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Abstract

Robots are deployed by a Web search engine for collecting information from different Web
servers in order to maintain the currency of its data base of Web pages. In this paper, we
investigate the number of robots to be used by a search engine so as to maximize the currency
of the data base without putting an unnecessary load on the network. We use a queueing model
to represent the system. The arrivals to the queueing system are Web pages brought by the
robots; service corresponds to the indexing of these pages. The objective is to find the number
of robots, and thus the arrival rate of the queueing system, such that the indexing queue is
neither starved nor saturated. For this, we consider a finite-buffer queueing system and define
the cost function to be minimized as a weighted sum of the loss probability and the starvation
probability. Under the assumption that arrivals form a Poisson process, and that service times
are independent and identically distributed random variables with an exponential distribution,
or with a more general service function, we obtain explicit/numerical solutions for the optimal

number of robots to deploy.
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1 Introduction

The World Wide Web has become a major information publishing and retrieving mechanism on
the Internet. The amount of information as well as the number of Web servers has been growing
exponentially fast in recent years. In order to help users find useful information on the Web, search
engines such as Alta Vista, HotBot, Yahoo, Infoseek, Magellan, Excite and Lycos, etc. are available.
These systems consist of four main components: a database that contains web pages (full text or
summary), a user interface that deals with queries, an indexing engine that updates the database,
and robots that traverse the Web servers and bring Web pages to the indexing engine. Thus,
the quality of a search engine depends on many factors, e.g., query response time, completeness,
indexing speed, currency, and efficient robot scheduling.

Our interest here focuses on the function served by robots: establishing currency by bringing new
pages to be indexed and bringing changed /updated pages for re-indexing. We investigate the prob-
lem of choosing the number of robots to meet the conflicting demands of low network traffic and
an up-to-date data base. In the classical approach of such investigations, we begin by introducing a
reference model sufficiently simple that we can obtain explicit formulas, but sufficiently powerful to
capture fundamental behavior, in particular the interplay among system parameters. The specific
model, illustrated in Figure 1, centers on the indexing engine, which is represented by a finite,
single-server queue/buffer, and multiple identical robots acting independently as sources of arriving
pages.

When a robot arriving with a page for the indexing buffer finds the buffer full, the page being
delivered is lost, at least temporarily. In this situation, a potential update or new page has been
lost, and network congestion has been created to no benefit. On the other hand, if the buffer is ever
empty, and hence the indexing engine is idle, data base updating is at a standstill waiting for the
robots to bring more pages. To reduce the probability of the first of these two events, we want to
keep the number of robots suitably small, but to reduce the probability of the second, we want to
keep the number of robots suitably large. To make the objective concrete, we will formulate a cost
function as a weighted sum of the probabilities of an empty buffer and a full buffer. We will then
study the problem of finding the number of robots that minimizes this cost function.

In a more general set-up, the parameters of robot scheduling problems like ours might represent
explicit limits not only on buffer /storage space, but also on network bandwidth and the obsolescence
of stored documents. The first two constraints combine in certain cases in that losses created by
bandwidth limits are modeled by losses created by bounds on buffer capacity. If the occupancy of the
indexing buffer is frequently too large, then during many of the waiting times, buffered documents
are modified at their home sites, thus making them obsolete before they are even made a part of
the data base. It is thus useful to bound waiting times by requiring (e.g.) a small buffer.

Because of the obsolescence issue, we would have to bound the waiting time either deterministically
or stochastically, even when the buffer size is effectively infinite. The objective function would be
slightly modified. Such variants are certainly worthwhile analyzing, and we propose them here as
directions for further research. In this paper, the focus is on the simpler finite-buffer model, which
is still rich enough to serve as a useful reference model for studying the balance between network
congestion and server utilization.
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Figure 1: Model of search engine with two robots

There is a large literature on search engines and their components. The search engines themselves
may well be their own best source of references; we recommend this entree to the research on
any aspect of the subject. In particular, much can be found on the design and control (including
distributed control) of robots. However, we have found very little on the modeling and analysis of
robot scheduling and the indexing queue. The work in [2] is the only such effort we know about.
In [2], the authors propose a natural model of Web-page obsolescence, and study the problem of
scheduling a single search engine robot so as to minimize the extent to which the search engine’s
data base is out-of-date.

Section 2 introduces the probability model, sets notation, and formalizes the optimization problem.
Section 3 solves the optimization problem for exponentially distributed service times and presents
an explicit computation of the optimal number of robots. The sensitivity of the results to various
model parameters is also addressed. Extensions to more general service time distributions are given
in Section 4. Section 5 concludes with a brief discussion of ongoing research and open issues.

2 The model

The search engine is modeled as a single server finite capacity queue. The system capacity is K > 2
(including the position in the server). There are N > 1 robots: each robot brings new pages to
the queue according to a Poisson process with rate A > 0. These N Poisson processes are assumed
to be mutually independent and independent of the service times. Hence, new pages are generated
according to a Poisson process with intensity AN. Although the Poisson assumption is mainly made



for sake of mathematical tractability, we do believe that it is a reasonable assumption given the
high variability of network latencies.

An incoming page finding a full queue is lost.

We denote by F(x) = P {o < z} the probability distribution of the service times (with o a generic

service time) and by & > 0 the mean service time. Define p =1/5.

In this notation, we define the cost function as the weighted sum of two terms:

e the probability of an empty buffer P {X = 0}, where X is a random variable representing
the stationary queue-length in a M/G/1/K queue with arrival rate AN and service time
distribution F7

e the probability of losing an arriving page, that is, the probability that the queue length seen
by an arrival in this M/G/1/K is K, which we denote by P*{X = K}.

With p := NA/p > 0, the cost function is then defined as
Clp,7, K) =7P{X =0} +P"{X = K} (1)
where + is a positive constant.

In the remainder of this paper we will resort to queueing theory to compute C(p,v,K) and to
optimize this quantity as a function of p, or equivalently of N, the number of robots. We first cover
the situation where the service times are exponentially distributed.

K—oo

A word on the notation in use: throughput f(K) ~ " g(K) will stand for limxeo f(K)/g(K).

3 The M/M/1/K search engine model

This section defines our reference model as the well known M/M/1/K queue. We first address the

problem of finding the optimal number of sources (robots) in this model.

3.1 Optimizing the number of robots

The following proposition gives the well known stationary queue-length probabilities at arbitrary
epochs for this queue [3]:

Proposition 1 For any p > 0

1-p

mpz fOTiZO,l,...,K

P(X =i)=
0 fori> K.

When p = 1 the non-zero stationary queue-length probabilities at arbitrary epochs are all equal and
given by Prob(X =i)=1/(K +1) fori=0,1,..., K. o



The expression for the cost function C(p,v,K) now flows from Proposition 1 and the PASTA
property, which ensures that in the M/M/1/K queue the stationary queue-length probabilities at
arbitrary epochs and the stationary queue-length probabilities at arrival epochs are equal (i.e.,
P* (X =k)=P (X =k)). We find that

1—p)(y+p"
( 1—)(pK+1 ) for p #£1

C(p,7,K) = (2)
o+l
1+ K

for p =1.

Note that for any K > 2 and > 0, the mapping p — C(p, K, ) is continuous and differentiable
in (0,00), including the point p = 1.

Lemma 1 For any v > 0, K > 2, the mapping p — C(p,7,K) has a unique minimum in [0, 00),
to be denoted p(v, K). Furthermore, 0 < p(v,K) <1 ifv <1, p(1,K) =1 and p(y,K) > 1 if
v > 1.

o
Proof. Fix K > 2. We have
9C(p,7, K) _ R(p,7, K) 3)
9p (1= pftt)?
with
R(p,7,K) = p* = Kyp"*' + (v = 1)(K + 1)p% + Kp"! — . (4)

Tedius but elementary algebra show that the polynomial R(p,~, K) in the variable p

(i) has a zero of multiplicity two (respectively, three) at point p = 1 when v # 1 (respectively,
v=1);

(ii) has a zero of multiplicity one in [0,1) and no zero in (1,00) when v < 1;
(iii) has a zero of multiplicity one in (1,00) and no zero in [0,1) when v > 1;

(iv) has no zero other than 1 when v = 1.

We deduce from the above that

oC(p,v, K 1—p)?
(palz ) = (1(_ ,01;04)—1)2 Q(,O,’Y, K)

where Q(p, 7y, K) is a polynomial in the variable p with a single zero p(7, K) in [0, 0c0) with p(v, K) <
lify<1,p(1,K)=1and p(y, K) > 1 if v > 1. Furthermore, the inequality Q(0,v,K) = —v < 0
implies that, for any v > 0, we have Q(p,v,K) < 0 for 0 < p < p(v, K) and Q(p,~,K) > 0 for
p > p(v, K), which proves the lemma. i



It is worth observing that the optimum p(, K) does not depend on the buffer size K when v = 1.
This means that if the same weight is given to the probability of starvation and to the loss probability,
then the optimal arrival rate is equal to the service rate, independent of the buffer size.

We now return to the original problem, namely the computation of the number N of robots that
minimizes the cost function C(p,~v,K) with p = AN/u. The answer is found in the next result
which is a direct corollary of Lemma 1.

Proposition 2 For any v > 0, K > 2, let N(v, K) be the optimal number of robots to use. Then,

N(v, K) = argmin, C(nA/p, 7, K) (5)

withn € {|p(v, K)u/\], [p(y, K)u/X]}, where for any real number x, |x| (respectively [x]) denotes
the largest (respectively smallest) integer less (respectively greater) than or equal to x. o

In the next section, we investigate how the parameter v influences the optimal number of robots.

3.2 Impact of v on the optimal number of robots

Recall that the parameter v is a positive constant that allows us to stress either the loss probability
or the probability of starvation. Part of the impact of 7 on p(v, K), and therefore on N(~, K), the
optimal number of robots, is captured in the following result.

Proposition 3 For any K > 2, the mapping v — p(7,K) is nondecreasing in [0,00), with
limy .o p(7, K) = 0.

Proof. Pick two constants 0 < 71 < 2 and define

A(palylafy?aK) = C(p”}/QJI{) _C(palyla}-{)
1-p
= m (72 - 71)
We assume that p(7y2, K) < p(71, K) and show that this yields a contradiction.

Under the condition 3 < 72 the mapping p — A(p, 71,72, K) is strictly decreasing in [0, c0).
Therefore,

0 < A(p(’YQaK)afYIafy?aK)_A(p(ﬂylaK)aﬂylaV?aK)

= [Clp(y2, K), 72, K) — C(p(71, K), 72, K)] + [C(p(71, K), 71, K) — C(p(2, K), 71, K)]
<0 (6)

where the last inequality follows from the definition of p(, K'). Since p — A(p,y1,72, K) is strictly
decreasing on [0, 00) we deduce from (6) that p(vy2, K) > p(v1, K) must hold, which contradicts the
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Figure 2: The mapping v — N(v,K) (u/\A = 5)

assumption that p(ye, K) < p(v1, K). Therefore p(yq, K) > p(71, ) and the mapping v — , K
p P25 P, pLY pLY g7 — plY

is nondecreasing in [0, 00).

On the other hand, one can check that dC(p,v,K)/dp < 0 for p = (v/K)Y/E=D when v > 0.
Hence, by Lemma 1, we conclude that

v\ Y/(E-1)
po(7, K) == (E) <p(v,K), ¥Yy>0. (M)
Letting v tend to infinity on both sides of (7) yields the second result of the proposition. 1

Proposition 3 has a simple physical interpretation. As the parameter 7 increases the probability
of starvation becomes the main quantity to minimize. The minimization is done by increasing the
arrival rate or, equivalently, by increasing the number of robots. Figure 2 provides two numerical
examples, illustrating the monotonicity of the optimal number of robots.

The next section focuses on the impact of the buffer size K on the optimal number of robots.



3.3 Impact of K on the optimal number of robots

In this section, we examine the behavior of p(v, K) as a function of K. The first result establishes

an upper bound on p(~v, K) that complements the lower bound given in (7).

Lemma 2 Foranyy>1, K > 2

p(1, K) < pr(7, K) = (K + 1))/ FD. (®)

o

Proof. Thanks to Lemma 1, it is enough to show that 9C(p,y, K)/0p > 0 at the point p = p1(7y, K)
or, equivalently from (3), that R(p1(v, K),~,K) > 0.

By writing R(p, 7, K) in the form
R(p, 7, K) = p" 1 (0" = Kv) + (y = (K +1)p" + Kp" ™' =,

we find that

[u"

+

R(p1 (v, K), 7, K) = v (K + 1)7) 51 + (y = 1)(K + 1) (K + 1)7) T + (K(K +1) — 1)

which is strictly positive, in particular for K > 2 and v > 1. x

Using Lemma 1 together with the lower and upper bounds on p(v, K) reported in (7) and (8),
respectively, we get that

po(7.K) < p(v,K) <1, for0<y<1 9)
and

p1(v,. K) > p(vy,K), forvy>1. (10)

By combining (9) and (10) with the limits lim oo po(7, K) = limgioo p1(7, K) =1 (v > 0) and the
identity p(1,K) =1 (see Lemma 1), we conclude that

Aimp(y, K) =1 (11)

for any «v > 0. In other words, we have shown that the optimal arrival rate converges to the service
capacity when the buffer size increases to infinity.

The limiting result (11) can be used to find an approximation for the optimal number of robots to
be deployed when K is large. Indeed, the relation

Aim N(y, K) C(An/p, 7, K), (12)

= lim arg min
K—o0 ne{lu/ALTn/A1}

which follows from (5) and (11), suggests the following approximation, for large K:

Kio [u/A] i Clp4,v,00) < C(p—, 7, 00)
/A it Clpy,v,00) > Clp—,7,00)



with the notation C(p,v,00) := limg o C(p,7, K), p+ := (A/p) [p/A] and p_ := (N p)[p/A].

Since C(p,y,00) =v(1 —p) for p <1 and C(p,vy,00) =1—1/p for p > 1 (use (2)), we may rewrite
(13) as
kioo | TH/AT 1 (o =1)/p <y (1 —p-)
Ny ) L (14)
Lu/A) i (py = 1)/py =7 (1L —p-).

The limiting result (11) may seem counterintuitive at first. Indeed, one may be tempted to argue that
the component P(X = K) in the cost function C(p,~, K) converges to 0 as the buffer size increases
to infinity and to conclude from this that C(p,~, K) is minimized when P(X = 0) converges to 0,
which occurs when the arrival rate converges to infinity. This interpretation is not correct though,
as limg_,oo P(X = K)=(p—1)/p > 0 when p > 1 (see Proposition 1).

It is not an easy task to study the behavior of p(y, K) as a function of K. We suspect the mapping
K — p(v, K) to be increasing when 0 < v < 1 and decreasing when v > 1, but we have not been
able to prove it. The conjectured behavior of the mapping K — p(v, K) (resp. K — N(v,K)) is
illustrated in Figure 3 (resp. Figure 4). Figure 5 displays the behavior of the optimal number of
robots as a function of the ratio u/\ when the buffer size is infinite. In both curves the parameter
~ is held fixed and taken equal to 0.5 and 2, respectively.

We see from Figure 5 that the optimal number of robots N (v, c0) is equal to 6 whenever u/\ =6
and the buffer size is infinite, for v € {0.5,2}. Figure 4(b) tells us that for K > 13 (resp. K > 18)
N(v,00) gives the correct value for N(vy, K) when v = 0.5 (resp. v = 2), which seems to indicate
that the accuracy of the approximation (14) may be very sensitive to the model parameters.
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Figure 3: The mapping K — p(v, K)
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4 The M/G/1/K queue search engine model

The queueing model in Section 3 is again considered in this section but we now relax the assumption
that the service times are exponentially distributed, i.e. we model the search engine as an M/G/1/K
queue with service time distribution F'. Explicit results are harder to come by.

4.1 Preliminaries

We first introduce additional notation and definitions. For R(6) > 0, let F(0) = E[exp(—60c)] be
the Laplace-Stieltjes transform (LST) of the service time distribution.

We denote by [w"]f the coefficient of w™ in the Taylor series expansion of f. For p > 0, |w| < 1,
define
Gp(w) :=F(p(1-w)/7) —w. (15)

For p > 0, let wy(p) be the zero of G,(w) having the smallest modulus, with v(p) its multiplicity.

It is known from Takacs’ lemma [1, pp. 653-654] that wo(p) =1 with v(p) =1, if p < 1; we(p) =1
with v(1) =2 if p = 1; and wp(p) < 1 with v(p) =1, if p > 1.
The cost structure (1) is kept unchanged. Asin Section 3, we first calculate (Lemma 3) the unknown

probabilities entering the definition of C(p,~, K), namely P {X = 0} and P*{X = K}, in the case

where X represents the stationary queue length in an M/G/1/K queue with service time distribution
F.

Lemma 3 For p >0
1

P{X =0} = T pan(s) (16)
and
P {X=K}=P{X=K}= 1+1(£;;3(0(‘;(p) (17)
with
axlp) = g (18)
o
Proof. The proof is based on Cohen’s analysis of the M/G/1/K queue in [1, Chapter IIL.6].
Fix p > 0 and introduce
1 dw
= i s
with D, any circle in the complex plane with center 0 and radius strictly less than wg(p).
According to [1, p. 575], we have
1
P{X =0} = (19)

11



and

pivni= gt [ (54t e

The integrals in the right-hand sides of (19) and (20) can be evaluated by the theorem of residues
[6, p.102] which gives (16) and (17), respectively. The proof is concluded by noting that the first
equality in (17) is a consequence of the PASTA property [7]. 1

By Lemma 3 we can rewrite the cost function (1) as

v —ak(p)

Clo, v, K) =1+
(p,7, 1) 1+ pak(p)

(21)

with ag(p) given by (18).

In the next section we devise an algorithm for computing ax(p) in the case where F(0) is rational

(e.g. the service time distribution F' is phase-type).

Remark 1 Since C(p,1,K) =P{X =0} + P{X = K} <1, we deduce from (21) that ax(p) > 1
for p > 0. In particular, ax(0) = 1.

4.2 Computing the cost function

From now on we assume that o > 0 a.s. (service times have no mass at zero) and that the LST of

the service times is a rational function. More precisely, we consider the situation where

B(6)
F0) =
with A(0) := Y%, a; 0" and B(f) := Y i_, b; 0" are relatively prime polynomials (they have no

common roots). Since A(f) and B(#) are relatively prime polynomials the coefficients ag and by
cannot both be equal to 0 (otherwise A(#) and B(#) would have the common factor #); this in
turn implies that by # 0 since 1 = F(0) # 0. Lastly, we observe that ¢ > r under the condition
limg_, 4 oo F(0) = 0, which follows from the assumption that o > 0 a.s.

Recall the definition of G,(w) (see Lemma 3). The above setting implies that

G,(@) ~ Rlwp) (22)
with
Q) = A -w)/e) =3 o)’ (23)
=0
q+1 .
R(w.p) = Blp(l—w)/o)—wA(p(l—w)fo) =3 bilp)w (24)
1=0

12



where

ailp) = (-1 3 (7
and
o) = Y 24
=0
o) = 1)2[T N+
> ()3

for0<i<g¢q

for1<i<r

: J\b
2 (i—l)%p]’

j=i—1

q . o
bi(p) = (=1)"! Z (iil>%p77 forr+1<i<qg+1.

j=i—1

(26)

Note that {ai(p), bi+1(p),0 < i < ¢} are all polynomials of degree ¢ and that by(p) is a polynomial

of degree r.

The next result provides an efficient scheme of convolution type for computing ax(p) and subse-

quently the cost C(p,7, K) in (21).
Lemma 4 For K > 2, p > 0,

(i) bo(p) # 0;

(ii) ak(p) can be computed by means of the following recursion:

( ao(p)

ak 2(p) N

-2
ax() =2 Tholp) " 2

\ =1

= bilp)
— Z m [0/

for K =2

biip) akg—i(p) for3<K <qg+2

bo(p)

i(p) for K > q+3.

Proof. From (26) and the definition of the polynomial B(6) we see that by(p) = B(p/5). Therefore,
bo(p) = 0 would imply that F(p/a) = 0 since A(pg) # 0 (as A and B have no common roots),

which would yield a contradiction, since F(p/d) = Elexp(—po/a)] > 0. Consequently, by(p) # 0

for all p > 0 and K > 2.

The proof of (ii) is an easy induction on K using ax(p) = (1/(K —2)!) lim,, o X726, (w) ™! /dwE 2.

It is omitted for the sake of conciseness.

13



The complexity of computing {ax(p), K > 2} can be reduced even further. Indeed, we observe
from (27) that for K > g+ 3, ax(p) satisfies a linear relation of order ¢ + 1, namely,

ak(p) = crag—1(p) + -+ + cqgr1aK—g-1(p) (28)

for K > g+ 3, with ¢, := —bn(p)/bo(p).

We can then invoke the theory of linear relations [5, Theorem 2.2, p. 48] to conclude from the above
that

q+1 v;
ak(p) =Y M(p) Y Kl dij(p), K >2, (29)
i—1 j=1

where {Ai(p), 1 <i<m}, 1 <m < g+ 1, are the distinct roots of the (characteristic) polynomial
P(z) = 29 — 107 — ezt — -~y

with v; the multiplicity of A;.

The unknown coefficients {d; ;(p),1 < j < 1;,1 < i < m} in (29) are computed from the initial

conditions on as(p), ..., ag+2(p) that can themselves be obtained from (27).

Remark 2 Since Zfi& bi(p) = 0 by definition of R(w, p) (take w =1 in (24)), the linear relation
of order ¢+ 1 in (28) can be reduced to a linear relation of order q. This procedure is illustrated in

Section 4.4.

4.3 Asymptotic behavior of the optimal number of robots

Unlike in the M/M/1/K case, an explicit computation for the optimal number of robots to deploy
is out of reach. Even the task of showing the uniqueness of this optimum is non-trivial. In this
section, we will content ourselves with the derivation of basic asymptotics.

We first show the existence of a finite optimum.

Lemma 5 For any v > 0, K > 2, there exist finite real numbers 0 < p1(v, K) < p2(7,K) < --- <
(7, K), 1 <n < oo, that minimize the cost C(p,v,K) over [0,00). o

Proof. It is easily shown by an induction on K using (27) that ax(p) is a rational function in the
variable p, namely, ax(p) = f(p)/g(p) with f(p) and g(p) polynomials of degree ¢% ! and rX—1
respectively (g(p) = bo(p)¥~1). Since ¢ > r this implies that ax(p) has a limit which is infinite as
p — o0; since ax(p) > 1 for all p > 0 and K > 2 as pointed out in Remark 1, we deduce that,
necessarily,

Jim ax(p) = +oo, (30)

which together with (21) implies that

lim C(p,v,K) =1.
p—00

14



On the other hand, (30) also implies that there exists py > 0 such that ax(pg) > 7, which in turn
implies that C(pg,v,K) < 1 from (21). This shows that the (continuous) mapping p — C(p,, K)
reaches is minimum in [0,00). The number of points in [0, 00) where C(pg, 7, K) its minimum is
finite as a consequence of the fact that p — C(p,~, K) is a rational function because a(p) is. This
concludes the proof. i

The next result shows that the optimal number of robots increases to infinity as the coefficient ~
increases to infinity.

Proposition 4 For K > 2,
Jim p1(, K) = +oo.

[

Proof. Throughout the proof, K > 2 is held fixed. We know (see the proof of Lemma 5) that
ax(p) = f(p)/bo(p)X 1, with f a polynomial of degree ¢ ~!. Since by(p) # 0 for p > 0 (see Lemma
4), we deduce that the mapping p — ax(p) is continuous on [0,00), which in turn implies from
(21) and the condition ax(p) > 1 for all p > 0 (see Remark 1) that, for any v > 0, the mapping

p — C(p,v, K) is also continuous on [0, c0).

Assume that liminf, o p1(7, K) = L < co. Then there exists a sequence {7, }n with lim, .o v, =
+0o such that lim, o p1(n, K) = L. With the continuity of the mappings p — ax(p) and
p— C(p,v,K) on [0,00), this implies that (see (21))

lim C(pl('YnaK)"YnaK) = +o0.
n—oo

To complete the proof we need to show that lim,_. C(p1(7, K),v, K) < co when lim,_.o p1(7, K) =
+o0.

We see from (30) that, for any v > 0, one can find p = h(y, K) such that

1

1
P{X=0=— <=
{ J 1+P04K(P)<'Y

By definition (2) of the cost C(p,v,K) this implies that C((h(~, K),7v,K) < 2 for any v > 0,
thereby showing that lim,_.o p1(7, K) = 400 must hold. 1

We now turn our attention to the analysis of the behavior of the optimal number of robots as the
buffer size increases to infinity. Lemma 6 below gives the asymptotics of ax(p) as K gets large.
From this result we will deduce the asymptotic behavior of C(p,y, K) (Proposition 5) and then the

optimal number of robots (Proposition 6) as K goes to infinity.
Lemma 6 For p > 0,

Ktoo D(p)K¥(P)—1
ag(p) ~ W
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where D(p) is given by

([ QLp)
R(l)(,p) for0<p<1
Q(1,1) _
D(p) =< 2 ROLD) forp=1 (31)
wo(p) @wo(p), p)
| ROl TP
with RO (w, p) := & R(w, p) /8w’ fori=1,2. o

Lemma 6 follows directly from the definition of a(p), the coefficient of w® =2 in the Taylor series
expansion of 1/G,(w) (K > 2), the definition of wg(p) and v(p) (see the beginning of Section 4.1),
and [5, Theorem 4.1, p. 159].

Proposition 5 For any v >0

(I—=p)y for0<p<1

Clo7, K) "~ 9, for
— for p>1.
P

Proof. Definition (21) of C(p,v, K) and Lemma 6 already imply that

7 —D(p)
1+ "2 o 0<p<
K 1+ pD(p)
Clp,y, K) "~ 0 forp=1
—1
i for p > 1.
P

It remains to evaluate D(p) for 0 < p < 1.
We have (cf. (23), (24), (31))

with H := (A’(0)— B'(0))/(a A(0)) = =F'(0)/5 =1 (hint: A(0) = B(0)). Hence, D(p) =1/(1—p)
and

for0 <p<1. |

From Proposition 5 we get the following

16



Proposition 6 For any v > 0, the cost C(p,v, K) is minimized at p =1 when K — oo. o

In direct analogy with the M/M/1/K case (see (13)) Proposition 6 suggests the following approxi-
mation for the optimal number of robots N(v, K) when K is large:

wioe | /A HE Clpy,7,00) < Clp- 7, 00)
N(v,K) "~

lu/A] it Clp,y,00) > C(p—, 7, 00)

or equivalently from Proposition 5

/Al 2l <1 )
P+

W) Tl s (- g
P+

We observe that the above approximation is the same as the one found in the M/M/1/K case (14),
thus suggesting that it may not be very accurate in general for moderate values of K. Indeed, we
would expect the optimal number of robots to depend on the distribution of the service times and
not just its mean.

4.4 Example

In this example the server must complete two tasks: it first checks whether the information contained
in a page has changed; if it has, the server updates the data base accordingly.

We assume that the times required to perform the tasks have exponential distributions, with rate
w1 for the reading task and p» for the updating task. These durations are further assumed to be
independent, as well as independent from page to page. Let 0 < p < 1 be the probability that an
update has to be performed. Note that if p = 0 this model reduces to the M/M/1/K queue studied
in Section 3.

In this setting the LST of the service time distribution is

M1 M2 H1
F(9) = 1
(6) p(ul-l-@) (M2+9>+( p)u1+6

and the mean service time is

M_ M2
From the above we readily deduce that (see (15))

1
5= —+2
1

G, (w) = Dras2 T (1 —p)pa(p2 + f(w,p)) —wlps + f(w, p))(p2 + f(w,p))
g (11 + fw, p))(p2 + f(w, p))

for |w| <1, p >0, with f(w,p) :=p(l —w)/a.

The coefficients of the polynomials @ and R in (22) are easily identified; we find that
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o ag(p) = (p/3)* + (11 + p2)p/d + pape2
o ai1(p) = =2(p/5)* — (p1 + p2)p/d

o ax(p) = (p/7)?

® bo(p) = (L —p)p1p/7 + ppa
o bi(p) = —(p/3)” = ((2 = p)p1 + p2) p/7 — papa

o ba(p) = 2(p/3)* + (1 + p2)p/

aa(p) = O (52)
an - 25250
in - e
and
axlp) = B aka(p) - 2D aralp) ~ 1 axoalp) T K25 (@)

As pointed out in Remark 2, the identity Z?:o bi(p) = 0 may be used to reduce the order of the
linear relation (35). Define

uk(p) == ak(p) — ax-1(p) (36)
for K > 3. Then (35) becomes
e hpa

The solution to this linear relation of order 2 is given by [5, Theorem 2.2, p. 48]

ug(p) = M(p)" di(p) + Aa(p)" da(p) for K >3 (37)

with A1 (p) and X2(p) the (distinct) roots of the polynomial bg(p)z?+ (bo(p)+b1(p))z—b3(p), namely,

)\i(p):_(bo(P)+b1(/’))i Ay,

2bo(p)
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with A(p) := (bo(p) + b1(p))? + 4bo(p)b3(p). (The proof that A(p) > 0 for all p > 0 is left to the
reader.) The coefficients d;(p) in (37) are computed from the initial conditions us(p) and ug(p). We
find

_ 2(p) (a (ﬂ)—a()) ( 4(p) — a3z(p))
h) = M@ Qalp) = M(p))
_oaup )—as(P — Ai(p) (a3(p) — a2(p))
L) = 3 ()7 Oa(p) — M (p))
where a;(p) (i = 2,3,4) are given in (32)-(34).
Combining (36) and (37), we finally get
K
aK(p) = -I— d1 Z )\1 + dz(p) Z )\Q(p)i, K > 2.

Figure 6 represents what we have found to be typical behavior of the cost function C(p,~, K) as a
function of p. One can observe that the minimum is unique and obtained, say, at p = p(v, K). We
have computed p(7, K) for various values of the parameters 7, K and the probability p that a page
has to be updated.

Figure 7 displays the mapping K — p(v, K) for two values of the probability p (p =1 and p = 0.5)
and v = 1; Figure 8 displays the mapping K — p(v, K) for two values of v (7 = 0.5 and v = 2)
and p = 1. As in the M/M/1/K case, we observe in Figure 8 that p(v, K) is increasing when v < 1
and decreasing when vy > 1.

5 Concluding remarks

Simple queueing models (the M/M/1/K and M/G/1/K queues) of search engines have been pro-
posed, analyzed, and optimized in order to find the optimal number of robots to use. The cost
function is a weighted sum of the loss probability and the starvation probability.

Extensions of these models to dynamic models where the number of active robots may change over
time as a function of the workload in the queue have been proposed in a companion paper [4].

Several interesting, open issues remain, including the situation where the robots are not homo-
geneous and/or are allocated to different parts of the network. For instance, one may wish to
determine the optimal number of robots to be allocated to a given area.
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