Controlling the Robots of Web Search Engines

J. Talim Z. Liu
Department of Mathematics and Statistics IBM Research
University of Saskatchewan Hawthorne, NY 10532
Saskatchewan, Saskatoon zhenl@us.ibm.com

S7N 5E6 Canada
talim@snoopy.usask.ca

Ph. Nain E. G. Coffman, Jr.
INRIA Electrical Engineering Dept.
Sophia Antipolis Columbia University
06902 France New York, NY 10027
nain@sophia.inria.fr egc@ee.columbia.edu

Published in: Proc. ACM Sigmetrics 2001 / Performance 2001 Conf.
Performance Evaluation Review, Vol. 29, No. 1, pp. 236-244, June 2001

Abstract

Robots are deployed by a Web search engine for collecting information from different Web
servers in order to maintain the currency of its data base of Web pages. In this paper, we
investigate the number of robots to be used by a search engine so as to maximize the currency
of the data base without putting an unnecessary load on the network. We adopt a finite-buffer
queueing model to represent the system. The arrivals to the queueing system are Web pages
brought by the robots; service corresponds to the indexing of these pages. Good performance
requires that the number of robots, and thus the arrival rate of the queueing system, be chosen
so that the indexing queue is rarely starved or saturated. Thus, we formulate a multi-criteria
stochastic optimization problem with the loss rate and empty-buffer probability being the crite-
ria. We take the common approach of reducing the problem to one with a single objective that
is a linear function of the given criteria. Both static and dynamic policies can be considered.
In the static setting the number of robots is held fixed; in the dynamic setting robots may be
re-activated/de-activated as a function of the state. Under the assumption that arrivals form a
Poisson process and that service times are independent and exponentially distributed random
variables, we determine an optimal decision rule for the dynamic setting, i.e., a rule that varies
the number of robots in such a way as to minimize a given linear function of the loss rate and
empty-buffer probability. Our results are compared with known results for the static case. A
numerical study indicates that substantial gains can be achieved by dynamically controlling the
activity of the robots.

Keywords: Web search engines; Web robots; Queues; Markov decision process.

1 Introduction

The World Wide Web has become a major information publishing and retrieving mechanism on
the Internet. The amount of information as well as the number of Web servers continues to grow
exponentially fast. In order to help users find useful information on the Web, search engines such
as Alta Vista, HotBot, Yahoo, Google, Infoseek, Magellan, Excite and Lycos, etc. are available.
These systems consist of four main components: a database that contains web pages (full text or
summary), a user interface that deals with queries, an indexing engine that updates the database,
and robots that traverse the Web servers and bring Web pages to the indexing engine. Thus,
the quality of a search engine depends on many factors, e.g., query response time, completeness,
indexing speed, currency, and efficient robot scheduling.

Our interest here focuses on the function performed by robots: establishing currency by bringing
new pages to be indexed and bringing changed/updated pages for re-indexing. We investigate the
problem of choosing the number of robots to meet the conflicting demands of low network traffic and
an up-to-date data base. The specific model, illustrated in Figure 1, centers on the indexing engine,
which is represented by a single-server queue with finite buffer, and multiple robots acting as sources
of arriving pages. The times between successive page accesses are independent and identically
distributed for each robot; the robots themselves are identical and function independently. The
indexing (service) times are independent, identically distributed, and independent of the arrival
processes.

When a robot arriving with a page finds the indexing buffer full, the page being delivered is lost,
at least temporarily. In this situation, a potential update or new page has been lost, and network
congestion has been created to no benefit. On the other hand, if the buffer is ever empty, and
hence the indexing engine is idle, data base updating is at a standstill waiting for the robots to
bring more pages. To reduce the probability of the first of these two events, we want to keep the
number of robots suitably small, but to reduce the probability of the second, we want to keep the
number of robots suitably large. To make the objective concrete, we will formulate a cost function
as a weighted sum of the loss rate and the probability of an empty buffer. We will then study the
problem of varying the number of robots in a way that minimizes this cost function.

In a more general set-up, the parameters of robot scheduling problems like ours might represent
explicit limits not only on buffer /storage space, but also on network bandwidth and the obsolescence
of stored documents. The first two constraints combine in certain cases in that losses created by
bandwidth limits are modeled by losses created by bounds on buffer capacity. If the occupancy of the
indexing buffer is frequently too large, then during many of the waiting times, buffered documents
are modified at their home sites, thus making them obsolete before they are even made a part of
the data base. It is thus useful to bound waiting times by requiring (e.g.) a small buffer.

Because of the obsolescence issue, we would have to bound the waiting time either deterministically
or stochastically, even when the buffer size is effectively infinite. The objective function would be
slightly modified. Such variants are certainly worthwhile analyzing, and we propose them here as
directions for further research. In this paper, the focus is on the simpler finite-buffer model, which
is still rich enough to serve as a useful reference model for studying the balance between network
congestion and server utilization.

m D Site4
site1 D

] Site 3
Site 2
Robot 1
Robot 2
Indexing
Engine

Database where the information
collected by the robotsis stored

Source 1
e O—
Source 2 Server with afinite buffer

Figure 1: Model of search engine with 2 robots

There is a large literature on search engines and their components. The search engines themselves
may well be their own best source of references; we recommend this entree to the research on
any aspect of the subject. In particular, much can be found on the design and control, including
distributed control, of robots. However, there appears to be very little on the modeling and analysis
of robot scheduling and the indexing queue. The early work in [2] proposes a natural model of
Web-page obsolescence, and studies the problem of scheduling a single search engine robot so as
to minimize the extent to which the search engine’s data base is out-of-date. Our work in [6]
introduces the multiple-robot model of this paper, but studies the static optimization problem
where the number of robots stays fixed.

After the preliminaries of the next section, we present our results on the dynamic robot scheduling
problem in Section 3. The tools that we use are taken from the theory of Markov decision processes.
Numerical results comparing static and dynamic policies are reported in Section 4. Section 5
concludes with a brief discussion of promising open issues.

2 Preliminaries

We assume that the number of active robots may vary in time as a function of the backlog in the
queue and the number of robots already active. To address this situation we will cast our model
into the Markov Decision Process (MDP) framework [1, 4, 5|. First, we need to define the queueing
model.

The indexing engine is modeled as a finite-capacity single-server queue. Service times are i.i.d.
exponentially distributed random variables with mean 1/u and the buffer may accomodate at most
K customers, including the one in service, if any, where K > 2. There are N available robots and
each of these robots, when activated, brings pages to the server in a Poisson stream at rate A. We
assume that these N Poisson processes are mutually independent and independent of the service
times.

The novel feature of our model is that the number of active robots may be modified at any arrival or
departure epoch. When an arrival occurs, the incoming robot is de-activated at once; the controller
may then decide to keep it idle or to re-activate it. When a departure occurs the controller may
either decide to activate one additional robot, if one is available, or to do nothing (i.e. the number
of active robots is left unchanged). The objective is to find a policy (to be defined) that minimizes
a weighted sum of the stationary starvation probability and loss rate.

We now introduce the MDP setting in which we will solve this optimization problem. Since the
time between transitions is variable we will use the uniformization method [1, Sec. 6.7].

At the n-th decision epoch t,, the state of the MDP is represented by the triple z,, = (¢n,7n, sn) €
{0,1,..., K} x{0,1,...,N} x {0,1,2}, with ¢, and 7, the queue-length and the number of active
robots just before the n-th decision epoch, respectively, and s,, the type (arrival, departure, fictitious

— see below) of the n-th decision epoch.

The successive decision epochs {t,,n > 1} are the jump times of a Poisson process with intensity
v := AN + u, independent of the service time process. In this setting, the n-th decision epoch t,
corresponds to an arrival in the original system with probability Ar, /v (in which case s, = 1), to
a departure with probability u/v provided that ¢, > 0 (s, = 0), and to a fictitious event with the
complementary probability (N — r,)A+ p)/v (s, = 2).

Let a,, € {0,1} be the action chosen at time ¢,,. We assume that a,, = 1 if the decision is made
to activate one additional robot, if one is available, and a,, = 0 if the decision is made to keep the
number of active robots unchanged. By convention we assume that a, = 0 if the n-th decision
epoch corresponds to a fictitious event (s, = 2).

From the above definitions we see that states of the form (e,0,1) and (0, e,0) are not feasible, as an
arrival cannot occur if all robots are inactive and a departure cannot occur if the queue is empty,
respectively. Therefore, the state-space for this MDP is

{(q,r,s),O SqSK,OSrSN,s:0,1,2}—{(O,T,O),(q,(),l),(] SQSK,OSTSN}

However, this set contains one absorbing state, the “fictitious” state (0,0,2). To remove this unde-

sirable state we will only consider policies (see formal definition below) that always choose action

a = 1 when the system is in state (1,0, 0) so that (0,0,2) can never be reached. This is not a severe
restriction since a policy that never activates robots when the system is empty is of no interest. In
conclusion, the state space for this MDP is

X :={(¢g,r,5),0<¢<K,0<r<N,s=0,1,2}
_{(0a072)7(077'70)7(%071)70 <¢< K, 0<r SN}

and the set A, of allowed actions when the system is in state x = (¢, 7, s) € X is given by

{0} ifs=2
A, =<¢ {1} if(¢g,7,s)=(1,0,0)
{0,1} otherwise.

To complete the definition of the MDP we need to introduce the one-step cost ¢ and the one-step
transition probabilities p. Given that the process is in state © = (¢, r, s) and that action a is made,

the one-step cost is defined as
oz)=7Lg=0)+vi(g=K,s=1), (1)

independent of a. We will show later that this choice for the one-step cost will allow us to address,
and subsequently to solve, the optimization problem at hand.

For = € X, the one-step transition probabilities py ,/(a) are given by

(%1(q>1) if ' = (¢ — 1, min{r + a,N},0)
Ar e .
Paar(@) = 3 — if 2/ = (¢ — 1, min{r + a, N},1) (2)
1 1) —
1- £ (9> 1) —Ar if ' = (¢ — 1, min{r +a,N},2)
\ v
ifs=0,a=0,1;
(L e
» if /' = (min{¢+ 1,K},r+a—1,0)
—1
pa:,ﬂ:’(a):< % ifa:':(min{q—l—l,K},r—I—a—l,l) (3)
1_,u—+—)\(7“—l—a—1) if ' = (min{g+1,N},r+a—1,2)
3 v
ifs=1,a=0,1;
¢ I o
;1(q>0) if :(Q7T70)
AT .
pm,m’(o):< 7 lf'xlz(%nl) (4)
1
1- £ (4> 0) +Ar if ' = (¢,7,2)
\ v

if s = 2. All other transition probabilities are equal to 0.

Without loss of generality we will only consider pure stationary policies since it is known that
nothing can be gained by considering more general policies [4, Ch. 8-9]. Recall that in the MDP
setting a policy 7 is pure stationary if, at any decision epoch, the action chosen is a non-randomized
and time-homogeneous mapping of the current state [1, 4, 5]. We define an admissible stationary
policy as any mapping 7 : X — {0,1} such that 7(z) € A,.

For later use introduce P(7) := [pg,o (7())] (2,2)exxx, the transition probability matrix under the
stationary policy 7.

Let P be the class of all admissible stationary policies. For any policy m € P introduce the long-run
expected average cost per unit time

Z o(x;) |z = :1:] , r e X. (5)

The existence of the limit in (5) is a consequence of the fact that = is stationary and X is countable

[4, Proposition 8.1.1]. We shall say that a policy 7#* € P is average cost optimal if

W (x) = ir617f> Wa(x) Vo € X. (6)

3 Results

In order to use results from MDP theory for average cost models, we first need to determine the
class (recurrent, unichain, multichain, communicating, etc.) in which the current MDP belongs.
Consider the following example: Let N = 2 and let « be any stationary policy that selects action
1 in states (e,7,1) for r € {1,2} and in state (1,0,0), and action 0 otherwise. It is easily seen
that this policy induces an MDP with two recurrent classes (X N {(e,1,0)} and X N {(e,2,e)} and
a set of transient states (X N {e,0,0}). We therefore conclude from this example that the MDP
{xn,n > 1} is multichain [4, p. 348].

An MDP is communicating [4, p. 348] if, for every pair of states (z,z') € X x X, there exists
a stationary policy 7 such that z’ is accessible from z, that is, if there exists n > 1 such that
e (1) > 0, where PP /() is the (z,2')-entry of the matrix P"(m).

Lemma 1 The MDP (z,,n > 1) is communicating. o

The proof of Lemma 1 can be found in the Appendix. The next result flows from Lemma 1 and
Proposition 4 in [1, Sec. 7.1]:

Proposition 1 There exists a scalar 6 and a mapping h : X — R such that, for all z € X,

with 0 = infrcp Wr(x) for all x € X, while if *(x) attains the minimum in (7) for each x € X,

then the stationary policy 7 is optimal. o

The optimal average cost # and the optimal policy 7* in Proposition 5 can be computed by using
the following recursive scheme, known as the relative value iteration algorithm.

Proposition 2 Let & be a fized state in X and let 7, 0 < 7 < 1 be a fired number. For k > 0,
x € X, define the mappings (hx, k > 0) as

hiy1(z) = (1 = 7)hi(z) + 7 (T(hi)(z) — T'(he)(T))

with
T(hk)(x) = C(x) + min Z pz,z’(a) hk(xl)a

where ho(2) = 0 but otherwise hy is arbitrary.

Then, the limit h(x) = limg_,o0 hi(z) exists for each x € X, § = 7T (h)(&), and the optimal action

7*(x) in state x is given by 7*(x) € argmingc o D 1cx Do (@) R(2'). o

Proof. Since the MDP is communicating (cf. Lemma 1) the proof follows from [4, Sec. 8.5,9.5.3]
(see also [1, Prop. 4, p. 313]). 1

We now return to our initial objective, namely, minimizing a weighted sum of the stationary star-
vation probability and loss rate. To see why the solution to this problem is given by the solution to
the MDP problem formulated earlier, it suffices to show that the average cost (5) is a weighted sum
of the stationary starvation probability and loss rate. It should be clear, however, that this result
cannot hold for policies that induce an average cost (5) that depends on the initial state x since, by
definition, the stationary starvation probability and loss rate are independent of the initial state.
We will therefore restrict ourselves to the class Py C P of policies that generate a constant average
cost, namely, Py = {m € P : Wr(z) = Wr(z'),Vz € X}.

The set Py is non-empty as it is well known to contain, among other policies, all unichain policies
[4, Proposition 8.2.1]. Among such policies is the static policy 7y that always maintains N robots
active, namely, 7 (z) = 1 for all z = (e,0,5) € X with s = 0,1 and 7y (z) = 0 for all z = (e,e,2) €
X.

Note also that reducing the search for an optimal policy to policies in Py does not yield any loss of
generality as it is also known that there always exits an optimal policy with constant average cost
in the case of communicating MDP’s [4, Proposition 8.3.2].

Fix 7w € Py. Introducing (1) into (5) yields Wr(x) = vSz(x) + L (x) with

1 n
Sr(x) = lim —E; Z 1(¢; =0)|x1 = :c]
nTeen i=1
.1 .
Ly(x) = Vnh—{%oﬁEw z;l(qizK,sizlﬂxlzx].

In the following we will drop the argument = in S;(z) and L.(z) since these quantities do not
depend on x from the definition of Py.

Let us now interpret S; and L,. S, is the stationary probability that the system is empty at
decision epochs. Since the decision epochs form a Poisson process, we may conclude from the
PASTA property [7] that Sr is also equal to the stationary probability that the system is empty at
arbitrary epoch, and this in nothing more than the stationary starvation probability.

Let us now consider L,. Recall that {t,,n > 1}, the sequence of decision instants, is a Poisson
process with intensity v and assume without loss of generality that ¢t; = 0 a.s. Define A(¢) as the
total number of customers that have arrived to the queue up to time ¢, including customers which
have been lost, and let Q(¢) be the queue length at time . We assume that the sample paths of
the processes {A(t), t > 0} and {Q(t), t > 0} are right-continuous with left limits. With these

definitions and the identity E[t,] = n/v we may rewrite L, as

B[Q) = K)dAQ)]
Ln = b, Elt,] '

In other words, we have shown that L, is the ratio, as n tends to infinity, of the expected number
of losses during the first n decision epochs over the expected occurence time of the n-th decision
epoch.

The interpretation of L as a loss rate now follows from the identity

Er | ;" 1(Q(t—) = K) dA(t) T
Lp= lim [0 B] :T]i_r)réo%Ew [/0 1Q(t—) = K)dA{)|, Ve Py,
(8)

upon noticing that the latter quantity represents the mean number of losses per unit time or the loss

rate. The second identity in (8) is a direct consequence of the theory of renewal reward processes
[5, Theorem 7.5] and of the definition of the set Py.

In summary, we have shown that for any policy 7 in Py the average cost is
Wa =Sz + Ly,

with S, the starvation probability and L, the loss rate. B

The optimal policy has been computed for different values of the model parameters. Figures 2-
4 display the optimal policy for N = 16, K = 5, A = 0.1, y = 1.0 and for different values
of v (v < v(K) = 14, v = v(K) and v > «(K)). The results were obtained by running the
value iteration algorithm given in Proposition 2 with the stopping criterion maxgzex |(hgt1(z) —
hi(x))/hi(x)| < 107° (254, 255 and 256 iterations were needed to compute the optimal policy
displayed in Figures 2, 3 and 4, respectively). We see from these figures that the optimal policy is
a monotone switching curve, namely, there exist two monotone (decreasing here) integer mappings
fs :{0,1,...,N} = {0,1,2,...}, s € {0,1}, such that 7*(x) = 1(fs(r) > ¢) forall x = (¢,r,s) € X
with s = 0,1 (we must also have fy(0) > 1 so that 7*(1,0,0) = 1 as required). We conjecture that
the optimal policy always exhibits such a structure but we have not able been to prove it.

16/ 000 00O
15000000

14

-000O0O

13 1/0 0 0 0 O
12/ 110 0 0 0 O
1111 1/0 000
10/ 1 110000

8/111/000
77111000
6/111100
5/1111

-11111
-11111
-11111
-11111
-11111
-11111

4111111
3/111111
20111111
11111111

16
15
14
13
12
11
10

9
8
7
6
5
4
3
2

1
0

012345 q

012345 q

0

S=

— 0.20907)

1.0, Cost

Figure 2: Optimal policy (v

o
o
o
o
o
o
3

15000000
14/ 1|10 0 0 0 O
13| 1|0 0 0 0 O
12/ 1 110 000
11/ 1 10000
10/ 1 110000

9/111000
/111000
711111|00
6/111100
5111100
41111111
3/111111
21111111
11111111

-11111
-11111
-11111
-11111
-11111
-11111
-11111

16
15
14
13

11
10

9
8
7
6
5
4
3
2
1
0

012345 q

0

S=

— 0.25924)

1.4, Cost

Figure 3: Optimal policy (v

r r
6| -00000 16/ 00000 0
15 -1 00 15100 00 0
14| - 11000 14| 1|0 000 0
13/ - 11000 13| 1 1]0 0 0 O
2 -111/00 12/ 1 1|0 00 0
1] -111/00 11/ 1 1|0 0 0 0
10/ -111l00 10/ 1 1 1]0 0 O
9l - 11110 9/ 111/000
8/ -111110 8/ 1111l00
70-11111 71111100
6 - 11111 6/ 111100
5/-11111 50111111
4/ - 11111 4111111
3/-11111 30111111
211111 20111111
1/ - 11111 11111111
0| -11111 ol SoTotoTllC
012345 012345 q
s=0 s=1

Figure 4: Optimal policy (y = 2.0, Cost = 0.32211)

4 Static versus dynamic policies

In this section we compare static and dynamic policies. The results for the static case, with the
same underlying queueing model and notation, are as follows (see [6]). The average cost is given by

(A =p)(y +pup™t)

Cs(pa’y’K) - l_pK+1 ’ (9)

in particular, C(p,~, K) = (v + p)/(K + 1) when p = 1. The optimal number of robots is given by

Proposition 3 For any v > 0, K > 2, let Ny(v, K) be the optimal number of robots to use.
Then,

Ns(v, K) = argmin, C(nA/p,~, K) (10)
with n € {{p(v, K)p/AL, [p(y, K)u/N1}. Furthermore, Ny(v, K) < [u/A] if v <~(K), Ns(v,K) €
{Lw/AL T/ AT} if v = A(K), and Ny(v, K) > |p/A] if v > y(K). ©

The results of the comparisons are reported in Tables 1 and 2. Throughout the experiments y = 1.0.
For different sets of parameters A, K, we first computed the optimal number of robots N, (given
by Proposition 3) and the average cost Cs (given in (9)) in the static case. Then, for each set of
parameters A, K,~y, we set the value of the number of available robots NV to Ns; and determined,
via the relative value iteration algorithm given in Proposition 2 (with 7 = 0.99999 — the closer 7 is

to 1 the faster the algorithm converges), the optimal average cost Cy (given in (6)) as well as the

minimun (Nmin) and the expected (N) number of robots activated by the optimal dynamic policy.
These results can be found in Table 1.

10

We stopped the numerical procedure when the relative error between two consecutive iterates was
(uniformly) less than 1075. The number of iterations (Niter) and the relative improvement (100% x
(Cs — Cy)/Cq) are also reported in Table 1.

Last, we computed the overall optimal dynamic policy by removing the restriction on the number

of available robots. The optimal average cost Cy as well as the minimum (Npin), expected (N) and

maximum (Npyax) number robots used by the overall optimal dynamic policy are given in Table 2.

We observe that substantial gains may be achieved by dynamically controlling the activity of the
robots. When the number of available robots is set to Ny (Table 1), the relative improvement with
respect to the optimal static policy ranges from 4% to 103% for the considered model parameters;
when the restriction on the number of available robots is removed, the improvement ranges from
6% to 3226%! The gain appears to be an increasing function of the queue size K and of the arrival
rate .

Static Approach Dynamic Approach
A Ky Cs N Cy Nmin N Niter Rel. Impr.
0.01 5 04 | 0.17541 73 0.16804 57 70.3 1634 4%
- - 1.4 | 0.40000 100 0.38336 86 95.1 1911 4%
- - 2.4 || 0.53834 114 0.51746 101 108.4 2051 4%
0.01 10 0.4 | 0.10207 86 0.09062 60 82.6 1794 13%
- - 1.2 || 0.20000 100 0.17534 77 94.1 1939 14%

- - 24] 028347 110 0.24798 88 102.3 2039 14%
0.01 15 0.4 | 0.07177 91 0.05891 538 87.7 1860 22%
- - 1.13 | 0.13313 100 0.10720 70 94.5 1953 24%
- - 24) 0.19192 107 0.15342 78 99.7 2024 25%

0.06 5 04 || 017578 15 0.15127 7 13.8 338 16%
- - 1.4 | 0.40000 20 0.34733 12 177 391 15%
- - 24 || 0.53841 23 0.46583 15 20.2 422 16%
0.05 10 0.4 | 0.10220 17 0.08308 5 16.2 369 23%
- - 1.2 | 0.20000 20 0.14955 8 18.2 402 34%
- - 24 | 0.28347 22 0.20541 10 194 423 38%
0.05 15 0.4 | 0.07184 18 0.05514 4 174 401 30%
- - 113 | 0.13313 20 0.09117 6 18.7 426 46%
- - 24 | 0.19372 21 0.13895 8 19.3 438 39%
01 5 0.4 | 0.17600 7 0.15239 1 6.5 167 15%
- - 14 | 0.40000 10 0.32198 4 8.6 200 24%
- - 24 | 0.54067 11 0.44989 5 9.3 211 20%
0.1 10 0.4 | 0.10403 9 0.06838 0 8.4 204 52%
- - 1.2 | 0.20000 10 0.13854 2 9.0 218 44%
- - 24 | 0.28347 11 0.18585 3 9.6 227 53%
0.1 15 04 | 0.07184 9 0.05326 0 8.7 312 35%
- - 113 || 0.13313 10 0.08538 1 9.3 359 56%
- - 24 | 0.19458 11 0.09606 1 9.7 376 103%

Table 1: Static vs. dynamic policies (with 4 = 1.0 and 7 = 0.99999)

11

Static Approach Dynamic Approach
A K y Cs N Cy Nmin N Nmax Rel. Impr.
0.01 5 04 || 0.17541 73 0.16595 58 74.8 82 6%
- - 14 | 0.40000 100 0.37886 88 99.9 115 6%
- - 2.4 || 0.53834 114 0.51179 103 113.0 133 5%
0.01 10 0.4 | 0.10207 86 0.08124 62 89.3 105 27%
- - 1.2 || 0.20000 100 0.15876 78 99.6 123 26%
- - 24 | 0.28347 110 0.22777 89 107.1 137 24%
0.01 15 0.4 || 0.07177 91 0.04236 59 94.9 118 69%
- - 1.13 || 0.13313 100 0.07812 71 99.8 131 70%
- - 24 || 019192 107 0.11493 79 103.6 143 67%
0.06 5 04 || 0.17578 15 0.13770 7 15.9 20 28%
- - 1.4 | 0.40000 20 0.31712 13 19.8 27 26%
- - 2.4 || 0.53841 23 0.43292 16 21.9 32 24%
0.05 10 0.4 || 0.10220 17 0.04128 5 19.0 29 148%
- - 1.2 || 0.20000 20 0.12020 8 19.9 33 66%
- - 24 || 0.28347 22 0.20541 10 20.6 36 38%
0.06 15 04 | 0.07184 18 0.00969 2 19.8 35 641%
- - 1.13 | 0.13313 20 0.01818 4 20.0 38 632%
- - 2.4 | 0.19372 21 0.02782 6 20.1 41 596%
0.1 5 04 | 0.17600 7 0.11097 2 8.2 12 59%
- - 1.4 | 0.40000 10 0.25924 4 9.8 16 54%
- - 24 || 0.54067 11 0.35805 6 10.7 18 51%
0.1 10 0.4 | 0.10403 9 0.01937 0 9.7 18 437%
- - 1.2 || 0.20000 10 0.03887 1 9.9 20 415%
- - 2.4 || 0.28347 11 0.05894 2 10.1 22 381%
0.1 15 04 | 0.07184 9 0.00188 0 10.0 24 3721%
- - 1.13 || 0.13313 10 0.00368 0 10.0 25 3518%
- - 24 | 0.19458 11 0.00585 0 10.0 27 3226%

Table 2: Static vs. dynamic policies (with 4 = 1.0 and 7 = 0.99999)

5 Concluding remarks

A simple queueing model of search engines has been proposed and analyzed in order to find the
optimal number of robots to deploy on the Web. The cost function is a weighted sum of the loss
rate and the starvation probability.

We studied the dynamic setting in which the number of robots is allowed to change over time as a
function of the workload in the queue. We showed that in most cases dynamic policies substantially
out-perform static policies, and based on this fact, advocate the introduction of such policies in

Web search engines.

Several interesting open issues remain, including models where the robots are not homogeneous

and/or are allocated to different parts of the network. For instance, one may wish to determine

12

the optimal number of robots to be allocated to a given area. Also, more general input processes
(e.g. a Markov modulated Poisson process) should be considered so as to reflect more accurately
"traveling times" of robots in the network. Lastly, other cost functions could be investigated, for
instance, cost functions including response times.

References

[1] Bertsekas, D. P., Dynamic Programming. Deterministic and Stochastic Models, Prentice-Hall,
Inc., Englewood Cliffs, 1987.

[2] Coffman Jr., E. G., Liu, Z. and Weber, R. R., “Optimal robot scheduling for Web search
engines”, J. Scheduling, 1, pp. 14-22, 1998.

[3] Kleinrock, L., Queueing Systems, Vol. I, Wiley & Sons, New York, 1975.
[4] Puterman, M. L., Markov Decision Processes, Wiley, New York, 1994.

[5] Ross, S. M., Introduction to Stochastic Dynamic Programming, Academic Press, New York,
1983.

[6] J. Talim, Z. Liu, Ph. Nain, and E. G. Coffman, Jr. “Optimizing the number of robots for Web
search engines”, Telecommunication Systems, vol. 17, pp. 245-266, 2001.

[7] Wolff, R. L., “Poisson Arrivals See Time Averages,” Oper. Res., vol. 30, pp. 223-231, 1982.

Appendix

A proof that the MDP (z,,n > 1) is communicating

Proof of Lemma 1. First, a word on notation. In the following (e, 7, s) (respectively, (¢, r,e)) will
designate any state & = (g, 7, §) € X such that (#,§) = (r,s) (respectively, (¢,7) = (¢,7)). We will
say that z = (g, r, s) is at the same level as ' = (¢, ', s') if r = 7/.

There are three cases in the proof depending on whether state ' = (¢/,r’, s") reached from z =

(g, s) is at the same level as x (case (1)), at a higher level (case (2)), or at a lower level (case (3)).

(1) r = r'. Assume first that » > 0. Then select any policy = € P such that
w(e,r,0) =0 and w(e,r1)=1.

Under that policy once the process enters level » > 0 it cannot leave that level, and moreover, all
states of that level are recurrent.

Assume now that r = 0. If ¢ > ¢’ then choose 7(i,0,0) =0 for i =¢,q+1,...,¢ +1. Iff g < ¢
then ' cannot be reached from x without jumping at level 1 since no arrival may occur at level 0.
In this case, select a policy that goes from z to state (0,1,e) (7(i,0,0) =0 for i = ¢,¢+1,...,2

13

and 7(1,0,0) = 1), then go to state (¢’ —1,1,1) (x(¢,1,1) =1 for i = 0,1,...,¢' — 2) and then go
to state ' (7(¢’ — 1,1,1) = 0).
(2) r<r'.

Choose any policy w € P such that

7(e,t,0) =1 and (e, t,1)=1 fort=rr+1...,7" —1;

m(e,7,0) =0 and m(e,r',1)=1.
Under that policy the process will successively visit levels 7,7 + 1,...,7" and will stay forever at
that last level where it will visit all states infinitely often.
(3)r>rl.

If v’ > 0 choose any policy m € P such that

n(e,t,s) =0 fort=rr—1...,7"=1,5=0,1;

m(e,7',0)=0 and w(e,7',1)=1.
Under that policy the process will successively visit levels 7,7 — 1,...,r" and will stay forever at
that last level where it will visit all states infinitely often.

Assume now that ' = 0. Under the policy w(e,t,e) =0 for t = r,7» — 1,...,2 the process will go
from z to level 1. Once level 1 is reached, it will then move to state (K,1,1) (7(i,1,1) = 1 for
i=1,2,...,K—1), then go to state (K,0,0) (7(K,1,1) = 0), and finally go to state =’ (7(:,0,0) =0
fori=K K—-1,...,¢ +1). 1

14

