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Abstract

In this paper we propose a stochastic fluid model to
analyze the performance of Squirrel, a P2P cooperative
Web cache. This work provides a scalable and insightful
extension of our previous analysis of Squirrel.

This new model provides a closed-form expression for
the hit probability when documents are equally popular.
Realistic object popularity is also addressed through a
clustering approximation. The accuracy of this model
is validated by a comparison with discrete-event simu-
lations.

Our model allows us to study the impact of various
parameters on the performance of the Squirrel system.
In particular, we emphasize the importance of taking
object popularity into account. We also investigate the
impact of clients announcing their departure on the re-
sulting hit probability.

1. Introduction

P2P systems capitalize on individual user resources
to build up self-organizing, scalable file-sharing sys-
tems. The Squirrel system [7] was recently introduced
by Iyer, Rowstron and Druschel as a cooperative P2P
web cache. Squirrel leverages the individual storage ca-
pabilities of the members of an institutional network to
build a shared, decentralized web cache. In Squirrel
each document (or object) is mapped to a unique node
in the network, called the home node, identified by a
node-Id. The home node of an object is responsible for
delivering cached copies of this object to any user in the
Squirrel network.

Because of its peer-to-peer structure, Squirrel is ex-
pected to be scalable and cost-effective. While this
promising system is still in the test phase it is important

for dimensioning and optimization purposes to study
its performance and scalability. In [2] we developed a
quantitative analysis of Squirrel in which we derived the
hit probability (i.e. the probability that a requested docu-
ment is found in the Squirrel network). The analysis was
based on the observation that Squirrel basically evolves
on two different time-scales: a slow time-scale corre-
sponding to the process at which nodes join and leave
Squirrel, and a fast time-scale corresponding to the fre-
quency at which documents are requested. In [2] the
node dynamics were modeled by a Engset process, a N -
state Markov process, with N the number of nodes in
the Squirrel network. As to the request process, we as-
sumed that each active Squirrel node generated requests
at a constant rate. We then showed that the total num-
ber of available documents in the Squirrel network was
accurately modeled by a piecewise deterministic fluid
process.

The aim of the present work is to extend the analy-
sis in [2] in two main directions. First, we replace the
Engset model by an infinite-state Markov process (the
M/M/∞ queuing model – see Section 2.3), which yields
a dramatic decrease in the complexity of computing the
hit probability. Indeed, the Engset model solution in-
volves binomial coefficients and exponentials in the size
of the network. This restricted the performance anal-
ysis to the order of 10,000 nodes. Our new M/M/∞
model allows us to easily handle real size networks (e.g.,
100,000 nodes for a large corporate network, or even
larger). Second, we relax the assumption made in [2]
that all documents are equally popular, and provide an
efficient method for computing the hit probability in re-
alistic situations (i.e. with Zipf-like document popular-
ity distribution). Numerical comparisons with discrete-
event simulations validate these extensions.

In Section 2 we give an overview of Squirrel and re-
lated work, and we describe our fluid model. We then
show in Section 3 how to compute the hit probability



under the assumption that all objects are equally popu-
lar. The latter assumption is relaxed in Section 4, where
we incorporate a Zipf-like object popularity distribu-
tion. These models are used in Section 5 to investigate
the impact of unequal document popularity and of an-
nounced/unannounced departures (see Section 5.3) on
Squirrel performance. Section 6 is devoted to the exper-
imental validation of our approach, and Section 7 con-
cludes the paper.

2 Overview and model

2.1 Overview of Squirrel

Squirrel [7] is a peer-to-peer cooperative Web cache
that relies on Pastry [9] as a location and routing pro-
tocol. When a client requests an object it first sends a
request to the Squirrel proxy running on the client’s ma-
chine. If the object is uncacheable then the proxy for-
wards the request directly to the origin Web server. Oth-
erwise it checks the local cache, like every Web browser
would do, in order to exploit locality and reuse. If a fresh
copy of the object is not found in this cache, then Squir-
rel tries to locate one on some other node. To do so, it
uses the distributed hash-table and the routing function-
alities provided by Pastry. First, the URL of the object is
hashed to give a 128-bit object identity (a number called
object-Id) from a circular list; then the routing procedure
of Pastry forwards the request to the node with the iden-
tity (called node-Id; this number is assigned randomly
by Pastry to a participating node) the closest to object-
Id. This node then becomes the home node for this ob-
ject. Squirrel then proposes two schemes from this point
on: home-store and directory schemes.

In the home-store scheme, objects are stored both at
client caches and at its home node. The client cache
may either have no copy of the requested object or a
stale copy. In the former case the client issues a GET re-
quest to its home-node, and it issues a conditional GET
(cGET) request in the latter case. If the home-node has
a fresh copy of an object then it forwards it to the client
or it sends the client a not-modified message depending
on which action is appropriate. If the home-node has
no copy of the object or has a stale copy in its cache,
then it issues a GET or a cGET request, respectively, to
the origin server. The origin server then either forwards
a cacheable copy of the object or sends a not-modified
message to the home-node. Then, the home-node takes
the appropriate action with respect to the client (i.e. send
a not-modified message or a copy of the object).

In the directory scheme the home-node for an object
maintains a small directory of pointers to nodes that have
recently accessed the object. A request for this object is

sent randomly to one of these nodes. We will not go
deeper into the description of this scheme since from
now on we will only focus on the home-store scheme.
We do so mainly because the latter scheme has been
shown to be overall more attractive than the directory
scheme [7]. In addition, the home-store scheme is more
amenable to a fluid analysis than the directory scheme.

In a Squirrel network (a corporate network, a uni-
versity network, etc.), like in any peer-to-peer system,
clients arrive and depart the system at random times.
There are two kinds of departures: abrupt and an-
nounced departures. Each departure has a different im-
pact on the performance of Squirrel. An abrupt failure
will result in a loss of objects. To see this, assume that
node i is the home-node for objectO. If node i fails, then
a new home-node for objectO has to be found by Pastry,
as explained above, the next time object O is requested.
Assume that the copy of object O was fresh when node
i failed and consider the first GET request issued for O
after the failure of node i. The GET request is therefore
forwarded to the new home-node for object O (say node
j); this request will result in a miss if j has no copy of
O or if its copy is stale. In this case, the failure of node i
will yield a degradation in the performance. If a node is
able to announce its departure and to transfer its content
to its immediate neighbors in the node-Id space before
leaving Squirrel (announced failure), then no content is
lost when the node leaves.

When a node joins Squirrel then it automatically be-
comes the home node for some objects but does not store
those objects yet (see details in [7]). In case a request for
one of those objects is issued, then its two neighbors in
the node-Id space transfer a copy of the object, if any.
Therefore, we can consider that there is no performance
degradation in Squirrel due to a node arrival, since the
transfer time between two nodes is supposed to be at
least one order of magnitude smaller than the transfer
time between any given node and the origin server.

From now on the terms “node” and “client” will be
used interchangeably.

2.2 Related work

Performance evaluation of P2P systems has recently
attracted a lot of attention. Because of the complex-
ity of these systems (in terms of number of documents,
number of users, etc.), many traditional models such as
queuing models, Markovian models and branching pro-
cesses require numerical methods [5, 10] or model sim-
ulations [11].

A fluid approach allows one to simplify these sys-
tems and may offer meaningful analysis at a low com-
putational cost. We already used this approach in [3] to



study cache clusters then in [2] for a first study of Squir-
rel. Here we propose an enhanced version of this model
and relax some major assumptions.

2.3 The fluid model

The basic idea is to model HTTP requests as a fluid
flow modulated by the random arrivals and departures of
the Squirrel nodes. Specifically, cached objects are re-
placed with fluid. This approximation requires the unic-
ity of a cached copy in the Squirrel system, i.e., that ob-
jects are not replicated in the system. This is indeed the
case in the home store scheme since a single node is
elected to be the home node for a given object.

In [2] we modeled the node dynamics by an Engset
model. This model has two main problems. First, it
requires the existence of a bound N on the number of
nodes which can simultaneously be active. In general
there does not exist such a bound and, if it did, then
it would be very difficult to find. Second, the calcula-
tion of the hit rate induced by the Engset model poses
serious computational complexity issues as N becomes
large. As an illustration, it took more than one day to
compute the hit rate (given in [2, Prop. 4.1], using a
realistic value of ρ = 100) on a Intel 4 2GHz/768Mo
workstation for 10,000 nodes, a small population for a
corporate network.

To overcome the shortcomings of using the Engset
model (i.e. need to have a bound on the number of users
and scalability issue), in this paper we model the node
dynamics by a M/M/∞ queuing system [8, p. 101]. In
the M/M/∞ setting, nodes become active according to a
Poisson process with intensity λ (referred to as the ar-
rival process) and each node remains active for an expo-
nentially distributed amount of time, with mean 1/µ. It
is a natural model since it assumes nodes join the system
at arbitrary times, independently of each other. Node ac-
tivity periods are assumed to be mutually independent,
and further independent of the arrival process.

The number of active nodes at time t is denoted by
N(t). Let 0 ≤ T1 < T2 < · · · be the successive jump
times of the process {N(t), t ≥ 0}, where a jump corre-
sponds either to a node arrival or to a node departure. We
assume that the sample paths of the process {N(t), t ≥
0} are right-continuous, so that Nn := N(Tn) gives the
number of active nodes just after the n-th jump (i.e. at
time Tn+).

LetN∞ denote the number of nodes which are active
in steady-state. It is known that N∞ has a Poisson dis-
tribution with parameter ρ := λ/µ [8, p. 101]. In partic-
ular, the expected number of active nodes in steady-state
is given by �

[N∞] = ρ. (1)

We assume that each node can store an unlimited
number of objects. (Currently, disk storage capacity is
abundant for most caching systems, and capacity misses
are very rare compared to misses due to stale objects.)

The fluid object model is the same as in [2]. It is
based on the observation that the process of nodes join-
ing and leaving Squirrel evolves on a much larger time-
scale than the rate at which documents are requested.
Like in [2] we assume that each active node produces
a continuous and deterministic stream of requests with
rate σ, so that σs requests are generated by each active
node throughout the time-interval [t, t + s). Each miss
(i.e., unsatisfied request) brings a new document into the
Squirrel cache. This follows from the fact that a missing
document has to be retrieved from the origin server and
brought back into the Squirrel cache, thereby increasing
the number of stored documents. It may happen that two
concurrent requests for the same document will generate
two misses but only one cached copy. This event is as-
sumed rare enough to be neglected. (We validate this
claim in Section 6.) The total number of documents in
Squirrel at any time is represented by a fluid, with X(t)
the amount of fluid at time t ≥ 0. We assume the sample
paths of the process {X(t), t ≥ 0} are right-continuous.
In particular, X(Tn) is the amount of fluid just after the
n-th jump.

During the time-interval (Tn, Tn+1) (n ≥ 0), each
active node generates requests at the constant rate σ, so
that σNn is the total request rate in (Tn, Tn+1). Thus
X(t) increases at the constant rate σNn in (Tn, Tn+1),
multiplied by the probability that a requested document
is not found in the Squirrel cache. We also assume that
each stored document has a Time-To-Live (TTL) equal
to 1/θ, so that θX(t) is the total expiration rate at time
t.

Hence, in the time-interval (Tn, Tn+1),X(t) satisfies
the following first-order differential equation

d

dt
X(t) = σNn(1 − � [hit|Nn, X(t)]) − θX(t) (2)

if Nn > 0, where � [hit|Nn, X(t)] is the hit probability
at time t given that there are Nn nodes active at time
Tn+, and that the amount of fluid at time t is X(t).
Different expressions for � [hit|Nn, X(t)] will be given
in Sections 3 and 4 depending on whether or not docu-
ments are equally popular.

When Nn = 0 (all nodes are inactive in (Tn, Tn+1)),
then the amount of fluid remains equal to zero in this
time-interval: X(t) = 0 for Tn < t < Tn+1 when
Nn = 0.

Let us now examine the behavior of X(t) at jump
times Tn, n ≥ 1. To this end, we introduce two
mappings, ∆u : {0, 1, . . .} → [0, 1] and ∆d :
{1, 2, . . .} → [0, 1].



If the jump occurring at time Tn corresponds
to a new node joining Squirrel, then the amount
of fluid in the Squirrel cache at time Tn drops
by a factor ∆u(N(Tn−)), that is X(Tn) =
∆u(N(Tn−))X(Tn−). Similarly, if the jump occur-
ring at time Tn corresponds to a departure, then the
amount of fluid drops by a factor ∆d(N(Tn−)), so that
X(Tn) = ∆d(N(Tn−))X(Tn−). (The subscripts u
and d in ∆u and ∆d refer to “up” and “down”, respec-
tively.)

As discussed in Section 2.1 there is no loss of con-
tent when a new node joins Squirrel, since its neighbors
(in the node-Id space) can transfer the documents for
which the new node is now the home node. Moreover,
we assume that a node joining Squirrel does not bring
any document with it. Though this assumption can be
regarded as restrictive, it has the following motivation:
the minimum time during which a node is inactive is or-
ders of magnitude higher than the request inter-arrival
time. Therefore, most of the documents stored in an
inactive node i, especially the most popular ones, are
very likely to be requested and added to their new home
nodes, while node i is inactive. As a result, when node
i joins the system with its own set of documents, it will
not add any content to the Squirrel system, but merely
become the new home node for these objects. The com-
bination of these two properties gives that ∆u(i) = 1
for i ≥ 1.

On the other hand, there is no loss of content if a
departure is announced, so that ∆d(i) = 1 (i ≥ 2) when
such an event occurs. In the case of an abrupt departure
the content of the departing node is totally lost. Since
it has been observed that Squirrel reaches a good load
balancing among the active nodes [7], we can assume
that a fraction 1/i of the content is lost if a node departs
without warning when there are i nodes active. Hence,
∆d(i) = (i− 1)/i (i ≥ 1) in this case.

In the following we will analyze both the situations
where ∆d(i) = 1 and ∆d(i) = (i− 1)/i, with ∆u(i) =
1 in both cases.

We denote by c < ∞ the total number of objects
that Squirrel clients may request (i.e., the total number
of existing objects in the universe).

3 Uniform popularity case

We consider the stationary hit probability as a perfor-
mance measure of the system. A precise definition of
this metric will be given shortly. We first assume that
all objects are equally popular, which implies that the
probability that a given object o is requested is 1/c. This
assumption is relaxed in Section 4, where a more realis-
tic Zipf-like popularity distribution is considered.

Under the uniform document popularity assump-
tion, the (conditional) hit probability at time t,

� [hit|Nn, X(t)], is a simple linear function of X(t),
given by

� [hit|Nn, X(t)]) =
X(t)

c
. (3)

Using this value of � [hit|Nn, X(t)], (2) becomes a first-
order linear ODE. We are interested in the steady-state
behavior of the system. We show in [4, Appendix A]
that the stationary expected amount of fluid in the sys-
tem – denoted by

�
[X] – exists and is independent of

the initial state (N(0), X(0)).
Hence, we define the stationary hit probability pH (or

simply the hit probability) as the ratio of the stationary
expected amount of fluid in the system to the number of
available documents, that is

pH =

�
[X]

c
. (4)

For the sake of convenience we introduce the new pa-
rameters

γ :=
σ

µc
and α :=

θc

σ
. (5)

A first expression for the hit probability pH is derived in
the following proposition.

Proposition 3.1 The hit probability is given by

pH = e−ρ
∞
∑

i=1

ρi

i!
vi (6)

where the constants v1, v2, . . . satisfy the infinite linear
recursion

(ρ+ αγ + (γ + 1)i) vi = γi+ i∆u(i− 1)vi−1

+ρ∆d(i+ 1)vi+1

for i ≥ 1, with v0 := 0. �

Due to space constraints, the proof of Proposition 3.1 is
given in [4, Appendix A]. The expression in (6) is not
amenable to efficient computation, since it involves the
solution of an infinite system of linear equations and the
computation of an infinite series.

Building on Proposition 3.1, the next result provides
an alternative expression for the hit probability, which
will turn out to be more tractable than (6). This is done
for the cases (i) ∆d(i) = (i − 1)/i, ∆u(i) = 1 and (ii)
∆d(i) = ∆u(i) = 1.

For the sake of compactness we define η := γ + 1.

Proposition 3.2 Assume that ∆u(i) = 1 (no loss of
content at node arrival).



If node departures are not announced (i.e. ∆d(i) =
(i− 1)/i) then

pH = e−
γρ
η γ−(1+κ)

∫ 1

1
η

γρe
γρt
η (tη − 1)

κ
dt (7)

where κ := γ(αη + ρ)/η2.
If node departures are announced (i.e. ∆d(i) = 1)

then

pH=ρe−
ργ
η γ−ν

∫ 1

1
η

(γteρt− v1)e
− ρt

η (ηt−1)
ν−1

dt (8)

with v1 :=

∫ 1/η

0
γte

ργt
γ+1 (1 − ηt)

ν−1
dt

∫ 1/η

0
e

ρt
γ+1 (1 − ηt)

ν−1
dt

and ν :=

αγη+ρ
η2 . �

Due to space limitations the proof is given in [4,
p.11]. Proposition 3.2 provides a low-complexity for-
mula for the computation of pH . The only difficulty lies
in the evaluation of the various exponentials, especially
when the expected number of active nodes ρ is large
(see (1)). In this case, a good accuracy can be achieved
by rewriting pH in the form pH =

∫ 1

1/γ+1
ef(t,ρ,α,κ)dt,

where the mapping f can easily be identified from (7)
(resp. (8)). Using this method, the average CPU time
needed to compute the hit probability using (7) or (8) is
typically less than a second with a Intel 4 2GHz/768Mo
workstation, even for networks as large as a million
nodes.

4 Zipf-like popularity case

Following [1] we now assume that the popularity of
the documents follows a Zipf-like distribution. This im-
plies that the probability ψn that the n-th most popular
object is requested, is given by

ψn =
Ω

nβ
for n = 1, . . . , c (9)

with 0 < β ≤ 1, where Ω := 1/
∑c
i=1 i

−β is a normal-
ization factor. When β = 1 then we have the Zipf’s law.
(For sake of comparison, note that ψn = 1/c under the
uniform popularity assumption – see analysis in Section
3.)

The next step is to replace (3) by an expression that
takes into account the popularity of the documents, as
defined in (9). If we assume that theX(t) cached objects
at time t are the most popular ones, a natural choice for
� [hit|Nn, X(t)] is (with bxc the largest integer less than
or equal to c)

� [hit|Nn, X(t)] =

bX(t)c
∑

i=1

Ω

iβ
≈
X(t)1−β − 1

c1−β − 1
(10)

by using the approximation
∑bxc
i=1 i

−β ≈
∫ x

1
t−βdt =

(x1−β − 1)/(1 − β) for x ≥ 1.
Unfortunately, with this hit probability function

equation (2) has no closed-form solution, which does
not allow us to develop the same kind of analysis as in
Section 3.

Instead, we suggest to approximate the hit probabil-
ity by dividing the set of c documents into K popularity
classes of size ck, 1 ≤ k ≤ K (

∑K
k=1 ck = c) and

to assume that documents belonging to the same class
have the same popularity. The hit probability within
each class can then be computed using Proposition 3.2.

More specifically, assume that the K classes are or-
dered according to the popularity of their documents,
with class 1 containing the most popular documents,
class 2 the second most popular documents, etc. We
define the global hit rate pH as a weighted sum of the
intra-class hit probabilities, that is,

pH =

K
∑

k=1

qk p
k
H (11)

with pkH the hit rate for documents of class k, and qk
the probability that a document of class k is requested.
From (9) we see that

qk =

cK
∑

i=1

Ω

(
∑k−1
l=1 cl + i)β

(12)

for k = 1, 2, . . . ,K. This formula is obtained by sum-
ming up the popularities of all documents in class k,
with Ω/(

∑k−1
l=1 cl + i)β the popularity of the i-th most

popular document of class k.
The intra-class hit probability pkH is obtained from

Proposition 3.2 by replacing the parameters α and γ in
(7) and (8) by αk = θck/(σqk) and γk = σqk/(µck),
respectively.

It remains to determine the number of classes K and
the number of objects assigned to each class. We first
select the number of classes K. Clearly, the accuracy of
this approximation will only increase with the number
of classes. As a result, we simply choose the highest
value of K that leads to an affordable computation. In
Section 6 we will search for an acceptable number of
classes through a comparison with a simulation of the
real system.

Once K is chosen, we need to calculate the number
of objects ck assigned to each class k. This is a classi-
cal clustering problem that can be solved with a scalar
quantization algorithm (see e.g. [6]), which also readily
provides the qk coefficients. Given the initial popular-
ity vector (ψ1, ..., ψc), the vector quantization algorithm



aims at finding the class vector (φ1, ..., φK) that mini-
mizes

E =

c
∑

n=1

d(ψn, Q(ψn)),

where d(.) is a distance measure (in our case the Eu-
clidean distance) and Q(ψn) the quantified version of
ψn in the set {φ1, ..., φK}, namely,

Q(ψn) = arg min
φk

d(ψn, φk). (13)

The quantity φk can be understood as the average popu-
larity of documents in class k. Therefore the qk coeffi-
cients are given by qk = ckφk, 1 ≤ k ≤ K.

In order to determine the set {φ1, ..., φK} we used
the Lloyd algorithm [6, page 189] that can be seen as an
application of the Expectation-Maximization (EM) al-
gorithm. This algorithm is composed of the following
four steps:

S1 Initialize (φ, . . . , φK) (for example by using ran-
dom sampling);

S2 For n = 1, . . . , N , estimate Q(ψn) from (13): for
each φk we obtain ck corresponding objects;

S3 For k = 1, 2, . . . ,K, re-estimate φk: φk =
(1/ck)

∑

n:Q(ψn)=φk
ψn;

S4 Go back to step 2 (S2) until convergence.

Since this algorithm is based on EM, the error will de-
crease at each iteration so that the set {φ1, ..., φK} will
converge to a local optimum. In practice, this algorithm
provides the optimal vector (φ1, ..., φK) along with the
corresponding (c1, ..., cK) values.

This approximation is validated in Section 6.

5 Qualitative observations

We now investigate the impact on the hit proba-
bility of the document popularity distribution (Section
5.2) and of announced/unannounced departures (Section
5.3).

5.1 Experimental setup

We used Matlab to compute the hit probability from
(7), (8) and (11) with the following parameters:






















c = 107 files
σ = 10−3 requests per second and per user
θ = 10−6 s−1 (11-day TTL)
µ = 10−7 s−1 (3 abrupt failures per year and

per user)

With the above values, we see from (5) that γ = 10−3

and α = 104. For the Zipf-like distribution we used β =
0.7 (cf. [1]) and an approximation of K = 10 classes
for 107 documents (cf. Section 6 for a discussion on the
choice of K).

We also investigate the role of the mean online time
on the hit probability in Section 5.3 by setting ρ = 105

and varying µ instead. This case will be explicitly men-
tioned.

5.2 Impact of the Zipf-like popularity

Figure 1 displays the hit probability for the Squir-
rel system with unannounced departures as a function
of the expected number of active nodes ρ, for uniform
and Zipf-like document popularity distributions. In both
cases, the hit probability is an increasing function of
the size (i.e. ρ) of the network, which reflects the
self-scaling nature (and therefore the scalability) of the
Squirrel system.

We can see on Figure 1 that the Zipf-like document
popularity distribution generates higher hit probability
than the uniform popularity for small and medium-sized
networks (say up to 104-105 active nodes on average).
This is a rather intuitive result since when the popularity
is skewed, many requests can be served with only a few
popular cached documents.

From this, we infer that the document probability dis-
tribution is a crucial performance factor, which must be
carefully modeled.
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Figure 1. Hit probability of Squirrel for var-
ious document popularity distributions.

One can also use Figure 1 to determine the minimum
network size necessary for an acceptable performance.
For instance, with the experimental setting in Section
5.1, 8000 nodes must be active on the average with the



Zipf-like distribution if one wants the hit probability to
exceed 1/2.

5.3 Utility of announced departures

In this section we evaluate the benefit of announcing
departures on Squirrel performance. We compare the hit
probability of the Squirrel system in the case of abrupt
failures and announced departures. We do this for the
uniform popularity case, using (7)-(8).

When the nodes disconnect rarely from the system
(e.g., 3 times a year) the relative performance gain
achieved by announcing their departure is very small,
around 5% as shown in [4]. The interest of announc-
ing departures thus has to be balanced with the overhead
cost that this feature will induce, and which is due to
departing nodes transferring their content to their neigh-
bors. We can expect this tradeoff to depend strongly
on the mean online time of peers 1/µ. Intuitively, the
smaller the mean online time, the greater the benefit of
announcing departures - and the greater the overhead
cost.

In Figure 2 we compare the hit probability of the
Squirrel system for announced and unannounced depar-
tures for various departure rates, ranging from 10−7 (3
departures per year) to 10−5 (around 1 departure per
day). For this experiment we used a network size of
ρ = 105 nodes and θ = 10−5 (24 hours TTL).
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Figure 2. Hit probability of Squirrel for an-
nounced and unannounced node depar-
tures as a function of the mean online time
(network of 100,000 nodes).

We observe that the performance of the system does
not depend on γ (i.e., on µ in this experiment) when
nodes are able to announce their departure. While
this property is not directly visible from the expression

in (8), it is fairly intuitive since an announced depar-
ture does not generate performance degradation, unlike
abrupt failures. We also observe that the performance
degradation due to abrupt failures only becomes signif-
icant for γ ≤ 10−4, corresponding to µ ≥ 10−6, or a
mean online time of 11 days at most.

6 Experimental validation

The goal of this section is to validate the fluid model
approximation of requests, as well as the clustering ap-
proximation of document popularity, against a discrete-
event simulation of the Squirrel system. Regarding the
validity of the M/M/∞ model instead of the earlier En-
gset model, we compared the hit probability when the
node dynamics are modeled as the number of customers
in a M/M/∞ queuing system, given in (7), to the corre-
sponding formula in [2, Prop. 4.1] where node dynamics
are represented by the Engset model. To do so we fixed
the mean number of active nodes to the same value in
both models and varied it between 1 and 11000 nodes
(range of tractability of the hit probability obtained via
the Engset model). The hit probability with the Engset
model was computed using Maple V.

We found that both models consistently predict the
same hit probability over all range of loads (i.e. mean
number of active nodes), even for very small networks.
The relative error was always smaller than 10−4. There-
fore, we can expect both models to describe the Squirrel
system with the same accuracy.

In [2], we compared the theoretical results obtained
via the Engset model to a discrete-event simulation of
the Squirrel system with uniform popularity distribution.
The simulation validates the fluid model approximation
by using Poisson arrivals for requests and by allowing
concurrent requests. We found that the theoretical hit
probability was remarkably close to the hit probability
obtained through simulations (see [2] for details).

We can therefore safely conclude from the above that
the hit probability computed via the M/M/∞ model of-
fers the same accuracy as the one obtained via the Engset
model, at least in the uniform popularity case (the analy-
sis in [2] was only carried out for uniformly popular ob-
jects). In particular, we can reasonably extrapolate that
the model developed in this paper is a good approxima-
tion of Squirrel’s behavior when deployed on large net-
works (say larger than 10,000 users), a situation where
both discrete-event simulations and the model in [2] fail
to work.

In Figure 3 we compare our multiclass approach
(Section4) to a discrete-event simulation of the Squir-
rel system with a Zipf-like popularity distribution. The
simulation uses Poisson arrivals for requests (with rate



σN(t) at time t) and allows concurrent requests for pop-
ular files. The parameters were: c = 40, 000 files, ρ =
9.99 nodes, θ = 10−3 s,−1µ = 10−7 s,−1 β = 0.7. We
varied the request rate σ. Simulation results are accurate
at 0.2% with 99% confidence.

Figure 3 shows that our multiclass model is able to
approximate very closely the hit probability of the sim-
ulated system: with 10 classes the curve follows already
closely the same shape as the curve obtained by simula-
tion, and with 100 classes the relative error amounts to
1%. We conclude that the combination of fluid approxi-
mation of request streams and of the multiclass approach
for modeling the different document popularities pro-
vides an accurate estimation of Squirrel performance.
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Figure 3. Comparison of the multiclass
M/M/∞ model with a discrete-event simula-
tion of Squirrel under a Zipf-like popularity
distribution.

7 Conclusion

We proposed a stochastic fluid model for the Squirrel
peer-to-peer cooperative caching system. This model,
based on M/M/∞ node dynamics, approximates the re-
quest streams of the individual nodes by a fluid flow. The
model can be viewed as a scalable extension of our pre-
vious Engset-based fluid model. The new model turns
out to be tractable for any network size and is also more
convenient than our previous model. In addition, the
model allowed us to study the effect of nodes announc-
ing their departure on the resulting hit probability.

Furthermore, we proposed, implemented and evalu-
ated a multiclass approach to take variable object pop-
ularity into account. We found that this method gives
accurate results even with a small number of classes.

Finally, this paper illustrates a stochastic fluid model

approach through the example of the Squirrel system.
This approach can also be straightforwardly applied to
other systems based on distributed hash tables, provided
these systems exhibit load balancing properties and do
not replicate objects.

Future work will intend to adapt the fluid model ap-
proach to analyze other types of content distribution sys-
tems which require to take into account document repli-
cation.
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