the MIX policy — which explicitly takes
into account the network latency, the size of the
documents, their access frequency, and for any doc-
ument in the cache the time elapsed since it has
been last referenced. Through trace-driven simula-
tions and for various standard cost criteria (request
hit rate, byte hit rate and latency ratio) we show
that our policy performs better than several popu-
lar policies proposed in the literature.

The paper is organized as follows. In Section 2 we
first give a brief overview of existing works pertain-
ing to the performance of caching policies, and then
introduce the new caching policy MIX. In Section 3

we report the performance comparison results ob-
tained through trace-driven simulations. In Sec-
tion 4 we point out further research directions in
the field.

2 Caching Policies

Previous studies in the area of performance eval-
uation and optimization of caching policies roughly
divide into two categories: analytical studies aiming
at determining an optimal caching policy for a given
cost criterion (e.g., minimize the number of misses)
and evaluation and comparison of the performance
of particular caching policies through trace-driven
simulations. This paper falls into the second cate-
gory. Before presenting further our contribution, let
us first review some recent results pertaining to the
first category.

2.1 Theoretical Results

The following somewhat idealized model of the be-
havior of a Web proxy-cache has been considered in
[12]. There is a finite collection U of objects (the
Web pages) that can be accessed via a Web server
equipped with a proxy-cache of (finite) size B. Each
time a request for a particular object in U is made
to the proxy-cache then either the object is already
in the cache and the request is successful (hit) or the
object is not in the cache in which case the caching
policy has to decide which set of objects, if any,
should be removed from the cache (e.g. to leave
room to the requested object and/or to leave the
cache in a better configuration). Each object has a
cost associated with it that may depend on its size.

In [12] off-line (the sequence of requests is finite and
known in advance) and on-line (the sequence of re-
quests in not known in advance) optimization mod-
els are considered and solved via dynamic program-
ming techniques. In the case of an off-line model the
authors show that the search for an optimal policy
reduces to the solution of a deterministic shortest
path problem. In this case, the objective is to mini-
mize the sum of the costs associated with all missed
requests. In the case of an on-line model, the au-
thors assume that the requests are generated accord-
ing to an ergodic Markov chain with the objective
of minimizing the expected cost per request caching

[12]. Here, the one-step cost is the sum of the costs
associated with the requests that are removed from
the cache at each miss. As acknowledged by the au-
thors, the search for optimal policies both for the
off-line and for on-line cases becomes rapidly unfea-
sible as the number of objects and controls increase
(Bellman’s “curse of dimensionality”). Indeed, the
size of the graph used in the off-line solution and
the number of states of the Markov chain used in
the on-line solution are exponential in the number
of objects (Web documents). The off-line problem
was shown to be NP-hard [11]. Thus, in practice,
suboptimal solutions or heuristic methods are re-
quired.

Before switching to heuristics and later on to trace-
driven simulations we would like to point out that
the search for an optimal policy for the on-line
model in [12] could benefit a great deal from neuro-
dynamic programming techniques [4]. These tech-
niques have proven useful in cases when standard
dynamic programming algorithms (value iteration
algorithm, policy improvement) fail to work due to
large state and control spaces. The authors of this
paper are currently studying the applicability of the
Q-learning algorithm [4, 18] to the on-line model
proposed in [12].

2.2 Heuristics

In the sequel we will focus on the following per-
formance metrics: the request hit rate, the relative
request hit rate, the byte hit rate, the relative byte
hit rate and the latency ratio. To define these per-
formance measures more carefully, let m be the to-
tal number of requests (documents), a; the size (in
bytes) of the i-th request and let §; = 1 if request ¢
is in the cache and §; = 0 otherwise.

The request hit rate is defined as the percentage of
documents that are in the cache, namely,

m
b
wr = 2= % (1)
m
The relative request hit rate is defined as W™ /W7,
where W is the request hit rate obtained for a

cache with an infinite size.

The byte hit rate is the percentage of bytes trans-
ferred from the cache, namely,

T-Z a; (51'
W = Lzm 2)
=1 7

The relative byte hit rate is defined as W°/W? __
where W?,_ . is the request hit rate obtained for a

cache with an infinite size.

Last, the latency ratio is defined as the ratio of the
sum of download time of missing documents over
the sum of all downloading latencies, namely,

Dimy lati(1—6:)
Yisy lat;

with lat; the time to download the i-th referenced
document from its server to the proxy-cache.

W= 3)

Several caching policies have been proposed in the
literature, some of them being implemented in real
systems (e.g. LRU in Squid — see Section 3). Below
we list five policies we used in our simulations, and
for each of them we point out its main advantages
and drawbacks.

e LRU: The Least Recently Used documents are
removed first.

Advantages: Simple to implement and efficient
in the case of uniform objects like in mem-
ory cache, used in other areas of caching for
decades.

Drawback: Does not consider size or download
latency of documents.

e LFU: The Least Frequently Used documents
are removed first.

Advantages: Simplicity.

Drawback: Does not consider size or download
latency of documents and may keep obsolete
documents infinitely in the cache (if no expira-
tion mechanism is used).

e SIZE [19]: Big documents are removed first.

Advantages: Removes big documents, therefore
keeps a lot of small files in the cache, resulting
in high request hit rate.

Drawbacks: May keep small documents indef-
initely in the cache (even if they are never ac-
cessed again). Low byte hit rate.

e GD-SIZE [7]: Greedy-Dual algorithm. A value
H is associated with each document in the
cache. When a page is brought into the cache,
H is set to the cost function equals to 1/STZE.
When a replacement has to be made, the doc-
ument with the smallest H (call it ming) is
removed from the cache, and every document

has its H reduced by ming. If a document
is accessed again, then its H is restored to its
cost.

Advantages: Intends to remove from the cache
the documents which are no longer required by
clients, and therefore overcome the drawback of
SIZE policy. More general cost functions can
be used. However, the simple 1/SIZE variant
yields the best performance with respect to all
performance measures considered in [7].

Drawbacks: Does not take into account the de-
lays induced by the network and the frequency
at which documents are accessed.

e HYBRID [20]: For each document j in the
cache, HYBRID computes its cost

m"efjc2 * (rtt; + C1/bw;) [size;

where C; and Cy are given constants (with de-
fault values 8196 and 0.9, respectively), ¢ is the
label of the server where document j has been
found, nref; is the number of references made
to document j since it has been brought in the
cache, rtt; and bw; are estimates of the round-
trip delay and of the available bandwidth be-
tween server ¢ and the proxy-cache, respectively
(see [20] for details on the computation of these
estimates). The HYBRID policy removes first
the documents in the cache with the smallest
costs.

Advantages: Maintains latency and throughput
statistics for each server.

Drawback: Needs additional data to be kept
in memory and more computing. Parameters
need also to be tuned carefully. Does not con-
sider last access time.

Several other policies have been proposed in the
literature (see [5, 13] among others) but have not
been implemented in our simulator. The interested
reader is referred to [7] for a more complete survey.

2.3 New Caching Policy: MIX

We conclude this section by introducing a new
caching policy, called the MIX policy. Our mo-
tivation has been twofold. On the one hand, we
try find a policy that takes into account, for ev-
ery document in the cache, important parameters

such as its size (size; for document j), the num-
ber of times it has been referred since it has been
last brought in the cache (nref;), the time elapsed
since the last reference to that document (tref; :=
date — date_last_ref;) and the download latency
of the last access to that document (lat;). On the
other hand, we would like to find a good tradeoff so
that the caching policy is efficient for most impor-
tant performance measures.

A natural cost function for MIX is typically a func-
tion that is nondecreasing in the parameters size
and lat and non-increasing in the parameters tref
and size. Indeed, it seems a priori better to keep
in the cache documents that are costly to retrieve
(lat is large) and/or often requested (nref is large)
and to first remove from the cache documents that
have not been accessed for a long time (tref large)
and/or that are big (size large).

There are infinitely many cost functions fulfilling the
above requirements. The key issue is to find a good
tradeoff between these parameters. We propose to
use the following function:

T1 T
lat}' * nref;

tref’® x size™*
J J

for document j. As usual, MIX removes first from
the cache documents with the smallest costs.

Tuning the parameters 7; (i = 1,...,4) in (4) is
not an easy task. Through many experiments (see
Section 3) we have observed that the key parame-
ter is ;. It indeed turned out in all these exper-
iments that selecting a value for r; which is much
smaller than the values for r2, r3, 74 significantly in-
creased the hit ratios. We ended up using r; = 1 for
1 =2,3,4 and r; = 0.1, a choice which yields good
performance for each cost in Egs. (1)-(3). Numeri-
cal results comparing MIX with these values for r;
(1t =1,...,4) to LRU, LFU, SIZE, GD-SIZE and
HYBRID policies are given in the next section.

3 Trace-Driven Simulations

3.1 About the Simulator

We have developed a simulator (in C++) which
models the behavior of a proxy-cache server. We use
the approach of trace-driven simulations in which
the stream of requests is taken from a log file.

The evolution of a proxy cache is simulated as fol-
lows. when a new request arrives in the simulator,
it checks the contents of the cache to see whether
the referenced document is already in it (accord-
ing to its URL). If yes, then the cache is left un-
changed and the counters of the referenced docu-
ment is updated, e.g., nref is increased by one,
and lat and date last _access are refreshed. Other-
wise, the document corresponding to the request is
fetched into the cache, pushing out one or more doc-
uments according to the caching policy if the cache
is full.

Documents in the caches may become obsolete due
to changes in the original servers. In order to deal
with this, the simulator checks whether a document
in the cache, when it is requested, is modified since
the last reference. If it is the case, then the request
is considered to be a miss and the new version of
the document has to be retrieved.

In practice, a proxy-cache of capacity around 30
GBytes can contain several hundreds of thousand
documents and can serve several hundreds requests
per second. Thus, it is time consuming to invoke the
replacement algorithm each time a new document is
fetched. Rather, it is useful to remove a significant
proportion of documents, when the replacement al-
gorithm is invoked, so as to make enough room for
future new requests.

This is for instance the case for Squid!, the most
widely used caching software (freely available for all
UNIX systems). There are a lower threshold and an
upper threshold in it. As soon as the cache occu-
pancy exceeds the upper one, Squid starts removing
documents according to the LRU algorithm until
the cache occupancy drops below the lower thresh-
old. More precisely, the LRU algorithm is applied to
at most 256 documents to avoid sorting a too long
list; the 8 documents with the smallest costs out
of these 256 documents are then removed from the

 http://squid.nlanr.net /Squid/

cache. This procedure is then repeated until the
cache occupancy drops below the lower threshold.
This “batch” removal mechanism may however lead
to longer “removal sessions” during which the perfor-
mance of the cache drops dramatically. Hence, the
last version of Squid (1.1) features another mecha-
nism aiming at removing files in a “smoother” way.
It regularly checks small batches of documents. If
the time elapsed since the last request of a docu-
ment exceeds a threshold (the LRU expiration age),
then it is discarded from the cache. This mecha-
nism is carried out in a way that every document
in the cache is checked once a day. Furthermore, to
keep the cache occupancy between the lower limit
and the upper limit, the LRU expiration age is dy-
namically updated so as to minimize the number of
“removal sessions’.

In view of these practical considerations, our simula-
tor implements caching policies (LRU, LFU, SIZE,
GD-SIZE, HYBRID or MIX) in the following way.
It uses a double threshold mechanism: when the
cache occupancy exceeds the upper threshold, then
the simulator sorts all the documents according to
the cost function associated with the caching pol-
icy (see Section 2), The documents with the lowest
costs are removed until the cache occupancy drops
below the lower threshold. We use the same values
for the lower and upper thresholds (90% and 95%)
as in Squid.

With such an implementation, all the above men-
tioned caching policies have the same time complex-
ity, namely the cost for sorting existing documents
in the cache. Note however that the number of pa-
rameters used and the cost of computing the sorting
criteria are different. It is also possible to imple-
ment the policies as in Squid so that whenever the
cache has to remove documents, only a small por-
tion of documents (say, 256 documents) is sorted.
Again, in such a case, these policies have the same
time complexity, but with different coefficient due
to computational cost of the sorting criteria. In this
regard, the new algorithm MIX and the algorithm
HYBRID are the most expensive ones due to the
computation of exponentials.

3.2 Simulation Results

We used public trace files available on the Web.
Each item in a trace file contains the URL of the
document, its size, download duration, and type

of the request. Dynamically generated documents
(mostly CGI scripts) were removed from the trace
files. The following traces were used:

e DEC? proxy-cache traces. These traces are
from an instrumented version of the Squid
proxy, and record all external web requests gen-
erated within Digital Equipment Corporation

e BU? client traces collected in 1995. These
traces were collected from the clients at Boston
University (each of them were using a modified
version of the Mosaic web browser).

e NLANR? top-level proxy-cache traces.

e INRIA traces (not public). Traces from our
local proxy-cache at INRIA/Sophia-Antipolis
(with size 1.2GB, and more than 150 clients)

In these traces the download time is the sum of
the time taken to retrieve a document and of the
time needed to transmit this document to the client.
Since in our traces the clients were connected to
the proxy via either a LAN or high speed network
(NLANR), the second component of the download
time is actually small compared to the first compo-
nent. Therefore, the download time in this paper is
essentially the time required to retrieve document,
which is the important parameter.

Table 1 summarizes basic statistics of these traces
(length, total size, and the maximum hit rates ob-
tained with an infinite-size cache). The low hit rates
observed on the NLANR traces are possibly due to
the fact that the corresponding proxy-cache is on a
higher level.

| Traces || Requests | Mbytes | Wr ., | W2, |

Digital 196656 2415 0.33 0.20
BU 79536 1156 0.44 0.34
NLANR 166506 2527 0.20 0.12
INRIA 449928 4895 0.42 0.18

Table 1: Main Statistics of the Traces

In order to compare the performance induced by the
different caching policies (LRU, LFU, SIZE, GD-
SIZE, HYBRID, MIX) we ran the simulator with

2ftp: / /ftp.digital.com/pub/DEC /traces/proxy /-
webtraces.html

3ftp:/ /cs-ftp.bu.edu/techreports/95-010-www-client-
traces.tar.gz

4ftp:/ /oceana.nlanr.net/Traces/Caching/

different cache sizes ranging from 5% to 35% of the
total number of bytes contained in each trace. For
all of them, we have plotted the relative request hit
rate W7 /W .. (resp. the relative request byte hit
rate WP /Wt and the latency ratio as defined in
Eq. (8)), versus the cache size.

We observe from Figures 2—5 that for the request
hit rate MIX and GD-SIZE clearly outperform the
other policies. LRU is the worst one. The improve-
ment over LRU is quite significant: the MIX policy
with a cache size of 125MB (5%) yields the same
result as LRU with 580MB (23%) (NLANR trace,
figure 5).

When the byte hit rate is the targeted cost func-
tion (Figures 6—9) MIX yields the best results (ex-
cept for the NLANR trace in Figure 9, where LFU
is sometimes slightly better). SIZE and HYBRID
behave poorly for this performance measure (Fig-
ures 6—9). For small cache sizes MIX yields a 100%
improvement over SIZE and HYBRID. MIX always
performs better than GD-SIZE (especially for small
cache sizes in the BU trace — see Figure 6). It is also
worth noting that for a given cache size the relative
request hit rate is always higher than the relative
byte hit rate. This is especially true for DEC and
NLANR traces.

Figures 10—13 display the latency ratio as a func-
tion of the (normalized) cache size. It is not surpris-
ing that policies which take into account the net-
work latency in their cost function, i.e. MIX and
HYBRID, give better results. As observed in [7],
GD-SIZE is very good for this measure as well. Nev-
ertheless, our MIX policy is slightly better for every
trace used in our experiments. In all the traces,
LRU and LFU appear to be the worst policies.

The simulation results indicate that for the three
performance measures under investigation, the MIX
policy provides the best results in most of the cases.
The improvement over LRU for the byte hit rate cri-
terion is relatively marginal but it is rather high for
the request hit rate and latency ratio criteria. GD-
SIZE has satisfactory performance as well (which
confirms results in [7]) but is less efficient for the
byte hit rate. HYBRID has better results than LFU,
LRU and SIZE for the latency ratio, but behaves
poorly for the byte hit rate criterion.

We also observe from the figures that if the cache
size is large enough then all policies exhibit the same
behavior. Since the disk capacity increases at a very

fast rate nowadays, one may argue that, after all,
the best thing to do is to use the policy that re-
quires the fewer memory and CPU usage, namely,
LRU. Another view is to say that since bandwidth is
the critical resource in today’s networks it is worth
using the best “saving bandwidth policy”, namely,
MIX. It is worthwhile noticing that Web traffic and
the volume of information available on the Web have
been increasing exponentially fast, so that careful
design of caching policies remains an important is-
sue.

4 Conclusions and Future Work

We have proposed and evaluated the caching policy
MIX for Web client caching (proxy-caching). The
MIX caching policy takes into account the network
latency, the size and the accessed frequencies of the
documents as well as the time elapsed since the
last referenced to documents in the cache. Through
trace-driven simulations we have shown that MIX
exhibit uniformly better performance than several
known policies for several standard metrics (request
hit rate, byte hit rate and latency ratio).

A lot of work still remains to be done both theoret-
ically and experimentally. From a theoretical point
of view we need to develop appropriate data access
models for Web applications. Such models will be
crucial for devising optimal and/or suboptimal solu-
tions of the caching problem. Such models will also
be useful for the performance evaluation of caching
policies, in addition to trace-driven simulations.

The caching problem has intrinsically large size:
the number of documents available in all the Web
servers and number of requests served by a proxy-
cache are both large. Thus, further research should
be made on efficient heuristics, not only for single
client cache but also for hierarchical cache systems.

The impact of the hierarchical cache system and,
more generally, the architecture of multiple caches,
need to be investigated. The interaction between
caching policies and the communication protocols
(such as multicast protocol) is also an important
issue that needs to be addressed.

Last, it will also be interesting to analyze the influ-
ence of the HT'TP protocol on the caching policy, in
particular, the issues related to persistent connec-

tions and pipelining.

References

[1] V. Almeida, M.E. Crovella, A. Bestavros, and
A. de Oliveira. Characterizing reference locality
in the www. In Proceedings of PDIS’96: The IEEE
Conference on Parallel and Distributed Information
Systems, Miami Beach, Florida, December 1996.

[2] M. Arlitt and C. Williamson. Trace-driven simu-
lation of document caching strategies for internet
web servers. Technical report, Dept. of Computer
Science, University of Saskatchewan, Canada, 1996.

[3] M. Arlitt and C. Williamson. Web server work-
load characterisation: The search for invariants. In
Proceedings of the 1996 ACM Sigmetrics Confer-
ence on Measurement and Modeling of Computer
Systems, Philadelphia, May 1996.

[4] D. Bertsekas. Neuro-Dynamic Programming.
Athena Scientific, Belmont, Massachusetts, 1996.

[5] J-C. Bolot and P. Hoschka. Performance engineer-
ing of the world wide web: Application to dimen-
sionning and cache design. In Proc. of the 5th
WWW Conference, Paris, May 1996.

[6] H-W Braun and K.C. Claffy. Web traffic charac-
terization: An assessment of the impact of caching
documentts from ncsa’s web server. Computer Net-
works and ISDN Systems, 28:37-51, 1995.

[7] P. Cao and S. Irani. Cost-aware www proxy caching
algorithms. In Proceedings of the 1997 USENIX
Sympositum on Internet Technology and Systems,
pages 193-206, December 1997.

[8] Anawat Chankhunthod, Peter B. Danzig, Chuck
Neerdaels, Michael F. Schwartz, and Kurt J. Wor-
rell. A hierarchical internet object cache. Tech-
nical Report 95-611, Computer Science Depart-
ment, University of Southern California, Los An-
geles, California, March 1995.

[9] A. Cormack. Caching on janet - acn report. Tech-
nical report, University of Wales, Cardiff, 1996.

[10] J. Gettys, J. Mogul, R. Fielding, H. Frystyk,
and T. Berners-Lee. Hypertext transfert protocol
http/1.1. RFC 2068, Internic, 1997.

[11] S. Hosseini. New results on generalized caching.
Technical Report WUCS-96-25, Washington Uni-
versity in St. Louis, 1996.

[12] S. Hosseini and J.R. Cox. Optimal solution of off-
line and on-line generelized caching. Technical Re-
port WUCS-96-20, Washington University in St.
Louis, 1996.

[13] P. Lorenzetti and L. Rizzo. Replacement policies

for a proxy cache. Technical Report LR-960731,
Univ. di Pisa, 1996.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

J.C. Mogul, F. Douglis, A. Feldmann, and B. Krish-
namurthy. Potential benefits of delta-encoding and
data compression for http. In Proceedings of the
ACM SIGCOMM °97, Cannes, France, September
1997.

H. Frystyk Nielsen, J. Gettys, A. Baird-Smith,
E. Prud’hommeaux, H. Lie, and C. Lilley. Network
performance effects of http/1.1, cssl, and png. In
Proceedings of the ACM SIGCOMM 97, Cannes,
France, September 1997.

A.J. Smith. Bibliography on paging and related
topics. Operating Systems Reviews, 12:39-56, Oc-
tober 1978.

A.J. Smith. Second bibliography for cache mem-
ories. Computer Architecture News, 19(4), June
1991.

C.J.H.H. Watkins. Learning from Delayed Re-
wards. PhD thesis, Cambridge University, Cam-
bridge, England, 1989.

S. Williams, M. Abrams, C. Standridge, G. Ab-
dulla, and E. Fox. Removal policies in network
caches for world-wide web documents. In Proceed-
ings of the ACM SIGCOMM ’96, Stanford Univer-
sity, 1996.

R. Wooster and M. Abrams. Proxy caching that es-
timates page load delays. In Proceedings of the 6th
World Wide Web Conference, Santa Clara, Califor-
nia, 1997.

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

- e 1 ” - -
e . —
* - o
fa} e
0.8 ¥ & S< g
=y .
X & et
06 g
0.4
~ 0.2 ~
LRU ---x--- LRU ---x---
Size ---%--- SIZE ---*---
LFU =} LFU a8
0.05 0.1 0.15 0.2 0.25 0‘.3 0.35 0 0 0.05 0.1 0.15 0.2 0.25 0‘.3 0.35
cache size (% total bytes) cache size (% total bytes)
Figure 2: BU traces, Relative Request Hit Rate Figure 5: NLANR traces, Relative Request Hit Rate
- g = 1 J— — P— — — R -
'* e 5= . ’
. o .
o <5 08 =
2 0.6
0.4
~ 0.2 ~
LRU ---x--- LRU ---x---
SIZE ---*--- Size ---%---
LFU =} LFU a8
0.05 0.1 0.15 0.2 0.25 0‘.3 0.35 0 0 0.05 0.1 0.15 0.2 0.25 0‘.3 0.35
cache size (% total bytes) cache size (% total bytes)
Figure 3: DEC traces, Relative Request Hit Rate Figure 6: BU traces, Relative Byte Hit Rate
*i- = @ ! J
W * L —— T R ' PEREEE]
e TR o BE
* - = R %
coaees B 08 R
| =
0.6
o
0.4
~ 0.2 ~
LRU ---x--- LRU ---x---
SIZE - SIZE -
LFU =} LFU a8
s 0 s
0.05 0.2 0.25 0 0.05 0.1 0.25 0.3 0.35

0.1 0.15
cache size (% total bytes)

Figure 4: INRIA traces, Relative Request Hit Rate

0.15 0.2
cache size (% total bytes)

Figure 7: DEC traces, Relative Byte Hit Rate

1 0.95 ;
MIX ——
e LRU %
- - 0.94 SIZE % o
- e e LFU o
o 0.93 .
08 . g
ES 0.92
0.91
06 .
09 —
TR
0.89 <
S
0.4 e
0.88 o
" Ea
0.87 %o -
e
* i S
0.2 MIX —+— T 0.86 % g
LRU -] "
SIZE - C y
LFU 0.85 ! &
0 ! 0.84
0 0.05 0.1 015 02 025 0 0.05 01 015 02 0.25 03 035
cache size (% total bytes) cache size (% total bytes)
Figure 8: INRIA traces, Relative Byte Hit Rate Figure 11: DEC traces, Latency Ratio
1 0.86
MIX ——
LRU —-x-—-
0.855 = SIZE %~
LFU o
g = 0.85 =
0.8 s Z G *
- il 0.845 "
T X
g 0.84 \
s
06 e W 0.835
s
v 083
0.4 < 0825
x
- 0.82 =
T
0.815 E
* N
02 MIX —+— * e
LRU ---x--- 081 # i vy
SIZE %+ B
* &l
LFU @ 0.805 = = s
i 5 R
0 L 0.8 =
0 0.05 01 015 02 025 03 035 0 0.05 01 0.15 02 025
cache size (% total bytes) cache size (% total bytes)
Figure 9: NLANR traces, Relative Byte Hit Rate Figure 12: INRIA traces, Latency Ratio
0.815 . 0.94 T
MIX —— N MIX ——
LRU -~ 0.935 S LRU -
Size ---#--- SIZE ---%---
0.81 LFU -~ 0.93 5 LFU g —
0.925 . .
a X,
0.805 092 :
0.915
L 8 \,
08 - 091 |- ; %
L *
L . 0.905 %
0.795 o = 09 X - >
=X 3
: 0.895 %
* — I,
079 = 0.89 <
e \ o 2 RS
. L S S 0.885
" g . S ©
0.785 4 - 0.88 - % -
* el Xl
" * g o a 0.875 + ey
2 *oo o + o]
078 s o] 0.87 - n
0865 . g .
0.775 0.86
0 0.05 0.1 025 03 035 0 0.05 0.1 025 03 035

0.15 0.2
cache size (% total bytes)

Figure 10: BU traces, Latency Ratio

Figure 13

0.15 0.2
cache size (% total bytes)

: NLANR traces, Latency Ratio

