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Abstract

In this paper we study the dynamic aspects of the coverage of amobile sensor network resulting

from continuous movement of sensors. As sensors move around, initially uncovered locations are likely

to be covered at a later time. A larger area is covered as time continues, and intruders that might

never be detected in a stationary sensor network can now be detected by moving sensors. However,

this improvement in coverage is achieved at the cost that a location is covered only part of the time,

alternating between covered and not covered. We characterize area coverage at specific time instants

and during time intervals, as well as the time durations thata location is covered and uncovered. We

further consider the time it takes to detect a randomly located intruder and prove that the detection time

is exponentially distributed with parameter 2λrv̄s whereλ represents the sensor density,r represents

the sensor’s sensing range, and ¯vs denotes the average sensor speed. Our results show that sensor

mobility brings about unique dynamic coverage properties not present in a stationary sensor network,

and that mobility can be exploited to compensate for the lackof sensors to improve coverage. For mobile

intruders, we take a game theoretic approach and derive optimal mobility strategies for both sensors and

intruders. We prove that the optimal sensor strategy is to choose their directions uniformly at random

between[0,2π). The optimal intruder strategy is to remain stationary to maximize its detection time.

This solution represents a mixed strategy which is a Nash equilibrium of the zero-sum game between

mobile sensors and intruders.
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I. INTRODUCTION

Coverage is a critical issue for the deployment and performance of a wireless sensor network,

representing the quality of surveillance that the network can provide, for example, how well

a region of interest is monitored by sensors, and how effectively a sensor network can detect

intruders. It is important to understand how the coverage ofa sensor network depends on various

network parameters in order to better design and use sensor networks in different application

scenarios.

In many applications, sensors are not mobile and remain stationary after their initial deploy-

ment. The coverage of such a stationary sensor network is determined by the initial network

configuration. Once the deployment strategy and sensing characteristics of the sensors are known,

network coverage can be computed and remains unchanged overtime.

Recently, there has been increasing interest on building mobile sensor networks. Potential

applications abound. Sensors can be mounted on mobile platforms such as mobile robots and

move to desired areas [1], [2], [3], [4]. Such mobile sensor networks are extremely valuable

in situations where traditional deployment mechanisms fail or are not suitable, for example, a

hostile environment where sensors cannot be manually deployed or air-dropped. Mobile sensor

networks can also play a vital role in homeland security. Sensors can be mounted on vehicles (e.g.,

subway trains, taxis, police cars, fire trucks, boats, etc) or carried by people (e.g., policemen, fire

fighters, etc). These sensors will move with their carriers,dynamically patrolling and monitoring

the environment (e.g., chemical, biological, or radiological agents). In other application scenarios

such as atmosphere and under-water environment monitoring, airborne or under-water sensors

may move with the surrounding air or water currents. The coverage of a mobile sensor network

now depends not only on the initial network configurations, but also on the mobility behavior

of the sensors.

While the coverage of a sensor network with stationary sensors has been extensively explored

and is relatively well understood, researchers have only recently started to study the coverage

of mobile sensor networks. Most of this work focuses on algorithms to relocate sensors in

desired positions in order to repair or enhance network coverage [5], [6], [7], [8], [9], [10],

[11]. More specifically, these proposed algorithms strive to spread sensors to desired locations

to improve coverage. The main differences among these worksare how exactly the desired
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positions of sensors are computed. Although the algorithmscan adapt to changing environments

and recompute the sensor locations accordingly, sensor mobility is exploited essentially to obtain

a new stationary configuration that improves coverage afterthe sensors move to their desired

locations.

In this paper, we study the coverage of a mobile sensor network from a different perspective.

Instead of trying to achieve an improved stationary networkconfiguration as the end result

of sensor movement, we are interested in the dynamic aspectsof network coverage resulting

from the continuous movement of sensors. In a stationary sensor network, the covered areas are

determined by the initial configuration and do not change over time. In a mobile sensor network,

previously uncovered areas become covered as sensors move through them and covered areas

become uncovered as sensors move away. As a result, the areascovered by sensors change over

time, and more areas will be covered at least once as time continues. The coverage status of

a location also changes with time, alternating between being covered and not being covered.

In this work, we assume that sensors are initially randomly and uniformly deployed and move

independently in randomly chosen directions. Based on thismodel, we characterize the fraction

of area covered at a given time instant, the fraction of area ever covered during a time interval,

as well as the time durations that a location is covered and not covered.

Intrusion detection is an important task in many sensor network applications. We measure the

intrusion detection capability of a mobile sensor network by the detection time of a randomly

located intruder, which is defined to be the time elapsed before the intruder is first detected by a

sensor. In a stationary sensor network, an initially undetected intruder will never be detected if

it remains stationary or moves along an uncovered path. In a mobile sensor network, however,

such an intruder may be detected as the mobile sensors patrolthe field. This can significantly

improve the intrusion detection capability of a sensor network. In this paper, we characterize

the detection time of a randomly located intruder. The results suggest that sensor mobility can

be exploited to effectively reduce the detection time of a stationary intruder when the number

of sensors is limited. We further present a lower bound on thedistribution of the detection time

of a randomly located intruder, and show that it can be minimized if sensors move in straight

lines.

In some applications, for example, radiation, chemical, and biological agents detections, there
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is a sensing time requirement before an intruder is detected. We find in this case that too much

mobility can be harmful if the sensor speed is above a threshold. Intuitively, if a sensor moves

faster, it will cover an area more quickly and detect some intruders sooner, however, at the same

time, it will miss some intruders due to the sensing time requirement. To this end, we find there

is an optimal sensor speed that minimizes the detection timeof a randomly located intruder.

For a mobile intruder, the detection time depends on the mobility strategies of both sensors

and intruder. We take a game theoretic approach and study theoptimal mobility strategies of

sensors and intruder. Given the sensor mobility pattern, weassume that an intruder can choose

its mobility strategy so as to maximize its detection time (its lifetime before being detected). On

the other hand, sensors choose a mobility strategy that minimizes the maximum detection time

resulting from the intruder’s mobility strategy. This can be viewed as a zero-sum minimax game

between the collection of mobile sensors and the intruder. We prove that the optimal sensor

mobility strategy is for sensors to choose their directionsuniformly at random between[0,2π).

The corresponding intruder mobility strategy is to remain stationary to maximize its detection

time. This solution represents a mixed strategy which is a Nash equilibrium of the game between

mobile sensors and intruders. If sensors choose to move in any fixed direction (a pure strategy),

it can be exploited by an intruder by moving in the same direction as sensors to maximize its

detection time. The optimal sensor strategy is to choose a mixture of available pure strategies

(move in a fixed direction between[0,2π)). The proportion of the mix should be such that the

intruder cannot exploit the choice by pursuing any particular pure strategy (move in the same

direction as sensors), resulting in a uniformly random distribution for sensor’s movement. When

sensors and intruders follow their respective optimal strategies, neither side can achieve better

performance by deviating from this behavior.

The remainder of the paper is structured as follows. In Section II, we review related work

on the coverage of sensor networks. The network model and coverage measures are defined

in Section III. In Section IV, we derive the fraction of the area being covered at specific time

instants and during a time interval. The detection time for both stationary and mobile intruders

are studied in Section V and Section VI, respectively. In Section VI, we also derive the the

optimal mobility strategies for sensors and intruders froma game theoretic perspective. Finally,

we summarize the paper in Section VII.
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II. RELATED WORK

Recently, sensor deployment and coverage related topics have become an active research

area. In this section, we present a brief overview of the previous work on the coverage of both

stationary and mobile sensor networks that is most relevantto our study. A more thorough survey

of the sensor network coverage problems can be found in [12].

Many previous studies have focused on characterizing various coverage measures for stationary

sensor networks. In [13], the authors considered a grid-based sensor network and derived the

conditions for the sensing range and failure rate of sensorsto ensure that an area is fully covered.

In [14], the authors proposed several algorithms to find paths that are most or least likely to be

detected by sensors in a sensor network. Path exposure of moving objects in sensor networks was

formally defined and studied in [15], where the authors proposed an algorithm to find minimum

exposure paths, along which the probability of a moving object being detected is minimized.

The path exposure problem is further explored in [16], [17],[18]. In [19], [20], [21], the k-

coverage problem where each point is covered by at leastk sensors was investigated. In [22],

the authors defined and derived several important coverage measures for a large-scale stationary

sensor network, namely, area coverage, detection coverage, and node coverage, under a Boolean

sensing model and a general sensing model. Other coverage measures have also been studied.

In [23], [24], the authors studied a metric of quality of surveillance which is defined to be the

average distance that an intruder can move before being detected, and proposed a virtual patrol

model for surveillance operations in sensor networks. In [25], the authors studied a novel sensor

self-deployment problem and introduced an F-coverage evaluation metric, coverage radius, which

reflects the need to maximize the distance fromF to uncovered areas. The relationship between

area coverage and network connectivity is investigated in [26], [27], [28].

While the coverage of stationary sensor networks has been extensively studied and relatively

well understood, researchers have started to explore the coverage of mobile sensor networks

only recently. In [5], [8], [29], virtual-force based algorithms are used to repel nodes from

each other and obstacles to maximize coverage area. In [9], algorithms are proposed to identify

existing coverage holes in the network and compute the desired target positions where sensors

should move in order to increase the coverage. In [30], a distributed control and coordination
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algorithm is proposed to compute the optimal sensor deployment for a class of utility functions

which encode optimal coverage and sensing policies. In [31], mobility is used for sensor density

control such that the resultant sensor density follows the spatial variation of a scalar field in

the environment. In [32], the authors considered the carrier-based sensor placement problem and

proposed a novel localized algorithm in which mobile robotscarry static sensors and drop them

at visited empty vertices of a virtual grid for full coverage. In [33], an autonomous planning

process is developed to compute the deployment positions ofsensors and leader waypoints

for navigationally-challenged sensor nodes. In [34], the authors investigated the problem of

self-deploying a network of mobile sensors with simultaneous consideration to fault-tolerance

(bi-connectivity), coverage, diameter, and quantity of movement required to complete the deploy-

ment. In [35], the authors formulated the distance-sensitive service discovery problem for wireless

sensor and actor networks, and proposed a novel localized algorithm (iMesh) that guarantees

nearby (closest) service selection with a very high probability. The deployment of wireless sensor

networks under mobility constraints and the tradeoff between mobility and sensor density for

coverage are studied in [36], [37].

Many of these proposed algorithms strive to spread sensors to desired positions in order to

obtain a stationary configuration such that the coverage is optimized. The main difference is how

the desired sensor positions are computed. In this work we study the coverage of a mobile sensor

network from a very different perspective. Instead of trying to achieve an improved stationary

network configuration as an end result of sensor movement, wefocus on the dynamic coverage

properties resulting from the continuous movement of the sensors.

Intrusion detection problem in mobile sensor networks has been considered in a few recent

studies, e.g., [38], [39], [40], [41], [42], [43]. In our work we take a stochastic geometry

based approach to derive closed-form expressions for the detection time under different network,

mobility, and sensing models. In [44], Chin et. al. proposedand studied a similar game theoretic

problem formulation for a different network and mobility model.

III. N ETWORK AND MOBILITY MODELS

In this section, we describe the network and mobility model,and introduce three coverage

measures for a mobile sensor network used in this study.
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A. Sensing Model

We assume that each sensor has a sensing radius,r. A sensor can only sense the environment

and detect intruders within its sensing area, which is the disk of radiusr centered at the sensor. A

point is said to becoveredby a sensor if it is located in the sensing area of the sensor. The sensor

network is thus partitioned into two regions, the covered region, which is the region covered by

at least one sensor, and the uncovered region, which is the complement of the covered region.

An intruder is said to bedetectedif it lies within the covered region.

In reality, the sensing area of a sensor is usually not of diskshape due to hardware and

environment factors. Nevertheless, the disk model can be used to approximate the real sensing

area and provide bounds for the real case. For example, the irregular sensing area of a sensor

can be lower and upper bounded by its maximum inscribed and minimum circumscribed circles,

respectively.

B. Location and Mobility Model

We consider a sensor network consisting of a large number of sensors placed in a 2-dimensional

infinite plane. This is used to model a large two-dimensionalgeographical region. For the initial

configuration, we assume that, at timet = 0, the locations of these sensors are uniformly and

independently distributed in the region. Such a random initial deployment is desirable in scenarios

where prior knowledge of the region of interest is not available; it can also result from certain

deployment strategies. Under this assumption, the sensor locations can be modeled by a stationary

two-dimensional Poisson point process. Denote the densityof the underlying Poisson point

process asλ. The number of sensors located in a regionR, N(R), follows a Poisson distribution

with parameterλ‖R‖, where‖R‖ represents the area of the region.

Since each sensor covers a disk of radiusr, the initial configuration of the sensor network

can be described by a Poisson Boolean modelB(λ, r). In a stationary sensor network, sensors

do not move after being deployed and network coverage remains the same as that of the initial

configuration. In a mobile sensor network, depending on the mobile platform and application

scenario, sensors can choose from a wide variety of mobilitystrategies, from passive movement

to highly coordinated and complicated motion. For example,sensors deployed in the air or water

may move passively according to external forces such as air or water currents; simple robots may
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have a limited set of mobility patterns, and advanced robotscan navigate in more complicated

fashions; sensors mounted on vehicles and people move with their carriers, which may move

randomly and independently or perform highly coordinated search.

In this work, we consider the following sensor mobility model. Sensors follow arbitrary random

curves independently of each other without coordination among themselves. In some cases, when

it helps to yield closed-form results and provide insights,we will make the model more specific

by limiting sensor movement to straight lines. In this model, the movement of a sensor is

characterized by its speed and direction. A sensor randomlychooses a directionΘ ∈ [0,2π)

according to some distribution with a probability density function of fΘ(θ). The speed of the

sensor,Vs, is randomly chosen from a finite range[0,vmax
s ], according to a distribution density

function of fVs(v). The sensor speed and direction are independently chosen from their respective

distributions.

The above models make simplified assumptions for real network scenarios. Our purpose is to

obtain analytical results based on the simplified assumptions and provide insight and guideline

to the deployment and performance of mobile sensor networks. The Poisson distribution and

unit disk model have been widely used in the studies of wireless networks (e.g., coverage

and capacity problems) to obtain analytical results. The Poisson spatial distribution is a good

approximation for large networks where nodes are randomly and uniformly distributed. For the

mobility model, we consider the scenarios where nodes move independently of each other. For

example, sensors can be carried by people or mounted on people’s vehicles, boats, or animals,

etc. These carriers are likely to move independently according to their own activity patterns

without much coordination. This is similar to theuncoordinated mobility modelused in [39].

Note that in some scenarios (e.g., sensors mounted on robots) mobile sensors can communicate

with each other and coordinate their moves. In that case the sensors can optimize their movement

patterns and provide more efficient coverage than the independent mobility case. In this paper

we will focus on the independent mobility model.

Throughout the rest of this paper, we will refer to the initial sensor network configuration as

random sensor network B(λ, r), the first mobility model where sensors move in arbitrary curves

as random mobility model, and the more specific mobility model where all sensors move in

straight lines asstraight-line mobility model. The shorthandX ∼ exp(µ) stands forP(X < x) =
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1−exp(−µx), i.e., random variableX is exponentially distributed with parameterµ.

C. Coverage measures

To study the dynamic coverage properties of a mobile sensor network, we define the following

three coverage measures.

Definition 1: Area coverage: The area coverage of a sensor network at timet, fa(t), is the

probability that a given pointx∈ IR2 is covered by one or more sensors at timet.

Definition 2: Time interval area coverage: The area coverage of a sensor network during

time interval [s, t) with s< t, fi(s, t), is the probability that given a pointx ∈ IR2, there exists

u∈ [s, t) such thatx is covered by at least one sensor at timeu.

Definition 3: Detection time: Suppose that an intruder has a trajectoryx(t) and thatx(0) is

uncovered at timet = 0. The detection time of the intruder is the smallestt > 0 such thatx(t)

is covered by at least one sensor at timet.

All three coverage measures depend not only on static properties of the sensor network

(initial sensor distribution, sensor density and sensing range), but also on sensor movements.

The characterization of area coverage at specific time instants is important for applications that

require parts of the whole network be covered at any given time instant. The time interval area

coverage is relevant for applications that do not require orcannot afford simultaneous coverage

of all locations at specific time instants, but prefer to cover the network within some time interval.

The detection time is important for intrusion detection applications, measuring how quickly a

sensor network can detect a randomly located intruder.

IV. A REA COVERAGE

In this section, we study and compare the area coverages of both stationary and mobile sensor

networks. We first analytically characterize the area coverage. We then discuss the implications of

our results on network planning and show that sensor mobility can be exploited to compensate

for the lack of sensors to increase the area being covered during a time interval. However,

we point out, due to the sensor mobility, a point is only covered part of the time; we further

characterize this effect by determining the fraction of time that a point is covered. Finally, we

discuss the optimal moving strategies that maximize the area coverage during a time interval.

9



time 0
time t

Fig. 1. Coverage of mobile sensor network: the left figure depicts the initial network configuration at time 0 and the right
figure illustrates the effect of sensor mobility during timeinterval [0,t). The solid disks constitutes the area being covered at
the given time instant, and the union of the shaded region andthe solid disks represents the area being covered during thetime
interval.

In a stationary sensor network, a location always remains either covered or not covered. The

area coverage does not change over time. The effect of sensormobility on area coverage is

illustrated in Figure 1. The union of the solid disks constitutes the area coverage at given time

instants. As sensors move around, exact locations that are covered at different time instants

change over time. The area that has been covered during time interval [0, t) is depicted as the

union of the shaded region and the solid disks. As can be observed, more area is covered during

the time interval than the initial covered area. The following theorem characterizes the effect of

sensor mobility on area coverage.

Theorem 1: Consider a sensor network B(λ, r) at time t = 0, with sensors moving

according to the random mobility model.

1) At any time instant t, the fraction of area being covered is

fa(t) = 1−e−λπr2
, ∀t ≥ 0. (1)

2) The fraction of area that has been covered at least once during time interval [s, t) is

fi(s, t) = 1−e−λE(α(s,t)). (2)

where E(α(s, t)) is the expected area covered by a sensor during time interval[s, t).

When all sensors move in straight lines, we have

fi(s, t) = 1−e−λ(πr2+2rv̄s(t−s)). (3)
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where v̄s is the average sensor speed.

3) The fraction of the time a point is covered is

ft = 1−e−λπr2
. (4)

Proof. Given the initial node placement and the random mobility model, at any time instant

t, the locations of the sensors still form a two dimensional Poisson point process of the same

density [45, Theorem 9.14]. Therefore, according to [46, Section 3.1.1], the fraction of the area

covered at timet remains the same as in the initial configuration,fa(t) = 1−e−λπr2
. More

generally, denote the expected area covered by a sensor during time a time interval[s, t) as

E(α(s, t)). According to [46, Section 3.1.1], the fraction of area thathas been covered at least

once is fi(s, t) = 1−e−λE(α(s,t)). In particular, when all sensors move in straight lines, each

sensor covers a shape of a racetrack whose expected area isE(α(s, t))= πr2+2rv̄s(t−s), where

v̄s is the average sensor speed. Thus, we havefi(s, t) = 1−e−λ(πr2+2rv̄s(t−s)).

While an uncovered location will be covered when a sensor moves within distancer of the

location, a covered location becomes uncovered as sensors covering it move away. As a result, a

location is only covered part of the time. More specifically,a location alternates between being

covered and not being covered, which can be modeled as an alternating renewal process. We

use the fraction of time that a location is covered to measurethis effect. The fraction of time

that a location is covered equals the probability that it is covered at any given time instant,

ft = 1−e−λπr2
. 2

At any specific time instant, the fraction of the area being covered by the mobile sensor network

described above is the same as in a stationary sensor network. This is because at any time instant,

the positions of the sensors still form a Poisson point process with the same parameters as in the

initial configuration. However, unlike in a stationary sensor network, covered locations change

over time; areas initially not covered will be covered as sensors move around. Consequently,

intruders in the initially uncovered areas can be detected by the moving sensors.

When sensors all move in straight lines, the fraction of the area that has ever been covered

increases and approaches one as time proceeds. Later in thissection we will prove that, among

all possible curves, straight line movement is an optimal strategy that maximizes the area being

covered during a time interval. The rate at which the coveredarea increases over time depends
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on the expected sensor speed. The faster sensors move, the more quickly the deployed region

is covered. Therefore, sensor mobility can be exploited to compensate for the lack of sensors to

improve the area coverage over an interval of time. This is useful for applications that do not

require or cannot afford simultaneous coverage of all locations at any given time, but need to

cover a region within a given time interval. Note that the area coverage during a time interval

does not depend on the distribution of sensors movement direction. Based on (3), we can compute

the expected sensor speed required to have a certain fraction of the area (f0) covered within a

time interval of lengtht0.

v̄s = −λπr2+ log(1− f0)
2λrt0

, for f0 ≥ 1−eλπr2
.

However, the benefit of a greater area being covered at least once during a time interval

comes with a price. In a stationary sensor network, a location is either always covered or not

covered, as determined by its initial configuration. In a mobile sensor network, as a result of

sensor mobility, a location is only covered part of the time,alternating between covered and not

covered. The fraction of time that a location is covered corresponds to the probability that it is

covered, as shown in (4). Note that this probability is determined by the static properties of the

network configuration (density and sensing range of the sensors), and does not depend on sensor

mobility. In the next section, we will further characterizethe duration of the time intervals that

a location is covered and uncovered.

From the proof of Theorem 1, it is easy to see that area coverage during a time interval is

maximized when sensors move in straight lines. This is because, among all possible curves, the

area covered by a sensor during time interval[s, t), α(s, t), is maximized when the sensor moves

in a straight line. Based on (2), we have the following theorem.

Theorem 2: In a sensor network B(λ, r) with sensors moving according to the random

mobility model, the fraction of area covered during any time interval [s, t) is maximized

when sensors all move in straight lines.

It is important to point out that straight line movement is not the only optimal strategy that

maximizes the area coverage during a time interval. There isa family of optimal movement

patterns that maximize the coverage. We conjecture that theoptimal movement patterns have

the following properties: 1) the local radius of curvature is greater than the sensing ranger
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everywhere along the oriented trajectory; 2) if the euclidean distance between two points of the

curve is less than 2r, then the distance between them along the curve is less thanπr. When these

two properties are satisfied, the sensing disk of a sensor does not overlap with its previously

covered areas, and a point will not be covered redundantly bythe same sensor. The covering

efficiency is thus maximized.

V. DETECTION TIME OF STATIONARY INTRUDER

The time it takes to detect an intruder is of great importancein many military and security-

related applications. In this section, we study the detection time of a randomly located stationary

intruder. Detection time for a mobile intruder is investigated in the next section. To facilitate the

analysis and illustrate the effect of sensor mobility on detection time, we consider the scenario

where all sensors move at a constant speedvs. More general sensor speed distribution scenarios

can be approximated using the results of this analysis.

We assume that intruders do not initially fall into the coverage area of any sensor, and an

intruder will be immediately detected when it falls into thesensing range of mobile sensors.

Obviously, these intruders will never be detected in a stationary sensor network. In a mobile

sensor network, however, an intruder can be detected by sensors passing within a distancer of

it, where r is the common sensing range of the sensors. The detection time characterizes how

quickly the mobile sensors can detect a randomly located intruder previously not detected. We

will first derive the detection time when sensors all move in straight lines. We will then consider

the case when sensors move according to arbitrary curves.

Theorem 3: Consider a sensor networkB(λ, r) with sensors moving according to the

straight-line random mobility model and a static intruder. The sequence of times at which

new sensors detect the intruder forms a Poisson process of intensity 2λrv̄s, where v̄s

denotes the average sensor speed. As a consequence, the timebefore the first detection of

the intruder is exponentially distributed with the same parameter.

Proof: We denote byA(s, t) the random region covered by a sensor in the interval[s, t], that

was not covered before times. The shape of this region is illustrated in Figure 2.

We first prove that the number of sensors hitting the intruderin the time interval[s, t] is Poisson

distributed with parameter 2λrv̄s(t −s). Suppose without loss of generality that the intruder is
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Fig. 2. The regionA(s,t) under the straight-line mobility model.

located at the origin. The probability that a sensor initially located at pointx ∈ IR2 hits the

intruder within [s, t] is equal toP(−x∈ A(s, t)). This probability only depends on the direction

and speed of the sensors; in particular, it does not depend onthe initial Poisson process giving

the positions of the sensors. We can thus define a thinned Poisson processΦ(s, t) by selecting at

time 0 the sensors that will hit the intruder during the interval [s, t]. This process is non-uniform

and has density

λ′(x) = λP(−x∈ A(s, t)) .

The number of sensors hitting the intruder during[s, t] is equal to the total number of points in

the thinned process, which is Poisson distributed with mean

E(card(Φ(s, t))) =
Z

IR2
λ′(x)dx

= λ
Z

IR2
P(−x∈ A(s, t))dx

= λ
Z

IR2
E
(

1{−x∈A(s,t)}
)

dx

= λE

(

Z

IR2
1{−x∈A(s,t)}dx

)

= λE(||A(s, t)||), (5)

where 1{·} denotes the indicator function of the event{·}. Furthermore, it is easy to see that

E(||A(s, t)||) = 2rv̄s(t−s).

Second, we show that the number of sensors hitting the intruder during disjoint time intervals

are independent. This is simply done by observing that if[s1, t1]∩ [s2, t2] = /0, each sensor is
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either selected inΦ(s1, t1) or in Φ(s2, t2) or not selected at all. Therefore,Φ(s1, t1) andΦ(s2, t2)

are two independent processes.

Combining the two properties, we conclude that the sequenceof times at which the intruder

gets hit is a Poisson process.

2

Compared to the case of stationary sensors where an undetected intruder always remains

undetected, the probability that the intruder is not detected in a mobile sensor network decreases

exponentially over time,

P(X ≥ t) = e−2λrvst .

whereX represents the detection time of the intruder.

The expected detection time of a randomly located intruder is E[X] = 1
2λrvs

, which is inversely

proportional to the density of the sensors (λ), the sensing range of each sensor (r), and the

speed of sensors (vs). Note that the expected intruder detection time is independent of the sensor

movement direction distribution density function,f s
Θ(θ). Therefore, in order to quickly detect a

stationary intruder, one can add more sensors, use sensors with larger sensing ranges, or increase

the speed of the mobile sensors.

To guarantee that the expected time to detect a randomly located stationary intruder be smaller

than a specific valueT0, we have

1
2λrvs

≤ T0

or equivalently,

λvs≥
1

2rT0
.

If the sensing range of each sensor is fixed, the above formulapresents the tradeoff between

sensor density and sensor mobility to ensure given expectedintruder detection time requirement.

The product of the sensor density and sensor speed should be larger than a constant. Therefore,

sensor mobility can be exploited to compensate for the lack of sensors, and vice versa.

In the proof of Theorem 1, we pointed out that a location alternates between being covered
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and not being covered, and then derived the fraction of time that a point is covered. While the

time average characterization shows, to a certain extent, how well a point is covered, it does not

reveal the duration of the time that a point is covered and uncovered. The time scales of such

time durations are also very important for network planning; they present the time granularity

of the intrusion detection capability that a mobile sensor network can provide. Theorem 3 now

allows us to characterize the time durations of a point beingcovered and not being covered.

Corollary 1: Consider a random sensor networkB(λ, r) at time t = 0, with sensors moving

according to the straight-line random mobility model. A point alternates between being

covered and not being covered. Denote the time duration thata point is covered asTc,

and the time duration that a point is not covered asTn, we have

Tn ∼ exp(2λrvs) (6)

E[Tc] =
eλπr2 −1

2λrvs
. (7)

Proof. In the proof of Theorem 3, we know that the sequence of times atwhich a new sensor

hits a given point forms a Poisson process of intensity 2λrvs. After each sensor hits the point, it

immediately covers the point until it moves out of range. There is no constraint on the number

of sensors that cover the point. Therefore, the covered/uncovered sequence experienced by the

point can be seen as aM/G/∞ queuing process, where the service time of an sensor is the time

duration that the sensor covers the point before moving out of range. The idle periods ofM/G/∞

queue corresponds to the time duration that the point is not covered. It is known that idle periods

in such queues have exponentially distributed durations. Therefore, we haveTn ∼ exp(2λrvs).

Since a point alternates between being covered and not beingcovered, the fraction of time a

point is covered is

ft =
E[Tc]

E[Tc]+E[Tn]
= 1−e−λπr2

.

The last equality in the above equation is given in (4). Solving for E[Tc], we obtain (7).

Let T denote the period of a point being covered and not being covered, i.e.,T = Tc + Tn.

The expected value of the period is

E[T] = E[Tc]+E[Tn] = eλπr2
/2λrvs.
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Intruder

Fig. 3. Mobile sensor network with sensors moving along arbitrary curves.

2

Above we obtain the detection time of a stationary intruder when sensors all move in straight

lines. In practice, mobile sensors do not always move in straight lines; they may make turns and

move in different curves, as depicted in Figure 3. Next, we establish the optimal sensor moving

strategy to minimize the detection time of a stationary intruder.

Theorem 4: Consider a sensor network B(λ, r) at time t = 0, with sensors moving

according to the random mobility model at a fixed speedvs. The detection time of a

randomly located stationary intruder, X, is minimized in probability if sensors all move

in straight lines.

Proof: From Equation (5), we know that the number of sensors detecting the intruder during

the interval[0, t] is Poisson distributed with meanE(||A(0, t)||). Thus we have

P(X ≤ t) = P(card(Φ(0, t))≥ 1) = 1−exp(−E(||A(0, t)||)),

which is a increasing function ofE(||A(0, t)||). As E(||A(0, t)||) is maximized when sensors

move along straight lines, the probability of detecting theintruder is also maximized.

2

Similar to the arguments on the optimal strategies for area coverage in Section IV, straight

line movement is not the only optimal strategy that minimizes the detection time. There is a

family of moving patterns that can minimize the detection time, where straight line movement

is one of them.

In the above analysis, we have assumed that an intruder is immediately detected when it is

hit by the perimeter of a sensor, regardless of the time duration (ts) it stays in the sensing range

of the sensor. In many intrusion detection applications, for example, radiation, chemical, and
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biological threats, due to the probabilistic nature of the phenomenon and the sensing mechanisms,

an intruder will not be immediately detected once it enters the sensing range of a sensor. Instead,

it will take a certain amount of time to detect the intruder. If the sensing time is too short, an

intruder may escape undetected. To account for this sensingtime requirement, we definetd to

be the minimum sensing time in order for a sensor to detect an intruder. Obviously, it is only

interesting when 0≤ td ≤ 2r/vs. Otherwise, the sensing time of an intruder by a sensor will be

smaller than the minimum requirementtd, and the intruder will never be detected. In order to

yield closed-form results and provide insights, we will consider the straight-line random mobility

model.

Theorem 5: Consider a sensor network B(λ, r) at time t = 0, with sensors moving

according to the straight-line random mobility model at a fixed speedvs. An intruder

is detected iff the sensing timets is at least td, i.e., ts ≥ td. Let Y be the detection time

of a randomly located stationary intruder initially not loc ated in the sensing area of any

sensor, we have

Y = td +T (8)

where

T ∼ exp(2λreffvs) (9)

reff =

√

r2− v2
st2

d

4
. (10)

Proof: We assume without loss of generality that the intruder is located at the origin. We

observe first that a sensor covers the intruder for a time longer thantd if and only if the distance

between its trajectory and the origin is less thanreff (see Figure 4). We call such sensorsvalid

sensors.

Similarly as in Theorem 1, we define a thinned Poisson processΦeff(0, t) by selecting the

sensors that will detect the intruder during the interval[0, t]. To do so, we define theeffective

covered areaAeff(0, t) of a sensor as the area covered by the disk of radiusreff centered on it.

Then, the probability that a sensor initially located atx detects the intruder during the interval

[0, t] is P(−x∈ Aeff(0, t)). By (5) we find that the expected number of points inΦeff(0, t) is
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Fig. 4. Effective radius of a mobile sensor.

λE(||Aeff(0, t)||) = 2λreffvs. Denoting byT the time before a valid sensor covers the intruder,

we get

P(T ≤ t) = P(card(Φeff(0, t))≥ 1) = 1−exp(−2λreffvs).

Then, the intruder is finally detected by the system after a time T + td.

2

In (8), the detection time has two terms, namely, a constant term td and an exponentially dis-

tributed random variable with meanE[T] = 1/(2λreffvs). The first termtd is a direct consequence

of the minimum sensing time requirement. After the perimeter of a sensor hits an intruder, it

takes a minimum sensing time oftd to detect the intruder, and hence the constant delay. By

Theorem 3, the second term corresponds to the detection timein the case where there is no

minimum sensing time requirement but sensors have a reducedsensing radius ofreff. This is

again a consequence of the minimum sensing time requirementand the effect is illustrated in

Figure 4. An intruder will only be detected by a mobile sensorif the trajectory of the sensor

falls within reff from the intruder. The above two effects of minimum sensing time requirement

result in an increased expected detection time compared to the case without minimum sensing

time requirement. Sincetd > 0 andreff < r, we have

E[Y] = td +1/(2λreffvs) > 1/(2λrvs) = E[X].

Sensor speed has two opposite effects on an intruder’s detection time.

• On one hand, as sensors move faster, uncovered areas will be covered more quickly and

this tends to speed up the detection of intruders.
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• On the other hand, the effective sensing radiusreff decreases as sensors increase their speed

due to the sensing time requirement, making intruders less likely to be detected.

In the following, we present the optimal sensor speed that minimizes the expected detection

time. Excess mobility will be harmful when the sensor speed is larger than the optimal value.

Theorem 6: Under the scenario in Theorem 5, the optimal sensor speed minimizing the

expected detection time of a randomly located intruder is

v∗s =
√

2r/td. (11)

Proof. Let dY/dvs = 0, we havev∗s =
√

2r/td, and the second order derivatived2Y
dv2

s
|v∗s < 0. The

corresponding minimum expected detection time is

E[Y∗] = (1+2λr2)td/2λr2.

2

In real world applications, the minimum required sensing time depends on a number of

components: sensing mechanism (underlying physical, chemical, biological processes), hardware

(CPU, ADC, memory, clock rate, etc) and software (operatingsystems) configurations. While

the response time of some sensors is small (e.g., accelerometer MMA73x0L by Freescale

Semiconductor Inc. has a response time of less than 1 ms) and the effect on the detection time

is negligible, other sensors (e.g., certain optical biosensors, chemical sensors) have a response

time of several seconds or longer []. In this case, the effectof the minimum required sensing

time on detection time of intruders cannot be ignored. In a real sensor network system, one will

need to measure the minimum required sensing time for the application and determine if the

effect is negligible.

VI. DETECTION TIME OF MOBILE INTRUDER

In this section, we consider the detection time of a mobile intruder, which depends not only

on the mobility behavior of the sensors but also on the movement of the intruder itself. Intruders

can adopt a wide variety of movement patterns. In this work, we will not consider specific

intruder movement patterns. Rather, we approach the problem from a game theoretic standpoint

and study the optimal mobility strategies of the intruders and sensors.
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For simplicity we assume that an intruder will be immediately detected when it falls into

the sensing range of mobile sensors. Note that the analysis and results of the detection time

requirement presented in the previous section can be readily adapted in this part of the study.

From Theorem 4, the detection time of a stationary sensor intruder is minimized when sensors

all move in straight lines. This result can be easily extended to a mobile intruder using similar

arguments in the reference framework where the intruder is stationary. From the perspective of

an intruder, since it only knows the mobility strategy of thesensors (sensor direction distribution

density function) and does not know the locations and directions of the sensors, changing

direction and speed will not help prolong its detection time. In the following, we will only

consider the case where sensors and intruders move in straight lines.

Given the mobility model of the sensors,fΘ(θ), an intruder chooses the mobility strategy

that maximizes its expected detection time. More specifically, an intruder chooses its speedvt ∈
[0,vmax

t ) and directionθt ∈ [0,2π) so as to maximize the expected detection time. The expected

detection time is a function of the sensor direction distribution density, intruder speed, and in-

truder moving direction. Denote the resulting expected detection time as maxvt ,θt E[X( fΘ(θ),θt,vt)];

the sensors then choose the mobility strategy (over all possible direction distributions) that

minimizes the maximum expected detection time. This can be viewed as a zero-sum minimax

game between the collection of mobile sensors and the intruder, where the payoffs for the mobile

sensors and intruder are−E[X( fΘ,θt ,vt)] andE[X( fΘ,θt ,vt)], respectively.

To find the optimal mobility strategies for mobile sensors and the intruder, we consider the

following minimax optimization problem:

min
fΘ

max
θt ,vt

E[X( fΘ,θt ,vt)]. (12)

To solve the minimax optimization problem, we first characterize the detection time of an

intruder moving at a constant speed in a particular direction.

Theorem 7: Consider a sensor network B(λ, r) at time t = 0, with sensors moving

according to the straight-line random mobility model at a fixed speedvs. Let X be the

21



detection time of an intruder moving at speedvt along direction θt . Denote

c = vt/vs, ĉ = 1+c

w(u) =
√

1− 4c
ĉ2 cos2 u

2

vs = vsĉ
R 2π

0 w(θ−θt) fΘ(θ)dθ.

We have

X ∼ exp(2λrvs). (13)

Proof: To prove this theorem, we put ourselves in the frame of reference of the intruder and

look at the speeds of the sensors. Thus, if a sensor has an absolute speed vectorvs, its speed

vector in the new frame of reference is simplyvs−vt , wherevt denotes the intruder’s absolute

speed vector. Letθs denote the direction ofvs andθt the direction ofvt .

In the new frame of reference, the intruder is static. Denotec= vt/vs , ĉ= 1+c, andw(u) =
√

1− 4c
ĉ2 cos2 u

2. Using the Law of Cosines, the relative speed of the sensor can be computed as

||vs−vt || =

√

v2
s +v2

t −2vsvtcos(θs−θt)

= vsĉw(θs−θt)

We know from Equation (5) that

P(X ≤ t) = P(card(Φ(0, t))≥ 1) = 1−exp(−λE(||A(0, t)||)).

Therefore, ifE(||A(0, t)||) is a linear function oft, thenX is exponentially distributed. We get

||A(0, t)||= 2r||vs−vt ||t = 2rtw(θs−θt),

so that

E(||A(0, t)||) = 2rt
Z 2π

0
w(θ−θt) fΘ(θ)dθ

= 2rt vs

wherevs = vsĉ
R 2π

0 w(θ−θt) fΘ(θ)dθ, which can be viewed as the average effective sensor speed

in the reference framework where the intruder is stationary. Therefore, the detection time is
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exponentially distributed with rate 2λrvs.

2

From Theorems 3 and 7, it can be noted that the detection timesof both stationary and mobile

intruders follow exponential distributions, and that the parameters are of the same form, except

that the sensor speed is now replaced by the effective sensorspeed for the mobile intruder case.

Assuming that the sensor density and sensing range are fixed,since the intruder detection time

follows an exponential distribution with mean 1/(2λrvs), maximizing the expected detection time

corresponds to minimizing the effective sensor speedvs. In the following, we derive the optimal

intruder mobility strategies for two special sensor mobility models.

Sensors move in the same directionθs: fΘ(θ) = δ(θ−θs).

Using the fundamental property of the delta function
R ∞
−∞ f (x)δ(x−a)dx= f (a), we have

vs = vsĉ
Z 2π

0
w(θ−θt)δ(θ−θs)dθ

= vsĉw(θs−θt).

We need to choose a properθt and vt that minimizes the above effective sensor speedvs.

First, it is easy to see that we requireθt = θs. Now, we have

vs = vsĉ

√

1− 4c
ĉ2 = |vt −vs|

andvs is minimized when

vt =







vs if vmax
t ≥ vs

vmax
t otherwise.

The above results show, quite intuitively, that the intruder should move in the same direction

as the sensors at a speed closest matching the sensor speed. If the maximum intruder speed is

larger than the sensor speed, the intruder will not be detected since it chooses to move at the

same speed and in the same direction as the sensors. In this case, the detection time is infinity.

Otherwise, if the maximum intruder speed is smaller than thesensor speed, the intruder should

move at the maximum speed in the same direction of the sensors. The expected detection time
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Fig. 5. Normalized effective relative sensor speedvs/vs as a function ofc = vt/vs

is 1
2λr(vs−vmax

t ) .

Sensors move in uniformly random directions: fΘ(θ) = 1
2π .

Figure 5 plots the normalized effective sensor speedvs/vs as a function ofc= vt/vs, the ratio

of the intruder speed to the sensor speed. The effective sensor speed is an increasing function

of c, and is minimized whenc = 0, or vt = 0. Therefore, if each sensor uniformly chooses

its moving direction from 0 to 2π, the maximum expected detection time is achieved when the

intruder does not move. The corresponding expected detection time is 1
2λrvs

. The optimal intruder

mobility strategy in this case can be intuitively explainedas follows. Since sensors move in all

directions with equal probability, the movement of the intruder in any direction will result in a

larger relative speed and thus a smaller first hit time in thatparticular direction. Consequently,

the minimum of the first hit times in all directions (detection time) will become smaller.

We now present the solution to the minimax game between the collection of mobile sensors

and the intruder in the following theorem.

Theorem 8: Consider a sensor network B(λ, r) at time t = 0, with sensors moving

according to the random mobility model at a fixed speedvs. For the game between the

collection of mobile sensors and the mobile intruder, the optimal sensor strategy is for

each sensor to choose a direction according to a uniform distribution, i.e., fΘ(θ) = 1
2π . The

optimal mobility strategy of the intruder is to stay stationary. This solution constitutes a

Nash equilibrium of the game.
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Proof.

In the game between the collection of mobile sensors and the intruder, mobile sensors need

to choose an optimal moving direction distributionfΘ(θ) so as to detect the intruder as soon as

possible, while the intruder chooses its speedvt ∈ [0,vmax
t ) and directionθt ∈ [0,2π) so as to stay

undetected as long as possible. Denote the resulting expected detection time asE[X( fΘ(θ),θt,vt)].

The game payoffs for the mobile sensors and intruder are−E[X( fΘ,θt ,vt)] andE[X( fΘ,θt ,vt)],

respectively.

For sensors, minimizing intruder detection time is equivalent to maximizing the effective sensor

speed after an intruder selects the optimal speed and direction. We first prove for any given

intruder speedvt , that among all possible sensor direction distributions, the minimum effective

sensor speed resulted from the optimal intruder direction choice, minθt vs, is maximized when

sensors choose directions according to a uniform distribution. The formal statement is described

as follows.

Denote the uniform distribution density asf uniform
Θ = 1/2π. From Theorem 7, the effective

sensor speed is a function of sensor direction distributiondensity, intruder speed and direction,

vs( fΘ(θ),θt,vt) =
R 2π

0 w(θ−θt) fΘ(θ)dθ.

We will prove that

min
θt ,vt

νs( fΘ(θ),θt,vt) ≤ min
θt ,vt

νs( f uniform
Θ ,θt,vt) (14)

for all fΘ(θ).

First, let us consider the right-hand side of (14). We have

νs( f uniform
Θ ,θt ,vt) =

1
2π

Z 2π

0
w(θ−θt)dθ

=
1
2π

Z 2π−θt

−θt

w(u)du

=
1
2π

Z 2π

0
w(u)du

for all θt , since the mappingu→ w(u) is periodic with period 2π. This shows that

min
θt

νs( f uniform
Θ ,θt ,vt) =

1
2π

Z 2π

0
w(u)du. (15)
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We now come back to the proof of (14). We have

min
θt

νs( fΘ(θ),θt,vt)

≤ 1
2π

Z 2π

0
νs( fΘ(θ),θt,vt)dθt

=
1
2π

Z 2π

0

Z 2π

0
w(θ−θt) fΘ(θ)dθdθt

=
1
2π

Z 2π

0
fΘ(θ)

(

Z θ

θ−2π
w(u)du

)

dθ

=
1
2π

(

Z 2π

0
fΘ(θ)dθ

)(

Z 2π

0
w(u)du

)

=
1
2π

Z 2π

0
w(u)du

= min
θt

νs( f uniform
Θ ,θt ,vt) (16)

where the last three equalities follow from the fact thatw(u) is periodic with period 2π, from

the fact thatfΘ(θ) is a probability density function on[0,2π], and from (15), respectively.

The proof of (14) is concluded by taking first the minimum overvt in the left-hand side of

(16), then by taking the minimum overvt in the right-hand side of (16).

It follows that when sensors choose directions according toa uniform distribution, the optimal

intruder mobility strategy is to stay stationary, i.e.,vt = 0 (sincevs( f uniform
Θ ,θt,vt) is maximized

whenc = 0 (and equals to 1), i.e. whenvt = 0), andθt is irrelevant in this case.

Based on the previous discussions on different mobility strategies of sensors and intruders,

under the optimal mobility strategies, neither side can improve the payoff by changing the strategy

unilaterally. Specifically, when sensors choose their direction uniformly at random, the movement

of the intruder in any direction will result in a larger relative speed and thus a smaller first hit

time in that particular direction. Consequently, the minimum of the first hit times in all directions

(detection time) will become smaller. When the intruder stays stationary, the detection time will

not improve if sensors choose a different distribution for the moving direction. Therefore, the

solution constitutes a Nash equilibrium of the game. 2

This result suggests that in order to minimize the expected detection time of an intruder,

sensors should choose their directions uniformly at randombetween[0,2π). The corresponding

optimal mobility strategy of the intruder is to stay stationary. The uniformly random sensor
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movement represents a mixed strategy which is a Nash equilibrium of the game between mobile

sensors and intruders. If sensors choose to move in any fixed direction (pure strategy), it can be

exploited by an intruder by moving in the same direction as sensors to maximize its detection

time. The optimal sensor strategy is to choose a mixture of available pure strategies (move in

a fixed direction between[0,2π)). The proportion of the mix should be such that the intruder

cannot exploit the choice by pursuing any particular pure strategy (move in the same direction as

sensors), resulting in a uniformly random distribution forsensor’s movement. When sensors and

intruders follow their respective optimal strategies, neither side can achieve better performance

by deviating from this behavior.

In this study we assume that the goal of the mobile intruder isto maximize the expected

detection so that it can stay undetected as long as possible.This is a desirable goal in some

applications such as intruder intelligence gathering. In other applications, the intruder may want

to pass through a region monitored by sensors ( e.g., [22], [47]) or to visit a set of particular

locations without being detected. In these cases, the objective of the intruder is different and

the corresponding optimal strategy would be different. In general, for a specific application, we

will need to first identify the objective of the intruder and then study the corresponding game

between the intruder and mobile sensors.

VII. SUMMARY

In this paper, we study the dynamic aspects of the coverage ofa mobile sensor network result-

ing from the continuous movement of sensors. Specifically, we studied the coverage measures

related to the area coverage and intrusion detection capability of a mobile sensor network.

For the random initial deployment and the random sensor mobility model under consideration,

we showed that while the area coverage at any given time instants remains unchanged, more area

will be covered at least once during a time interval. This is important for applications that do not

require or cannot afford simultaneous coverage of all locations but want to cover the deployed

region within a certain time interval. The cost is that a location is only covered part of the time,

alternating between covered and not covered. To this end, wecharacterized the durations and

fraction of time that a location is covered and not covered.

As sensors move around, intruders that will never be detected in a stationary sensor network
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can be detected by moving sensors. We characterized the detection time of a randomly located

stationary intruder. The results suggest that sensor mobility can be exploited to effectively reduce

the detection time of an intruder when the number of sensors is limited. We further considered a

more realistic sensing model where a minimum sensing time isrequired to detect an intruder. We

find that there is an optimal sensor speed that minimizes the expected detection time. Beyond the

optimal speed, excess mobility will be harmful to the intrusion detection performance. Moreover,

we discussed the optimal mobility strategies that maximizethe area coverage during a time

interval and minimize the detection time of intruders.

For mobile intruders, the intruder detection time depends on the mobility strategies of the

sensors as well as the intruders. We took a game theoretic approach and obtained the optimal

mobility strategy for sensors and intruders. We showed thatthe optimal sensor mobility strategy

is that each sensor chooses its direction uniformly at random in all directions. By maximizing

the entropy of the sensor direction distribution, the amount of prior information on sensor

mobility strategy revealed to an intruder is minimized. Thecorresponding intruder mobility

strategy is to stay stationary in order to maximize its detection time. This solution represents a

Nash equilibrium of the game between mobile sensors and intruders. Neither side can achieve

better performance by deviating from their respective optimal strategies.
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