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Abstract

This paper addresses the delay analysis and resource consumption in mobile ad hoc networks (MANETs) equipped with
throwboxes. Throwboxes are stationary, wireless devices that act as relays, and that are deployed to increase the connectivity
between mobile nodes. Our objective is to quantify the impact of adding throwboxes on the performance of two routing protocols,
namely the Multicopy Two-hop Routing protocol and the Epidemic Routing protocol, in the cases where the throwboxes are fully
disconnected or mesh connected. To this end, we use a Markovian model where the successive meeting times between any pair
of mobile nodes (resp. any mobile node and any throwbox) are represented by a Poisson process with intensity λ (resp. µ). We
derive closed-form expressions for the distribution of the delivery delay of a packet and for the distribution of the total number of
copies of a packet that are generated, the latter metric reflecting the overhead induced by the routing protocol. These results are
then compared to simulation results. Through a mean-field approach we also provide asymptotic results when the number of nodes
(mobile nodes and/or throwboxes) is large.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In sparse Mobile Ad Hoc Networks (MANETs) most of the time a node has no neighbor2 and traditional store-
and-forward routing protocols, which require the existence of a connected path between a packet source and a
packet destination, do not achieve good performance (throughput, delay). The store-carry-and-forward paradigm has
been proposed as an alternative to the store-and-forward paradigm [21]. Store-carry-and-forward protocols aim at
increasing the number of contact opportunities between a packet and its destination, by using intermediary nodes
(i.e. all nodes but the packet source and the packet destination) as relay nodes. The protocol in this class which
yields the highest throughput and the lowest delay is the Epidemic Routing (ER) protocol, but it does so at the cost of
increasing the energy and resource consumption. In the ER protocol every node acts as a relay for the other nodes [22].
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Another well-known routing protocol in this class is the two-hop relay protocol introduced in [9], where at most one-
hop relay is allowed.

Relaying opportunities can be further increased by adding throwboxes, as proposed in [24]. A throwbox is a
stationary device which acts as a relay between nodes passing by it at different times. The throwboxes may either
be fully disconnected or mesh connected. The latter situation provides yet additional packet forwarding opportunities.

In the last years fundamental results have been obtained in the field of wireless communications, including
MANETs. Gupta and Kumar [10] and Grossglauser and Tse [9] have investigated the capacity in fixed wireless
networks and in mobile ad hoc networks, respectively, and established some key results. In [10] it is shown that the
per-node throughput capacity decreases approximately like 1/

√
n, with n the number of nodes by unit area. It is shown

in [9] that one can take advantage of node mobility, and use relaying, to reach a constant per-node throughput capacity,
but at the expense of unbounded delays. In [19] Sharma et al. relate the nature of the delay-capacity trade-off to the
nature of the node mobility pattern. In particular, they introduce the notion of critical delay, below which node mobility
cannot be used to improve the capacity. Below, we mention some works which are related to ours (nonexhaustive list).
Small and Haas in [20] provides a model, based on ODEs, to evaluate the performance of MANETs imbedded in
an infostation network architecture. They consider the case where the ER protocol is used to relay data from the
mobile nodes to the infostations. An infostation can be seen as a wireless access port to the Internet or to some private
networks [7].

In [8], Groenevelt et al. introduce the so-called Multicopy Two-hop Relay protocol (MTR), a variant of the two-hop
relay protocol [9]. In MTR the source forwards a copy of the packet to all (relay) nodes that it encounters; relay nodes
are only allowed to forward packets to their destination. By modeling the successive meeting times between any pair
of mobile nodes by Poisson processes, Groenevelt et al. characterize the distributions of the packet delivery delay
and of the number of copies generated before a packet is delivered to its destination. This work is extended in [2] by
Al Hanbali et al. by imposing lifetime constraints. Building on [8], Zhang et al. in [23] extend the work in [20] by
studying variations of the ER protocol, including probabilistic routing (see [14]) and recovery infection schemes.

In [24] Zhao et al. investigate the capacity enhancement of using throwboxes in Disruption Tolerant Networks
(DTNs). Using a linear programming approach, they find the maximum total rate (λ) such that the network can
sustain a rate of λbi j between nodes i and j for all i and j , where [bi j ] is the traffic matrix. In a follow-up of this
work, Banerjee et al. in [3] report experimental results collected on the UmassDieselNet testbed (a 40 bus DTN)
showing that the use of a single throwbox improves the packet delivery by 37% and reduces the message delivery
latency by more than 10%.

In this paper, we address the delivery delay of a single packet and the resource consumption generated until its
delivery, in a MANET with throwboxes. This is done for both the MTR protocol and the ER protocol and for either
fully disconnected or mesh connected throwboxes. Inspired by [8], we model contact opportunities between nodes
(mobile nodes and throwboxes) by independent Poisson processes, and we develop a Markov analysis.

The rest of the paper is organized as follows: in Section 2 we study the successive meeting times between a mobile
node and a throwbox. We show that the Poisson assumption is accurate for sparse MANETs and for two standard
mobility models (the random way point and the random direction models). We also provide an approximation formula
for the intensity of this Poisson process. In Section 3, we introduce Markov models to characterize the packet delivery
delay and the resource consumption, both for the MTR protocol 3.1 and for the ER protocol 3.2. The asymptotic
behaviour of the MTR protocol is addressed in Section 4, as the number of mobile nodes and/or the number of
throwboxes become large. Our results are validated through simulations in Section 5 and concluding remarks are
given in Section 6.

2. Characterizing the inter-meeting time distribution

Two nodes may only communicate when they are within each other’s transmission range. When at least one of
the nodes is mobile, this event occurs in a random way at certain points in time, called meeting times. The time that
elapses between two consecutive meeting times is called the inter-meeting time. In [8], it was shown through extensive
simulations that one may accurately model the successive meeting times by a Poisson process when both nodes move
according to the same mobility pattern in a square of size L × L , as long as the communication radius r is “small” with
respect to L . The simulations in [8] were performed for r = 50 m, r = 100 m, r = 250 m and L = 4 km, and for three
mobility patterns: the random waypoint (RWP) without pause, the random direction (RD) model with reflection or
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Fig. 1. Tail distribution of intermeeting times between N throwboxes and a mobile node moving according to RWP model (a) and RD model with
reflection (b).

with wraparound, and the random walker. Approximation formulas for the intensity of the Poisson process are given
in [8, Lemma 4] for both the RWP and the RD mobility models.

The aim of this section is to investigate the statistical nature of the consecutive meeting times between a mobile
node and N throwboxes located in a squareA of size L×L . Similar to [8] we have first proceeded through simulations.
The simulation scenario is as follows: there are N throwboxes and one mobile node. The mobile node moves according
to either the RWP [5] without pause (with uniform speed in [Vmin = 2 m/s, Vmax = 12 m/s]) or the RD model with
reflection at the boundaries [4] (with exponentially distributed travel times with mean 200 s, and uniform speed in
[Vmin = 2 m/s, Vmax = 12 m/s]). All nodes have the same constant transmission range r = 100 m, and L = 2 km.

Let τN be the stationary intermeeting time between the mobile node and a throwbox. This time is defined as
the time that elapses between two consecutive instants when the mobile node meets a throwbox. Fig. 1 plots, on a
linear-log scale, the complementary cumulative distribution function (CCDF) of τN for N ∈ {1, 5, 10}, in the case
where the throwboxes are placed in the area A independently of each other according to the uniform distribution, for
both the RWP (Fig. 1(a)) and the RD (Fig. 1(b)) models. For each N ∈ {1, 5, 10}, at least 100,000 meeting times
have been simulated. For each N ∈ {1, 5, 10}, we observe that τN is well-approximated by an exponential random
variable (rv), with parameter µN . By estimating the slope µN associated with each mapping t → log P(τN > t) for
N = 1, 5, 10, we have also observed that µN ≈ µ1 N , thereby showing that τN is well approximated by the minimum
of N independent exponential rvs with common parameter µ := µ1.

We have also conducted a statistical analysis using the classical autocorrelation function (ACF) method to test the
mutual independence of inter-meeting times between a mobile and a throwbox. Recall that for a discrete time series
x = (x1, . . . , xn) of length n, an estimate of the ACF of x (denoted by R̂) is

R̂(k) =
1

(n − k)σ 2

n−k∑
i=1

(xi+k − x̄) (xi − x̄) , k = 1, . . . , n − 1,

where x̄ = (1/n)
∑n

i=1 xi and σ 2
= (1/(n−1))

∑n
i=1(xi − x̄)2 denote the empirical mean and the empirical variance,

respectively, of x .
Fig. 2 displays the autocorrelation function of the intermeeting times over a range of 10 lags (i.e. k = 1, 2, . . . , 10)

when the mobile moves according to the random waypoint model (left) or to the random direction model (right). For
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Fig. 2. Autocorrelation function of intermeeting times over 10 lags between N throwboxes and a mobile node moving according to the RWP model
(a) and the RD model with reflection (b).

either mobility model, we observe that at each lag the autocorrelation is very close to zero, thereby justifying the
assumption that intermeeting times are mutually independent.

We conclude from the above that the consecutive meeting times between a mobile node and a throwbox can be
represented by a Poisson process, with rate Nµ.

It is also worth pointing out that the same result holds if nodes are placed in A according to the stationary
distribution of the RWP [12,13], but of course we will get a different value of µ. These results are not reported in
this paper due to space limitation.

In the Appendix section we derive an approximation formula for µ which holds (in particular) for the RWP and the
RD models. Recall that µ is defined as the intensity at which the mobile node meets a single throwbox (i.e. N = 1).
We have found (see Appendix)

µ ≈
2r

E[V −1
c ]

∫
A

f (x, y)g(x, y)dxdy, (1)

where f (·, ·) is the density of the stationary location of the mobile node, g(·, ·) is the density of the location of the
throwbox, and Vc is the speed of the mobile node when it meets the throwbox.

Consider our simulation scenario where each throwbox is “thrown over the area A” according to the uniform
distribution. Then, g(x, y) = 1/L2 and µ ≈

2r
L2E[V −1

c ]
from (1). In Fig. 1 we have also plotted, for each N ∈ {1, 5, 10},

the mapping t → −µN t (referred to as “Analytical exp(Nµ)”) with E[V −1
c ] = (log(Vmax)−log(Vmin))/(Vmax−Vmin)

when the mobile node moves according to the RWP model (Fig. 1(a)) and with E[V −1
c ] ≈ 2/(Vmax + Vmin) when the

mobile node moves according to the RD model (Fig. 1(b)). The justification of these values for E[V −1
c ] can be found

in Appendix. Observe from Fig. 1 that for each N the approximation formula for µ gives accurate results.

3. Markovian analysis

In this section we introduce and analyse simple stochastic models which will allow us to quantify the impact on
the performance (packet delivery delay, resource consumption, etc.) of adding throwboxes in MANETs and of using
them as additional relay nodes. Throughout the focus is on the transmission of a single packet between a source node
and a destination node, both nodes being mobile nodes. We assume that the transmission time of the packet (or one
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of its copies, see below) between two nodes is instantaneous and successful. This setting typically corresponds to a
situation where the network is sparse.

There are N + 1 identical mobile nodes, one source, one destination and N − 1 potential relay nodes, and M
identical throwboxes, which can also be used as relay nodes, all located in a two-dimensional area, say a square A.
The mobile nodes are assumed to move independently of each other, according to the same mobility model.

Motivated by the results in [8] for mobile nodes and by our findings in Section 2 for a mobile node and several
throwboxes, we assume that the intermeeting times between any pair of mobile nodes form a renewal sequence of rvs
with a common exponential distribution with parameter λ, and that the intermeeting times between any pair composed
of a mobile node and of a throwbox form a renewal sequence of rvs with a common exponential distribution with
parameter µ. All these renewal sequences are assumed to be mutually independent.

Two different routing protocols are considered: the Multicopy Two-hop Relay (MTR) protocol and the Epidemic
Routing (ER) protocol. Both protocols are defined in Section 1. Recall that in MTR when the source meets either a
mobile node different from the destination node or a throwbox, it sends a copy of the packet to it; a mobile node or
a throwbox that carries a copy of the packet are only allowed to forward it to the destination when they meet. ER
behaves the same as MTR except that a relay node (a mobile node or a throwbox) that carries a copy of the packet
is allowed to generate another copy and to forward it to a node (different from the destination) that does not already
carry a copy. In both MTR and ER, when the source meets the destination, it forwards the packet to it (no relay node
used).

Let TMTR (resp. TER) be the first time where the packet or one of its copies, whichever event occurs first, reaches
the destination under the MTR (resp. ER) protocol. Let GMTR (resp. GER) be the number of copies generated until
time TMTR (resp. TER) under MTR (resp. ER) (we assume that the source is ready to transmit the packet at time t = 0
and that no copy has been generated yet).

For each protocol, we investigate the case where throwboxes are fully disconnected or mesh connected. The later
case models situations when throwboxes are linked to each others (e.g. via wired lines or wireless links). In this case,
a throwbox that receives a copy of the packet will forward it to all other throwboxes instantaneously.

The following notation will be used throughput this section. Let B(t) ∈ {0, 1, 2, . . . , M} (resp. R(t) ∈

{1, 2, . . . , N }) be the number of throwboxes (resp. mobile nodes including the source) that carry a copy of the packet.
We define the stochastic process I (t) = (R(t), B(t)) for 0 ≤ t < TMTR (resp. 0 ≤ t < TER) and I (t) = a
for t ≥ TMTR (resp. t ≥ TER). I (t) = a indicates that the packet has been delivered to the destination at time t .
Throughout this section we will assume I (0) = (1, 0). Our modelling assumptions imply that, for both the MTR and
the ER protocols, the process I = {I (t), t ≥ 0} is an absorbing continuous-time Markov chain, with transient states
E = {1, 2, . . . , N } × {0, 1, . . . , M} and with one absorbing state {a}.

3.1. MTR protocol

We first consider the situation where throwboxes are fully disconnected. Let us first determine the probability
distribution of the delivery delay TMTR. We use the same approach as in [1]. Let Dsd be the time for the source to
encounter the destination, Dr

n be the time for the mobile relay node n to deliver a copy of the packet to the destination,
and Dt

m be the time for a throwbox m to deliver a copy of the packet to the destination. Thanks to our modelling
assumptions we see that Dsd is distributed according to an exponential rv with rate λ, Dr

n is distributed as the sum of
two independent exponential rvs each with the same parameter λ, and Dt

m is distributed as the sum of two independent
exponential rvs with the same parameter µ. Clearly

TMTR
st
= min(Dsd , Dr

1, . . . , Dr
N−1, Dt

1, . . . , Dt
M ).

These rvs being all mutually independent, we have that

P(TMTR > t) = P(Dsd > t)
N−1∏
n=1

P(Dr
n > t)

M∏
m=1

P(Dt
m > t),

so that

P(TMTR > t) = e−(λN+µM)t (λt + 1)(N−1)(µt + 1)M . (2)
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From (2) we can compute the expected delivery delay under MTR, given by

E[TMTR] =
1
α

N−1∑
n=0

M∑
m=0

(
N − 1

n

) (
M
m

)
(n + m)!

(
λ

α

)n (µ

α

)m
, (3)

where α := Nλ + Mµ. Asymptotic results for E[TMTR] when N and M are large will be obtained in Section 4.
Let us now turn our attention to the probability distribution of GMTR, the number of copies generated by the MTR

protocol until the delivery of the packet to the destination. Define Pa(n, m) as the probability that the last state visited
by the Markov chain I before absorption in state {a} is (n, m) given that I (0) = (1, 0). The probability of the event
{GMTR = k} is equal to the sum of the probabilities Pa(n, m) for which n + m = k with 1 ≤ n ≤ N and 0 ≤ m ≤ M ,
that is,

P(GMTR = k) =

min(k,N )∑
n=max(1,k−M)

Pa(n, k − n), k = 1, 2, . . . , N + M. (4)

It remains to find Pa(n, m). The Markov chain I stays for an exponential amount of time with rate α in state (i, j) ∈ E
after which it jumps into state (i + 1, j) with probability λ(N − i)/α, it jumps in state (i, j + 1) with probability
µ(M − j)/α and it is absorbed with probability (λi + µj)/α. By writing down the probabilities of the different paths
joining state (1, 0) to state (n, m) (there are

(
n+m−1

n−1

)
such paths) we see that they are all as likely to occur, so that

(Hint: take the path (1, 0) → (N − 1, 0) → (N − 1, 1) → (N , M))

Pa(n, m) =

(
n + m − 1

n − 1

)
nλ + mµ

α

n−1∏
i=1

(N − i)λ
α

m−1∏
j=0

(M − j)µ
α

=
λn−1µm(nλ + mµ)

αn+m (n + m − 1)!

(
N − 1
n − 1

) (
M
m

)
. (5)

The expected number of copies generated until the delivery of the packet, E[GMTR], may be obtained from (4) and
(5). There exists an alternative way of computing E[GMTR], which is based on the observation that TMTR is the
sum of GMTR independent, identical, exponential rvs with parameter α (each of them corresponds to the sojourn
time of the Markov chain I in a state). Hence, by Wald’s formula we obtain that E[TMTR] = E[GMTR]/α, that is
E[GMTR] = αE[TMTR], where E[TMTR] is given in (3).

We conclude this section by briefly discussing the situation where all throwboxes are fully connected. In this
setting, when a copy of the packet is transmitted to a throwbox (which does not already carry a copy) then all the other
throwboxes receive this copy instantaneously. The analysis of this case therefore appears to be a particular instance of
the case where the throwboxes are all disconnected, and is obtained by letting M = 1 and then by replacing µ by Mµ

in the above analysis.

3.2. Epidemic routing protocol

Similar to the analysis in Section 3.1 we first consider the case where all throwboxes are disconnected. Let
QER = [qER(·, ·)] denote the infinitesimal generator of the Markov chain I under the ER protocol. For sake of clarity,
we will discard the subscript ER in QER and in qER(·, ·) from now on.

Because of the involved structure of the infinitesimal generator Q, a direct approach like in Section 3.1 will not be
possible to determine the probability distributions of TER and GER. We will instead rely on the theory of absorbing
Markov chains to identify these calculations.

The generator Q can be written as

Q =

(
M R
0 0

)
, (6)

where M = [q(u, v)]u∈E,v∈E , R = (q((1, 0), a), . . . , q((N , M), a))T, and 0 is the row vector of dimension
N × (M + 1) whose all components are equal to 0. The entries of the matrix M and of the vector R are arranged in
lexicographical order.
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The entries of the matrix M are given by

q((n, m), (n + 1, m)) = (N − n)β(n, m), n = 1, . . . , N − 1, m = 0, . . . , M

q((n, m), (n, m + 1)) = n(M − m)µ, n = 1, . . . , N , m = 0, . . . , M − 1
q((n, m), (n, m)) = −((N − n + 1)β(n, m) + n(M − m)µ), n = 1, . . . , N , m = 0, . . . , M,

while the entries of the vector R are

q((n, m), a) = β(n, m), n = 1, . . . , N , m = 0, . . . , M

with β(m, n) := nλ + mµ.
From the theory of absorbing Markov chains, we find that the probability distribution of the delivery delay TER is

given by (see Lemma 2.2.2 [16])

P(TER < x) = 1 − b eMx e, (7)

where b is a row vector of dimension N × (M + 1) with the first entry equal to one and the remaining ones equal to
zero, and e is a column vector of dimension N × (M + 1) with all entries equal to one.

In particular, the k-th order moment of TER is equal to

E[T k
ER] = (−1)kk!

N×(M+1)∑
j=1

m∗

k(1, j), (8)

where m∗

k(i, j) is the (i, j)-entry of the matrix (M−1)k . Define m∗(i, j) = m∗

1(i, j) for all entries (i, j).
The inverse of the matrix M, which enters the calculation of the moments of TER, can be obtained in closed-

form, as shown below. It is easily seen that M is an upper block bi-diagonal matrix with the M + 1 square
matrices Am := [q((i, m), ( j, m))]{1≤i, j≤N }, m = 0, 1, . . . , M , on the diagonal, and with the M square matrices Bm
:= [q((i, m), ( j, m +1))]{1≤i, j≤N }, m = 0, 1, . . . , M −1, on the upper diagonal. The matrices Am , m = 0, 1, . . . , M ,
are upper bi-diagonal matrices with strictly negative diagonal entries, so that they are all invertible. The matrices Bm ,
m = 0, 1, . . . , M , are all diagonal matrices. It can be checked that

M−1
=



A−1
0 U0,1 · · · U0,M

. . .
. . .

A−1
m Um,m+1 · · · Um,M

. . .
. . .

A−1
M


where Um,l = (−1)l−m(

∏l−1
j=m A−1

j B j )A−1
l for 0 ≤ m ≤ M − 1 and m + 1 ≤ l ≤ M .

It remains to find A−1
m in closed-form in order to derive M−1 in closed-form. Let a∗

m(i, j) denote the (i, j)-entry
of A−1

m . Since Am , m = 0, 1, . . . , M , is an upper-bidiagonal square matrix, we find that

a∗
m(i, j) =



1
q((i, m), (i, m))

, i = j

(−1) j−i

q(( j, m), ( j, m))

j−1∏
k=i

q((k, m), (k + 1, m))

q((k, m), (k, m))
, j ≥ i + 1

0, otherwise.

(9)

We now derive the distribution of GER, the number of copies generated by the protocol ER until the delivery
of the packet to the destination. Similar to the MTR protocol, each transition in the Markov chain I corresponds
to a packet transmission. Starting from the state (1, 0), the largest path length is equal to N + M , therefore
P(GER) > (N + M) = 0. For 1 ≤ k < N + M , P(GER = k) is the probability that the last state visited before the
absorption is one of the states (n, m) for which n + m = k. Therefore, it remains to find the probability Pa(n, m) that
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the absorption occurs in state (n, m). By splitting the absorption state a into N × (M + 1) independent absorption
states {a1, . . . , aN×(M+1)}, one can show that (see [6, Lemma 1.c] for a similar approach)

Pa(n, m) = −m∗(1, n + m N )q((n, m), a), (10)

for n ∈ {1, . . . , N } and m ∈ {0, . . . , M}. Hence,

P(GER = k) =

min(k,N )∑
n=max(1,k−M)

Pa(n, k − n) = −

min(k,N )∑
n=max(1,k−M)

m∗(1, n + (k − n)N )q((n, k − n), a). (11)

In direct analogy with the MTR protocol (see end of Section 3.1) the performance of the ER protocol in the case
where all throwboxes are connected can be obtained from the results in Section 3.2 by substituting M by 1 and µ by
µM .

4. Asymptotics for the MTR protocol

We conduct an asymptotic analysis of the expected delivery delay and of the expected number of copies generated
under the MTR protocol as the number of mobile nodes and/or the number of throwboxes are large. Since such an
analysis cannot easily be done by using the formulas obtained for E[TMTR] and E[GMTR] in Section 3.1, we will
follow a different approach.

We will use a mean-field approach [11]. In the context of MANETs, this approach was recently used in [20,23] to
study the ER protocol. In these papers, the authors model the packet relaying in a MANET by ordinary differential
equations (ODEs) by making an analogy with the infection of disease in a biological environment.

We still consider the stochastic model introduced at the beginning of Section 3: N +1 mobile nodes, M throwboxes,
and the successive meeting times between a mobile node and a throwbox (resp. between two mobile nodes) form a
Poisson process with intensity µ (resp. λ), all these Poisson processes being mutually independent. Until otherwise
mentioned, we will only focus on the MTR protocol.

We first address the case where the throwboxes are fully disconnected.
Let Y (t) (resp. X (t)) denote the expected number of throwboxes (resp. expected number of mobile nodes including

the source) that hold a copy of the packet at time t or, equivalently, that have been infected at time t to reinforce the
analogy with the spreading of an epidemy. When MTR is enforced, the rate at which mobile nodes are infected at
time t is equal to λ, the intensity at which mobile nodes meet, multiplied by N − X (t), the number of mobile nodes
yet to be infected at time t . Similarly, the infection rate of throwboxes at time t is equal to µ, the intensity at which
the source meets a throwbox, multiplied by M − Y (t), the number of throwboxes yet to be infected at time t .

This gives rise to the following set of ODEs:

Ẋ(t) = λ(N − X (t)) (12)

Ẏ (t) = µ(M − Y (t)) (13)

for t > 0. Solving these ODEs with the initial conditions X (0) = 1 and Y (0) = 0 (these conditions reflect the
assumption that at time t = 0 only the source carries the packet), yields

X (t) = N − (N − 1)e−λt , Y (t) = M − Me−µt , t ≥ 0.

Let FMTR(t) denote the cumulative distribution function of the delivery delay TMTR at instant t , i.e. FMTR(t) =

P(TMTR < t), with FMTR(0) = 0. In a small time interval of length h, the probability that a node, whether it is fixed
or mobile, infects the destination is equal to (λX (t) + µY (t))h. Hence, similar to [20], we have

ḞMTR(t) = (λX (t) + µY (t))(1 − FMTR(t)), t > 0. (14)

Solving for (14) with the initial condition FMTR(0) = 0 gives

FMTR(t) = 1 − e−
∫ t

0 (λX (u)+µY (u))du, t ≥ 0. (15)
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From (15) we find that the expected delivery delay is given by

E[TMTR] =

∫
∞

0
e−

∫ t
0 (λX (u)+µY (u))dudt.

Observe that when either N or M is large enough, then e−
∫ t

0 (λX (u)+µY (u))du is extremely small except near
t = 0, where the main contribution to the above integral comes from. Therefore, by expanding the function
−

∫ t
0 (λX (u) + µY (u))du in Taylor series in the vicinity of t = 0 to the order three, the average delivery delay

can be approximated by

E[TMTR] ≈

∫
∞

0
e

−(λ2(N−1)+µ2 M)t2
2 e

(λ3(N−1)+µ3 M)t3
6 dt

≈

√
π

2(λ2(N − 1) + µ2 M)
+

λ3(N − 1) + µ3 M
3(λ2(N − 1) + µ2 M)2 (16)

when either N or M is large.
If M = o(N ) (i.e. limN→∞

M
N → 0) then, as expected, we retrieve the asymptotic expression for the expected

delivery delay reported in [8,23], that is,

E[TMTR] ≈
1
λ

(√
π

2N
+

1
3λN

)
= O

(
1

√
N

)
. (17)

In this case, the introduction of throwboxes only marginally improves the performance of the MTR protocol. On the
other hand, if N = o(M) (i.e. limM→∞

N
M → 0) then

E[TMTR] ≈
1
µ

(√
π

2M
+

1
3M

)
= O

(
1

√
M

)
. (18)

Also of interest is the case where N and M grow to infinity in the same proportion, that is typically N = θ M with
θ > 0. From (16) we see that in this case

E[TMTR] ≈
λ3θ + µ3

3 (λ2θ + µ2)2
θ

N
= O

(
1
N

)
. (19)

Let us briefly consider the expected number of copies generated until the delivery of the packet to the destination.
Clearly, it is given by

∫
∞

0 (X (t) + Y (t))dFMTR(t), which yields (same formula as the one established at the end of
Section 3.1)

E[GMTR] = (λN + µM)E[TMTR]. (20)

From (20) and the asymptotic formulas derived earlier for E[TMTR] as N and/or M are large, we can derive asymptotics
for E[GMTR] as N and/or M are large.

When the throwboxes are fully connected, the same analysis yields (Hint: see comments at the end of Sections 3.1
and 3.2) (the superscript “c” stands for “connected”)

E[T c
MTR] ≈

√
π

2(λ2(N − 1) + µ2 M2)
+

λ3(N − 1) + µ3 M3

3(λ2(N − 1) + µ2 M2)2 . (21)

In this case, the “cut-off value” occurs when M is of the order of
√

N as opposed to M being of the order of N as in
the case where the throwboxes are all disconnected.

The same analysis can be done for the ER protocol. The corresponding ODEs are

Ẋ(t) = λX (t)(N − X (t)) + µY (t)(N − X (t)) (22)

Ẏ (t) = µX (t)(M − Y (t)) (23)

ḞER(t) = (λX (t) + µY (t))(1 − FER(t)). (24)

Unfortunately, we were not able to find an explicit solution to these differential equations.
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Fig. 3. E[TMTR]: (a) Throwboxes are connected, (b) Throwboxes are disconnected.

5. Simulation results

To validate our analytical models and results, we have conducted extensive simulations for the various
schemes that have been considered throughout the paper (RWP/RD mobility models, MTR/ER protocols, fully
connected/disconnected throwboxes). Due to space limitations, we only present results obtained for the random
waypoint mobility model. However, we point out that the results obtained under the random direction mobility model
are as accurate as the results obtained for the RWP model.

The mobility of the nodes has been simulated by using the code available at [17]. This code avoids the various
pitfalls associated with the simulation of the RWP model. Throughput our simulations the speed is held constant and
is equal to 10 m/s, and nodes do not pause at the end of a movement. Each node is assigned a constant and fixed
transmission range r = 100 m. The transmission of a packet between two nodes is assumed to occur instantaneously
when the nodes are located at a distance less than or equal to r of one another.

The intensity µ (resp. λ) of the meeting times between a mobile node and a throwbox (resp. two mobile nodes) are
taken from Section 2 (resp. from [8]).

In the next section we address the validation of our model, and investigate the impact on the performance of the
presence of uniformly distributed throwboxes. Then, for both the MTR and the ER protocols, we investigate the effect
on their performance induced by two different throwbox deployment scenarios.

5.1. Validation

To validate our models, we have considered small networks, where throwboxes are uniformly distributed in a square
area of size 2 × 2 km2.

Figs. 3 and 4 compare the expected delivery delay obtained through simulations (solid lines) to those obtained
by the Markov model (dashdot lines), under both the MTR and the ER protocols, when throwboxes are either fully
connected or fully disconnected. Three sets of networks have been considered in which the first one is composed
of an equal number of mobile nodes and throwboxes, the second one is composed only by throwboxes with the
mobile source and the mobile destination, and the third one is composed only by mobile nodes (no throwbox). For the
different considered cases, we observe that our model is able to accurately predict the expected delivery delay with a
small relative error when the number of nodes becomes large (this is a consequence of the fact that as the number of



M. Ibrahim et al. / Performance Evaluation 64 (2007) 933–947 943

Fig. 4. E[TER]: (a) Throwboxes are connected, (b) Throwboxes are disconnected.

nodes increases then the intermeeting times are no longer mutually independent). We also observe that when relaying
is performed according to the MTR protocol and throwboxes are connected, the expected delivery delays in networks
where N = M and where there are no relay nodes are very close whenever

√
N � M . This observation is in

agreement with the asymptotic results obtained in Section 4.
Results for the expected number of copies generated until the packet delivery are reported in Figs. 5 and 6. Here too

there is a good fit between the analytical model and the simulations, across all scenarios that have been considered.
For either relay protocol, we can also assess the impact of having throwboxes on the expected delivery delay by

distinguishing the cases where M > 0 from the case where M = 0 in Figs. 3 and 4.

5.2. Impact of different throwbox deployments

The aim of this section is to compare, for the performance of both MTR and the ER protocols, the impact of two
different deployments of the throwboxes. We consider a large network of size 10 × 10 km2 with an equal and varying
number of mobile relay nodes and throwboxes. Fig. 7 plots the expected delivery delay under both the MTR and the
ER protocols for two different distributions of throwboxes: the uniform distribution and the stationary distribution of
the RWP model [12]. Since the nodes are moving according to the RWP model, it is not too surprising to observe that
the best performance is obtained when the throwboxes are deployed according to the stationary distribution of this
mobility model. Note also the excellent agreement between the analytical results and the simulation results.

6. Conclusion

In this paper, we have developed Markovian models to analyse the impact on the performance of MANETs
(delivery delay, resource consumption) of adding throwboxes. These models are based on the assumptions that (1)
the successive meeting times between any pair of mobile nodes (resp. between a mobile node and a throwbox) from
a Poisson process, and (2) that these Poisson processes are mutually independent. We have considered two different
store-carry-and-forward protocols, the multicopy two-hop routing protocol and the epidemic routing protocol. Both
the situations where the throwboxes are fully disconnected and mesh connected have been studied. Our results have
been validated through simulations when nodes are moving either according to the random waypoint model or to the
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Fig. 5. E[GMTR]: (a) Throwboxes are connected, (b) Throwboxes are disconnected.

Fig. 6. E[GER]: (a) Throwboxes are connected, (b) Throwboxes are disconnected.

random direction model. In all cases, we have found excellent matches between the results predicted by the analytical
models and the simulations.

Future extensions include the introduction of multiple (flows of) packets, of limited storage capabilities, of power
saving mechanisms at the mobile nodes and/or at the throwboxes, and of packet lifetime constraints.
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Fig. 7. E[TMTR] (a) and E[TER] (b): (A) Throwboxes are connected and uniformly distributed, (B) Throwboxes are connected and stationary
distributed, (C) Throwboxes are disconnected and uniformly distributed, (D) Throwboxes are disconnected and stationary distributed.

Appendix. Approximation formula for the intensity of the inter-meeting time

We have seen in Section 2 that the stationary inter-meeting time distribution between a single mobile node (M)
and a single throwbox (B) is well-approximated by an exponential distribution when the transmission range r is
small compared to L . In this appendix, we derive an approximation formula for the intensity µ of this exponential
distribution.

Let πc be the stationary probability that M lies within the communication range of B. If we denote by f (·, ·) the
density of the stationary location of the mobile node, then

πc =

∫
K

f (x, y)dxdy,

where K is the area covered by B. Conditioned on the location (x, y) of B, if r � L then we may approximate πc by

πc ≈ πr2 f (x, y).

We define the (stationary) contact time C as the time that elapses between a meeting time, say t , of M and B and the
first time after time t when they are no longer within transmission range of one another. By an argument from renewal
theory (recall that we work under the assumption that successive meeting times between M and B form a Poisson
process with rate µ) we have that πc = E[C]/E[τ ] = µ E[C]. From the above we conclude that

µ ≈
πr2 f (x, y)

E[C]

conditioned on the location (x, y) of B. It remains to evaluate E[C]. To do so, we assume that M does not change
direction when it crosses K, the coverage area of B. Therefore, if σ denotes the length of the trip of M when it crosses
the area K and Vc denotes its (constant) speed, we have that C = σ/Vc.

When M crosses the coverage area K of B, the intersection of length σ can be seen as a random line intercepting
a convex area, so that E[σ ] = π F/P = πr/2, where F and P are respectively the area and the perimeter of K [18]
(note that in this calculation we have implicitly assumed that K ∩A = K, which is justified if r � L). If we further
assume that
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Fig. 8. Histogram of speeds sampled at meeting times for the RWP model (a), and the RD model with reflection (b).

(H): the speed Vc of the mobile at a meeting time is independent of σ

an assumption which holds for both the RWP and the RD models, we conclude from the above that E[C] =

E[σ ] E[V −1
c ] = πrE[V −1

c ]/2, so that

µ ≈
2r f (x, y)

E[V −1
c ]

conditioned on the location (x, y) of B. By removing the conditioning on the location of B, we finally find

µ ≈
2r

E[V −1
c ]

∫
A

f (x, y)g(x, y)dxdy,

with g(·, ·) the density of the throwbox location.
It remains to find E[V −1

c ] for both the RWP and the RD models. For the RWP, the speed is uniformly distributed
in [Vmin, Vmax] at meeting times, which follows from the definition of this mobility pattern (see Fig. 8(a) for
simulation results). This implies that E[V −1

c ] = (log(Vmax) − log(Vmin))/(Vmax − Vmin). In the case of the RD
model, the event of M crossing the coverage area K of B clearly depends on the numerical value of the speed,
since there will be more opportunities for higher speeds than for lower speeds. This is confirmed by the simulation
results in Fig. 8(b). We deduce from the latter figure that the density probability of the speed, fVc (x), sampled at
meeting times is approximately a linear function (i.e. fVc (x) = ax , with a a normalizing constant). This yields
E[V −1

c ] ≈ 2/(Vmax + Vmin) for the RD model with reflection, where we have used the result that in this setting nodes
are uniformly distributed over the area [15].
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