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Abstract

In this paper we study the dynamic aspects of the coveragenoflzle sensor network resulting
from continuous movement of sensors. As sensors move araitidlly uncovered locations are likely
to be covered at a later time. A larger area is covered as tioménzes, and intruders that might
never be detected in a stationary sensor network can now teetdé by moving sensors. However,
this improvement in coverage is achieved at the cost thatatitm is covered only part of the time,
alternating between covered and not covered. We charaetarea coverage at specific time instants
and during time intervals, as well as the time durations ¢héication is covered and uncovered. We
further consider the time it takes to detect a randomly ledt@btruder and prove that the detection time
is exponentially distributed with parametekr®s where A represents the sensor densitytepresents
the sensor’s sensing range, amgddenotes the average sensor speed. Our results show that sens
mobility brings about unique dynamic coverage propertiespresent in a stationary sensor network,
and that mobility can be exploited to compensate for the tddensors to improve coverage. For mobile
intruders, we take a game theoretic approach and derivenaptnobility strategies for both sensors and
intruders. We prove that the optimal sensor strategy is twsé their directions uniformly at random
between|0,2m). The optimal intruder strategy is to remain stationary taximéze its detection time.
This solution represents a mixed strategy which is a Nasliilegum of the zero-sum game between

mobile sensors and intruders.
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I. INTRODUCTION

Coverage is a critical issue for the deployment and perfaoeaf a wireless sensor network,
representing the quality of surveillance that the netwask provide, for example, how well
a region of interest is monitored by sensors, and how effelgtia sensor network can detect
intruders. It is important to understand how the coverage sfnsor network depends on various
network parameters in order to better design and use seeswoornks in different application
scenarios.

In many applications, sensors are not mobile and remairostay after their initial deploy-
ment. The coverage of such a stationary sensor network eyrdeted by the initial network
configuration. Once the deployment strategy and sensimgcteaistics of the sensors are known,
network coverage can be computed and remains unchangediroeer

Recently, there has been increasing interest on buildingilmsensor networks. Potential
applications abound. Sensors can be mounted on mobileptafsuch as mobile robots and
move to desired areas [1], [2], [3], [4]. Such mobile sensetworks are extremely valuable
in situations where traditional deployment mechanismisdiaiare not suitable, for example, a
hostile environment where sensors cannot be manually geglor air-dropped. Mobile sensor
networks can also play a vital role in homeland securitysBesican be mounted on vehicles (e.qg.,
subway trains, taxis, police cars, fire trucks, boats, etchaied by people (e.g., policemen, fire
fighters, etc). These sensors will move with their carridysiamically patrolling and monitoring
the environment (e.g., chemical, biological, or radiotadiagents). In other application scenarios
such as atmosphere and under-water environment monifairigorne or under-water sensors
may move with the surrounding air or water currents. The @ye of a mobile sensor network
now depends not only on the initial network configurationst, dlso on the mobility behavior
of the sensors.

While the coverage of a sensor network with stationary ssnsas been extensively explored
and is relatively well understood, researchers have ordgntty started to study the coverage
of mobile sensor networks. Most of this work focuses on atgors to relocate sensors in
desired positions in order to repair or enhance network re@ee [5], [6], [7], [8], [9], [10],
[11]. More specifically, these proposed algorithms strivespread sensors to desired locations

to improve coverage. The main differences among these war&show exactly the desired
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positions of sensors are computed. Although the algorittamsadapt to changing environments
and recompute the sensor locations accordingly, sensoititpad exploited essentially to obtain
a new stationary configuration that improves coverage dftersensors move to their desired
locations.

In this paper, we study the coverage of a mobile sensor nktisom a different perspective.
Instead of trying to achieve an improved stationary netwookfiguration as the end result
of sensor movement, we are interested in the dynamic aspéctstwork coverage resulting
from the continuous movement of sensors. In a stationargasemetwork, the covered areas are
determined by the initial configuration and do not change tiwee. In a mobile sensor network,
previously uncovered areas become covered as sensors hrough them and covered areas
become uncovered as sensors move away. As a result, thecareaed by sensors change over
time, and more areas will be covered at least once as timencast The coverage status of
a location also changes with time, alternating betweengoeovered and not being covered.
In this work, we assume that sensors are initially randomly aniformly deployed and move
independently in randomly chosen directions. Based onmtitidel, we characterize the fraction
of area covered at a given time instant, the fraction of auea eovered during a time interval,
as well as the time durations that a location is covered ancowered.

Intrusion detection is an important task in many sensor agtwpplications. We measure the
intrusion detection capability of a mobile sensor netwoyktlie detection time of a randomly
located intruder, which is defined to be the time elapsedrbdfee intruder is first detected by a
sensor. In a stationary sensor network, an initially unceteintruder will never be detected if
it remains stationary or moves along an uncovered path. lobilensensor network, however,
such an intruder may be detected as the mobile sensors tiadrdield. This can significantly
improve the intrusion detection capability of a sensor oekwIn this paper, we characterize
the detection time of a randomly located intruder. The tessliggest that sensor mobility can
be exploited to effectively reduce the detection time of aighary intruder when the number
of sensors is limited. We further present a lower bound ordik&ibution of the detection time
of a randomly located intruder, and show that it can be mingaiif sensors move in straight
lines.

In some applications, for example, radiation, chemicad hiological agents detections, there
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is a sensing time requirement before an intruder is detedtedfind in this case that too much
mobility can be harmful if the sensor speed is above a thidshatuitively, if a sensor moves
faster, it will cover an area more quickly and detect someuddrs sooner, however, at the same
time, it will miss some intruders due to the sensing time meguoent. To this end, we find there
is an optimal sensor speed that minimizes the detection eiveerandomly located intruder.

For a mobile intruder, the detection time depends on the Ihpstrategies of both sensors
and intruder. We take a game theoretic approach and studgpti@mal mobility strategies of
sensors and intruder. Given the sensor mobility patternasgeime that an intruder can choose
its mobility strategy so as to maximize its detection tints [ifetime before being detected). On
the other hand, sensors choose a mobility strategy thatmzaes the maximum detection time
resulting from the intruder’s mobility strategy. This cam Wiewed as a zero-sum minimax game
between the collection of mobile sensors and the intruder.prdve that the optimal sensor
mobility strategy is for sensors to choose their directiangormly at random betweejd, 2m).
The corresponding intruder mobility strategy is to remdsttisnary to maximize its detection
time. This solution represents a mixed strategy which is shNgquilibrium of the game between
mobile sensors and intruders. If sensors choose to moveyiffix@d direction (a pure strategy),
it can be exploited by an intruder by moving in the same dioecas sensors to maximize its
detection time. The optimal sensor strategy is to choosexaunei of available pure strategies
(move in a fixed direction betwe€, 2m)). The proportion of the mix should be such that the
intruder cannot exploit the choice by pursuing any paréicydure strategy (move in the same
direction as sensors), resulting in a uniformly randomritigtion for sensor’s movement. When
sensors and intruders follow their respective optimaltstiias, neither side can achieve better
performance by deviating from this behavior.

The remainder of the paper is structured as follows. In 8echi, we review related work
on the coverage of sensor networks. The network model andrage measures are defined
in Section Ill. In Section IV, we derive the fraction of theearbeing covered at specific time
instants and during a time interval. The detection time fothlstationary and mobile intruders
are studied in Section V and Section VI, respectively. Inti®acVI, we also derive the the
optimal mobility strategies for sensors and intruders faigame theoretic perspective. Finally,

we summarize the paper in Section VII.



I[I. RELATED WORK

Recently, sensor deployment and coverage related topws bacome an active research
area. In this section, we present a brief overview of the iptes/work on the coverage of both
stationary and mobile sensor networks that is most releamir study. A more thorough survey
of the sensor network coverage problems can be found in [12].

Many previous studies have focused on characterizing wagoverage measures for stationary
sensor networks. In [13], the authors considered a grigchasnsor network and derived the
conditions for the sensing range and failure rate of sertsagasure that an area is fully covered.
In [14], the authors proposed several algorithms to find pétat are most or least likely to be
detected by sensors in a sensor network. Path exposure afgnalyjects in sensor networks was
formally defined and studied in [15], where the authors psgploan algorithm to find minimum
exposure paths, along which the probability of a moving cbfeeing detected is minimized.
The path exposure problem is further explored in [16], [JZB]. In [19], [20], [21], the k-
coverage problem where each point is covered by at lkeasnsors was investigated. In [22],
the authors defined and derived several important coveragsumes for a large-scale stationary
sensor network, namely, area coverage, detection coveaagenode coverage, under a Boolean
sensing model and a general sensing model. Other coveraggeumes have also been studied.
In [23], [24], the authors studied a metric of quality of seitlance which is defined to be the
average distance that an intruder can move before beingtddteand proposed a virtual patrol
model for surveillance operations in sensor networks. &],[the authors studied a novel sensor
self-deployment problem and introduced an F-coveragaiatiah metric, coverage radius, which
reflects the need to maximize the distance friérto uncovered areas. The relationship between
area coverage and network connectivity is investigate@@j, [[27], [28].

While the coverage of stationary sensor networks has bems&xely studied and relatively
well understood, researchers have started to explore therampe of mobile sensor networks
only recently. In [5], [8], [29], virtual-force based aldgtthms are used to repel nodes from
each other and obstacles to maximize coverage area. Inl§@fithms are proposed to identify
existing coverage holes in the network and compute the etbsarget positions where sensors

should move in order to increase the coverage. In [30], ailbliged control and coordination



algorithm is proposed to compute the optimal sensor deptoyrfor a class of utility functions
which encode optimal coverage and sensing policies. In fBbpility is used for sensor density
control such that the resultant sensor density follows tetial variation of a scalar field in
the environment. In [32], the authors considered the gabased sensor placement problem and
proposed a novel localized algorithm in which mobile robwasy static sensors and drop them
at visited empty vertices of a virtual grid for full coverade [33], an autonomous planning
process is developed to compute the deployment positionsen$ors and leader waypoints
for navigationally-challenged sensor nodes. In [34], thwhars investigated the problem of
self-deploying a network of mobile sensors with simultarseconsideration to fault-tolerance
(bi-connectivity), coverage, diameter, and quantity ofveraent required to complete the deploy-
ment. In [35], the authors formulated the distance-sams#érvice discovery problem for wireless
sensor and actor networks, and proposed a novel localizgatithim (iMesh) that guarantees
nearby (closest) service selection with a very high prdiigbThe deployment of wireless sensor
networks under mobility constraints and the tradeoff betwenobility and sensor density for
coverage are studied in [36], [37].

Many of these proposed algorithms strive to spread sensodegired positions in order to
obtain a stationary configuration such that the coveragptiszed. The main difference is how
the desired sensor positions are computed. In this work udyshe coverage of a mobile sensor
network from a very different perspective. Instead of tgyto achieve an improved stationary
network configuration as an end result of sensor movementfoutes on the dynamic coverage
properties resulting from the continuous movement of thesges.

Intrusion detection problem in mobile sensor networks hesnbconsidered in a few recent
studies, e.g., [38], [39], [40], [41], [42], [43]. In our wiorwe take a stochastic geometry
based approach to derive closed-form expressions for tieetten time under different network,
mobility, and sensing models. In [44], Chin et. al. propoaad studied a similar game theoretic

problem formulation for a different network and mobility ohed.

[1I. NETWORK AND MOBILITY MODELS

In this section, we describe the network and mobility moaeilg introduce three coverage

measures for a mobile sensor network used in this study.
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A. Sensing Model

We assume that each sensor has a sensing radifissensor can only sense the environment
and detect intruders within its sensing area, which is tBk df radiusr centered at the sensor. A
point is said to beoveredoy a sensor if it is located in the sensing area of the sensersénsor
network is thus partitioned into two regions, the covereglae, which is the region covered by
at least one sensor, and the uncovered region, which is timplement of the covered region.
An intruder is said to beletectedf it lies within the covered region.

In reality, the sensing area of a sensor is usually not of diskpe due to hardware and
environment factors. Nevertheless, the disk model can bd ts approximate the real sensing
area and provide bounds for the real case. For example, régular sensing area of a sensor
can be lower and upper bounded by its maximum inscribed anémam circumscribed circles,

respectively.

B. Location and Mobility Model

We consider a sensor network consisting of a large numbemnsiss placed in a 2-dimensional
infinite plane. This is used to model a large two-dimensigealgraphical region. For the initial
configuration, we assume that, at tirne- O, the locations of these sensors are uniformly and
independently distributed in the region. Such a randonmirdeployment is desirable in scenarios
where prior knowledge of the region of interest is not aldéait can also result from certain
deployment strategies. Under this assumption, the sensatibns can be modeled by a stationary
two-dimensional Poisson point process. Denote the demditthe underlying Poisson point
process a3. The number of sensors located in a regRyN(R), follows a Poisson distribution

with parametei\||R

, Where||R|| represents the area of the region.

Since each sensor covers a disk of radiushe initial configuration of the sensor network
can be described by a Poisson Boolean md@ialr). In a stationary sensor network, sensors
do not move after being deployed and network coverage remtha same as that of the initial
configuration. In a mobile sensor network, depending on tlebila platform and application
scenario, sensors can choose from a wide variety of molsiligtegies, from passive movement
to highly coordinated and complicated motion. For examgdesors deployed in the air or water

may move passively according to external forces such ag aater currents; simple robots may
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have a limited set of mobility patterns, and advanced robats navigate in more complicated
fashions; sensors mounted on vehicles and people move keéth ¢arriers, which may move
randomly and independently or perform highly coordinatedrsh.

In this work, we consider the following sensor mobility madgensors follow arbitrary random
curves independently of each other without coordinationrgrthemselves. In some cases, when
it helps to yield closed-form results and provide insights, will make the model more specific
by limiting sensor movement to straight lines. In this modéle movement of a sensor is
characterized by its speed and direction. A sensor randaimbpses a directio® € [0, 2m)
according to some distribution with a probability densitnétion of fg(8). The speed of the
sensorVs, is randomly chosen from a finite rand@ vi'®¥|, according to a distribution density
function of fy,(v). The sensor speed and direction are independently chazertliieir respective
distributions.

The above models make simplified assumptions for real n&taoenarios. Our purpose is to
obtain analytical results based on the simplified assumgtand provide insight and guideline
to the deployment and performance of mobile sensor netwdrks Poisson distribution and
unit disk model have been widely used in the studies of wéseleetworks (e.g., coverage
and capacity problems) to obtain analytical results. Thisdém spatial distribution is a good
approximation for large networks where nodes are randomdly uaniformly distributed. For the
mobility model, we consider the scenarios where nodes mustependently of each other. For
example, sensors can be carried by people or mounted ongeophicles, boats, or animals,
etc. These carriers are likely to move independently adegrtb their own activity patterns
without much coordination. This is similar to theawcoordinated mobility modealsed in [39].
Note that in some scenarios (e.g., sensors mounted on Jaohotsle sensors can communicate
with each other and coordinate their moves. In that caseethgoss can optimize their movement
patterns and provide more efficient coverage than the intkp# mobility case. In this paper
we will focus on the independent mobility model.

Throughout the rest of this paper, we will refer to the idisansor network configuration as
random sensor network(B,r), the first mobility model where sensors move in arbitraryesr
as random mobility modeland the more specific mobility model where all sensors mave i

straight lines astraight-line mobility modelThe shorthanX ~ exp(p) stands forP(X < x) =
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1—exp(—px), i.e., random variablX is exponentially distributed with parametar

C. Coverage measures

To study the dynamic coverage properties of a mobile serestorank, we define the following
three coverage measures.

Definition 1: Area coverage The area coverage of a sensor network at tim&(t), is the
probability that a given point € R? is covered by one or more sensors at time

Definition 2: Time interval area coverage The area coverage of a sensor network during
time interval[s,t) with s <t, fi(st), is the probability that given a pointc R?, there exists
u € [s,t) such thatx is covered by at least one sensor at time

Definition 3: Detection time Suppose that an intruder has a trajectefty) and thatx(0) is
uncovered at timeé = 0. The detection time of the intruder is the smallestO such thaix(t)
is covered by at least one sensor at time

All three coverage measures depend not only on static grepeof the sensor network
(initial sensor distribution, sensor density and sensemgge), but also on sensor movements.
The characterization of area coverage at specific timentsia important for applications that
require parts of the whole network be covered at any givee fimstant. The time interval area
coverage is relevant for applications that do not requireasmot afford simultaneous coverage
of all locations at specific time instants, but prefer to adtxe network within some time interval.
The detection time is important for intrusion detection laggtions, measuring how quickly a

sensor network can detect a randomly located intruder.

IV. AREA COVERAGE

In this section, we study and compare the area coveragegtoftationary and mobile sensor
networks. We first analytically characterize the area cayer We then discuss the implications of
our results on network planning and show that sensor myluéin be exploited to compensate
for the lack of sensors to increase the area being coveredgdartime interval. However,
we point out, due to the sensor mobility, a point is only cedepart of the time; we further
characterize this effect by determining the fraction ofdithat a point is covered. Finally, we

discuss the optimal moving strategies that maximize tha aowerage during a time interval.
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Fig. 1. Coverage of mobile sensor network: the left figureictspthe initial network configuration at time O and the right
figure illustrates the effect of sensor mobility during tinméerval [0,t). The solid disks constitutes the area being covered at
the given time instant, and the union of the shaded regiontladolid disks represents the area being covered durintintiee
interval.

In a stationary sensor network, a location always remaiteecovered or not covered. The
area coverage does not change over time. The effect of semsbitity on area coverage is
illustrated in Figure 1. The union of the solid disks congét the area coverage at given time
instants. As sensors move around, exact locations that euered at different time instants
change over time. The area that has been covered during titeeval [O,t) is depicted as the
union of the shaded region and the solid disks. As can be wddemore area is covered during
the time interval than the initial covered area. The follegvtheorem characterizes the effect of
sensor mobility on area coverage.

Theorem 1: Consider a sensor network B(A,r) at time t = 0, with sensors moving

according to the random mobility model.

1) At any time instant t, the fraction of area being covered is
fa(t) =1—e M vt > 0. (1)
2) The fraction of area that has been covered at least once durgntime interval [s;t) is
fi(s,t) = 1— e MEASY), 2)

where E(a(s,t)) is the expected area covered by a sensor during time intervask,t).

When all sensors move in straight lines, we have

fl (S,t) =1— e*)\(mz+2r\75(t75)) ) (3)
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where vg is the average sensor speed.

3) The fraction of the time a point is covered is
f=1—g M (4)

Proof. Given the initial node placement and the random mobility elpdt any time instant
t, the locations of the sensors still form a two dimensionak&an point process of the same
density [45, Theorem 9.14]. Therefore, according to [4GtiSa 3.1.1], the fraction of the area
covered at time remains the same as in the initial configuratidg(t) = 1—e M More
generally, denote the expected area covered by a sensaigdime a time intervals,t) as
E(a(s,t)). According to [46, Section 3.1.1], the fraction of area thas been covered at least
once isfi(sit) = 1—e MaSY)  |n particular, when all sensors move in straight linesheac
sensor covers a shape of a racetrack whose expected &éa(&st)) = 112+ 2rvg(t —s), where
Vs is the average sensor speed. Thus, we Hgigt) = 1 — e MW +2r%(t=s))

While an uncovered location will be covered when a sensoresavithin distance of the
location, a covered location becomes uncovered as sensggsy it move away. As a result, a
location is only covered part of the time. More specificaflyjocation alternates between being
covered and not being covered, which can be modeled as anaitey renewal process. We
use the fraction of time that a location is covered to meashireeffect. The fraction of time
that a location is covered equals the probability that it asered at any given time instant,
fi=1—e N’ O

At any specific time instant, the fraction of the area beingeced by the mobile sensor network
described above is the same as in a stationary sensor nefivosks because at any time instant,
the positions of the sensors still form a Poisson point gsedth the same parameters as in the
initial configuration. However, unlike in a stationary sensetwork, covered locations change
over time; areas initially not covered will be covered assees move around. Consequently,
intruders in the initially uncovered areas can be detectethé moving sensors.

When sensors all move in straight lines, the fraction of treaahat has ever been covered
increases and approaches one as time proceeds. Later settisn we will prove that, among
all possible curves, straight line movement is an optimatsgy that maximizes the area being

covered during a time interval. The rate at which the covema@ increases over time depends
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on the expected sensor speed. The faster sensors move, thequoickly the deployed region
is covered. Therefore, sensor mobility can be exploitedbtoensate for the lack of sensors to
improve the area coverage over an interval of time. This efuldor applications that do not
require or cannot afford simultaneous coverage of all looatat any given time, but need to
cover a region within a given time interval. Note that theaaceverage during a time interval
does not depend on the distribution of sensors movemerttigine Based on (3), we can compute
the expected sensor speed required to have a certain fraaftithe area {y) covered within a

time interval of lengthty.

_ _)\T[r2 +log(1— fo)

= >1— Tl]’z.
Ve At , for fo>1-¢€

However, the benefit of a greater area being covered at lewst during a time interval
comes with a price. In a stationary sensor network, a loosasoeither always covered or not
covered, as determined by its initial configuration. In a if®obensor network, as a result of
sensor mobility, a location is only covered part of the timkernating between covered and not
covered. The fraction of time that a location is covered egponds to the probability that it is
covered, as shown in (4). Note that this probability is deieed by the static properties of the
network configuration (density and sensing range of theashsand does not depend on sensor
mobility. In the next section, we will further characteritee duration of the time intervals that
a location is covered and uncovered.

From the proof of Theorem 1, it is easy to see that area cogedagng a time interval is
maximized when sensors move in straight lines. This is bsxaamong all possible curves, the
area covered by a sensor during time intefgdl), a(s,t), is maximized when the sensor moves
in a straight line. Based on (2), we have the following theare

Theorem 2: In a sensor network B(A,r) with sensors moving according to the random
mobility model, the fraction of area covered during any timeinterval [s,t) is maximized
when sensors all move in straight lines.

It is important to point out that straight line movement ig tiee only optimal strategy that
maximizes the area coverage during a time interval. Ther@ family of optimal movement
patterns that maximize the coverage. We conjecture thabptienal movement patterns have

the following properties: 1) the local radius of curvatusegreater than the sensing range
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everywhere along the oriented trajectory; 2) if the eu@iddistance between two points of the
curve is less thanr? then the distance between them along the curve is lessthaihen these
two properties are satisfied, the sensing disk of a sensa doeoverlap with its previously
covered areas, and a point will not be covered redundantlyhbysame sensor. The covering

efficiency is thus maximized.

V. DETECTION TIME OF STATIONARY INTRUDER

The time it takes to detect an intruder is of great importanceany military and security-
related applications. In this section, we study the dedediime of a randomly located stationary
intruder. Detection time for a mobile intruder is investggin the next section. To facilitate the
analysis and illustrate the effect of sensor mobility onedgbn time, we consider the scenario
where all sensors move at a constant spgetflore general sensor speed distribution scenarios
can be approximated using the results of this analysis.

We assume that intruders do not initially fall into the cage area of any sensor, and an
intruder will be immediately detected when it falls into teensing range of mobile sensors.
Obviously, these intruders will never be detected in a atatiy sensor network. In a mobile
sensor network, however, an intruder can be detected byisepassing within a distangeof
it, wherer is the common sensing range of the sensors. The detectienclimracterizes how
quickly the mobile sensors can detect a randomly locateddet previously not detected. We
will first derive the detection time when sensors all movetraight lines. We will then consider
the case when sensors move according to arbitrary curves.

Theorem 3: Consider a sensor networkB(A,r) with sensors moving according to the
straight-line random mobility model and a static intruder. The sequence of times at which
new sensors detect the intruder forms a Poisson process oftémsity 2Arvs, where vg
denotes the average sensor speed. As a consequence, the tiefre the first detection of
the intruder is exponentially distributed with the same parameter.

Proof: We denote byA(s,t) the random region covered by a sensor in the intejwél, that
was not covered before tinge The shape of this region is illustrated in Figure 2.

We first prove that the number of sensors hitting the intruiéne time intervals, t] is Poisson

distributed with parameterA2vs(t —s). Suppose without loss of generality that the intruder is
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Fig. 2. The regiorA(s,t) under the straight-line mobility model.

located at the origin. The probability that a sensor iritidbcated at pointx € R? hits the
intruder within [s,t] is equal toP(—x € A(s,t)). This probability only depends on the direction
and speed of the sensors; in particular, it does not depernbteomitial Poisson process giving
the positions of the sensors. We can thus define a thinneddPosocesS(s,t) by selecting at
time O the sensors that will hit the intruder during the im&is,t]. This process is non-uniform
and has density

N (X) = AP(—x € A(s,t)).

The number of sensors hitting the intruder dur{ed] is equal to the total number of points in

the thinned process, which is Poisson distributed with mean

E(card®d(st))) = RZ)\’(x)dx

= N[ P(—xe€A(st))dx
R2
= A /RZE(l{—xeA<s7t>})dX

— )\E(/Rz 1{—xeA(s7t)}dX)

= AE([[A(SD)]]), ()

where 1., denotes the indicator function of the evept. Furthermore, it is easy to see that
E([A(s,t)[]) = 2rvs(t —s).
Second, we show that the number of sensors hitting the iatrddring disjoint time intervals

are independent. This is simply done by observing thdsifti]| N [sp,t2] = 0, each sensor is
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either selected i®(s1,t1) or in (s, t2) or not selected at all. Therefor@s;,t1) and ®(sp,t2)
are two independent processes.
Combining the two properties, we conclude that the sequehtienes at which the intruder
gets hit is a Poisson process.
O
Compared to the case of stationary sensors where an uretbtedtuder always remains
undetected, the probability that the intruder is not det@ad a mobile sensor network decreases

exponentially over time,
P(X >t) =e 2,

whereX represents the detection time of the intruder.

The expected detection time of a randomly located intruslBfX| = ﬁvs which is inversely
proportional to the density of the sensopg,(the sensing range of each sensor é&nd the
speed of sensorsd). Note that the expected intruder detection time is inddpahof the sensor
movement direction distribution density functiof§(6). Therefore, in order to quickly detect a
stationary intruder, one can add more sensors, use sengbiarger sensing ranges, or increase
the speed of the mobile sensors.

To guarantee that the expected time to detect a randomlieldsdationary intruder be smaller

than a specific valu@y, we have

or equivalently,

AVe> =
Vs o,

If the sensing range of each sensor is fixed, the above forprelsents the tradeoff between
sensor density and sensor mobility to ensure given expéatedier detection time requirement.
The product of the sensor density and sensor speed shoudddex than a constant. Therefore,
sensor mobility can be exploited to compensate for the lddensors, and vice versa.

In the proof of Theorem 1, we pointed out that a location aliézs between being covered
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and not being covered, and then derived the fraction of tima¢ & point is covered. While the
time average characterization shows, to a certain exteat,well a point is covered, it does not
reveal the duration of the time that a point is covered ancduared. The time scales of such
time durations are also very important for network plannitiggy present the time granularity
of the intrusion detection capability that a mobile sensetwork can provide. Theorem 3 now
allows us to characterize the time durations of a point bemvered and not being covered.
Corollary 1: Consider a random sensor networkB(A, r) at time t = 0, with sensors moving
according to the straight-line random mobility model. A point alternates between being
covered and not being covered. Denote the time duration thaa point is covered asT,

and the time duration that a point is not covered asT,, we have

Tn ~ exp(2Arvg) (6)
ey = ot )

Proof. In the proof of Theorem 3, we know that the sequence of timeghath a new sensor
hits a given point forms a Poisson process of intenshivg After each sensor hits the point, it
immediately covers the point until it moves out of range. fEhis no constraint on the number
of sensors that cover the point. Therefore, the coverediwgred sequence experienced by the
point can be seen asM/G/« queuing process, where the service time of an sensor isritee ti
duration that the sensor covers the point before moving brermge. The idle periods dfl /G /o
gueue corresponds to the time duration that the point isoared. It is known that idle periods
in such queues have exponentially distributed duratiohgrdfore, we hav@, ~ exp(2Arvs).

Since a point alternates between being covered and not bewveyed, the fraction of time a
point is covered is

E|T 2
e e
The last equality in the above equation is given in (4). Sw\ior E[T¢], we obtain (7).
Let T denote the period of a point being covered and not being edyere., T = Tc+ T,.

The expected value of the period is

E[T] = E[Tg + E[Ty] = €™ /2Arvs.
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Fig. 3. Mobile sensor network with sensors moving alongteahy curves.

O

Above we obtain the detection time of a stationary intrudaemwsensors all move in straight
lines. In practice, mobile sensors do not always move ingdttdines; they may make turns and
move in different curves, as depicted in Figure 3. Next, waldish the optimal sensor moving
strategy to minimize the detection time of a stationaryudér.

Theorem 4: Consider a sensor network B(A,r) at time t = 0, with sensors moving
according to the random mobility model at a fixed speedvs. The detection time of a
randomly located stationary intruder, X, is minimized in probability if sensors all move
in straight lines.

Proof: From Equation (5), we know that the number of sensors detgthie intruder during
the interval[0,t] is Poisson distributed with medi||A(0,t)||). Thus we have

P(X <t) =P(card®(0,t)) > 1) = 1 —exp(—E(||A(0,1)[])),

which is a increasing function dE(||A(0,t)||). As E(||A(O,t)||) is maximized when sensors
move along straight lines, the probability of detecting thteuder is also maximized.
O

Similar to the arguments on the optimal strategies for ameerage in Section 1V, straight
line movement is not the only optimal strategy that minirsizee detection time. There is a
family of moving patterns that can minimize the detectiondj where straight line movement
is one of them.

In the above analysis, we have assumed that an intruder i®diately detected when it is
hit by the perimeter of a sensor, regardless of the time aurdt) it stays in the sensing range

of the sensor. In many intrusion detection applications,eéeample, radiation, chemical, and

17



biological threats, due to the probabilistic nature of therpomenon and the sensing mechanisms,
an intruder will not be immediately detected once it enteesgensing range of a sensor. Instead,
it will take a certain amount of time to detect the intrudérnthle sensing time is too short, an
intruder may escape undetected. To account for this semisiiegrequirement, we defing to
be the minimum sensing time in order for a sensor to detechtnder. Obviously, it is only
interesting when &ty < 2r /vs. Otherwise, the sensing time of an intruder by a sensor \eill b
smaller than the minimum requiremetgt and the intruder will never be detected. In order to
yield closed-form results and provide insights, we will sigier the straight-line random mobility
model.

Theorem 5: Consider a sensor network B(A,r) at time t = 0, with sensors moving
according to the straight-line random mobility model at a fixed speedvs. An intruder
is detected iff the sensing timets is at leastty, i.e., ts>tyq. Let Y be the detection time
of a randomly located stationary intruder initially not loc ated in the sensing area of any

sensor, we have
Y=tq+T (8)
where

T ~ exp(2\refvs) 9)

V2t2
leff = \/rZ—STd. (10)

Proof: We assume without loss of generality that the intruder isted at the origin. We
observe first that a sensor covers the intruder for a timedotiganty if and only if the distance
between its trajectory and the origin is less thgp (see Figure 4). We call such senseosdid
Sensors.

Similarly as in Theorem 1, we define a thinned Poisson prodgg$0,t) by selecting the
sensors that will detect the intruder during the interigat]. To do so, we define theffective
covered aread\q(0,t) of a sensor as the area covered by the disk of radigi€entered on it.
Then, the probability that a sensor initially locatedxadetects the intruder during the interval
[0,t] is P(—x € Aer(0,t)). By (5) we find that the expected number of pointsdgg(0,t) is
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Fig. 4. Effective radius of a mobile sensor.

AE(||Aet(0,1)||) = 2Arestvs. Denoting byT the time before a valid sensor covers the intruder,
we get
P(T <t)=P(card Pe(0,t)) > 1) = 1 — exp(—2ArefVs).

Then, the intruder is finally detected by the system aftermee @ +tq.
O

In (8), the detection time has two terms, namely, a cons&an ty and an exponentially dis-
tributed random variable with med{T] = 1/(2ArefVs). The first termty is a direct consequence
of the minimum sensing time requirement. After the perimetiea sensor hits an intruder, it
takes a minimum sensing time ¢f to detect the intruder, and hence the constant delay. By
Theorem 3, the second term corresponds to the detectionitinige case where there is no
minimum sensing time requirement but sensors have a redsmesing radius ofef. This is
again a consequence of the minimum sensing time requireamehthe effect is illustrated in
Figure 4. An intruder will only be detected by a mobile senddhe trajectory of the sensor
falls within reg from the intruder. The above two effects of minimum sensingetrequirement
result in an increased expected detection time compareketadse without minimum sensing

time requirement. Sincg > 0 andreg < r, we have
E[Y] =tq+1/(2AreqVs) > 1/(2Arvs) = E[X].

Sensor speed has two opposite effects on an intruder’stoetdane.

« On one hand, as sensors move faster, uncovered areas widvieeed more quickly and

this tends to speed up the detection of intruders.

19



« On the other hand, the effective sensing radigsdecreases as sensors increase their speed

due to the sensing time requirement, making intruders l&sly/Ito be detected.
In the following, we present the optimal sensor speed thaimikzes the expected detection
time. Excess mobility will be harmful when the sensor speethiger than the optimal value.
Theorem 6: Under the scenario in Theorem 5, the optimal sensor speed mimizing the

expected detection time of a randomly located intruder is
Vi = V2r/tg. (11)

Proof. Let dY/dvs =0, we havev; = /2r /tg, and the second order derivati%?\%v; < 0. The

corresponding minimum expected detection time is
E[Y*] = (14 2\r?)tq/2Ar2.

O

In real world applications, the minimum required sensingetidepends on a number of
components: sensing mechanism (underlying physical, @atniological processes), hardware
(CPU, ADC, memory, clock rate, etc) and software (operasggtems) configurations. While
the response time of some sensors is small (e.g., accelEomBMA73x0L by Freescale
Semiconductor Inc. has a response time of less than 1 ms)eneffect on the detection time
is negligible, other sensors (e.g., certain optical bissesy chemical sensors) have a response
time of several seconds or longer []. In this case, the eftédhe minimum required sensing
time on detection time of intruders cannot be ignored. Inah sensor network system, one will
need to measure the minimum required sensing time for thécapipn and determine if the

effect is negligible.

VI. DETECTION TIME OF MOBILE INTRUDER

In this section, we consider the detection time of a mobiteugter, which depends not only
on the mobility behavior of the sensors but also on the mowtiethe intruder itself. Intruders
can adopt a wide variety of movement patterns. In this work, will not consider specific
intruder movement patterns. Rather, we approach the profstem a game theoretic standpoint

and study the optimal mobility strategies of the intruderd aensors.
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For simplicity we assume that an intruder will be immediatdetected when it falls into
the sensing range of mobile sensors. Note that the analgsigesults of the detection time
requirement presented in the previous section can be yeaddpted in this part of the study.
From Theorem 4, the detection time of a stationary sensandet is minimized when sensors
all move in straight lines. This result can be easily extentbea mobile intruder using similar
arguments in the reference framework where the intrudetaisosary. From the perspective of
an intruder, since it only knows the mobility strategy of #ensors (sensor direction distribution
density function) and does not know the locations and doest of the sensors, changing
direction and speed will not help prolong its detection tirire the following, we will only
consider the case where sensors and intruders move inhgttags.

Given the mobility model of the sensorg(0), an intruder chooses the mobility strategy
that maximizes its expected detection time. More spedificah intruder chooses its spegde
[0,"®) and directiong; € [0,2m) so as to maximize the expected detection time. The expected
detection time is a function of the sensor direction disttidn density, intruder speed, and in-
truder moving direction. Denote the resulting expecteéct&n time as maxe, E[X(fo(0),6:,w)];
the sensors then choose the mobility strategy (over allilplesslirection distributions) that
minimizes the maximum expected detection time. This canib&ad as a zero-sum minimax
game between the collection of mobile sensors and the ietrwhere the payoffs for the mobile
sensors and intruder areE[X(fg,6;,t)] andE[X(fe, 6, )], respectively.

To find the optimal mobility strategies for mobile sensorsl &me intruder, we consider the
following minimax optimization problem:

rrgénrg?f/\th[X(f@,Gt,vt)]. (12)

To solve the minimax optimization problem, we first chareete the detection time of an
intruder moving at a constant speed in a particular diractio

Theorem 7: Consider a sensor network B(A,r) at time t = 0, with sensors moving

according to the straight-line random mobility model at a fixed speedvs. Let X be the

21



detection time of an intruder moving at speedv; along direction 6;. Denote

c=Ww/Vs, E=14cC

w(u) = /1— Fcoy

Vs = VeC [2W(6 — 6;) fo (6) .

We have
X ~ exp(2Arvs). (13)

Proof: To prove this theorem, we put ourselves in the frame of refegeof the intruder and
look at the speeds of the sensors. Thus, if a sensor has alutebspeed vectoys, its speed
vector in the new frame of reference is simply— v;, wherev; denotes the intruder’s absolute
speed vector. Lebs denote the direction ofs and 6; the direction ofv.

In the new frame of reference, the intruder is static. Demactev /vs , €= 1+c, andw(u) =
v/ 31— g_gco§g. Using the Law of Cosines, the relative speed of the sensobeacomputed as

I[Vs—W|| = 1/VZ+VZ—2vgcogBs—6)

= VsCW(Bs— 6;)
We know from Equation (5) that
P(X <t) =P(card®(0,t)) > 1) = 1 —exp(—AE(||A(O,1)[])).
Therefore, ifE(||A(O,t)||) is a linear function ot, thenX is exponentially distributed. We get
IA0,1) ] = 2r||vs — W[t = 2rtw(Bs — 6;),
so that

21
E(AQD]) = 21t [ w(®-8)To(6)d8

wherevs = vs(“:foznw(e— 6;) fo(8)d6, which can be viewed as the average effective sensor speed

in the reference framework where the intruder is station&herefore, the detection time is
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exponentially distributed with rateARvs.
O
From Theorems 3 and 7, it can be noted that the detection tinesth stationary and mobile
intruders follow exponential distributions, and that trergmeters are of the same form, except
that the sensor speed is now replaced by the effective sepsed for the mobile intruder case.
Assuming that the sensor density and sensing range are $ixeg, the intruder detection time
follows an exponential distribution with meari (PArvs), maximizing the expected detection time
corresponds to minimizing the effective sensor speeth the following, we derive the optimal
intruder mobility strategies for two special sensor maypithodels.
Sensors move in the same directio®s. fo(8) = d(0 — 6Bs).

Using the fundamental property of the delta functiph, f (x)8(x—a)dx= f(a), we have

21
Vs — Vet / (6 — 6,)5(6 — 85)d
0

- VséW( 93 - et) .

We need to choose a prop8y andv; that minimizes the above effective sensor speegd

First, it is easy to see that we requide= 6s. Now, we have

_ . 4c
Vs = Vs€ 1‘? = |\t — Vg|

Vs if V"> vg

andVs is minimized when

Vi =
V" otherwise.

The above results show, quite intuitively, that the intnusleould move in the same direction
as the sensors at a speed closest matching the sensor dpedmiaximum intruder speed is
larger than the sensor speed, the intruder will not be dedesince it chooses to move at the
same speed and in the same direction as the sensors. In $kistiba detection time is infinity.
Otherwise, if the maximum intruder speed is smaller thanstiresor speed, the intruder should

move at the maximum speed in the same direction of the serBoesexpected detection time

23



35

151

L L L L L
0 05 1 15 2 25 3

vt/

Fig. 5. Normalized effective relative sensor sp&dvs as a function oft = v /vs

S B
Sensors move in uniformly random directions: fg(0) = %[
Figure 5 plots the normalized effective sensor spegus as a function ot = v /v, the ratio
of the intruder speed to the sensor speed. The effectivaoisepsed is an increasing function
of ¢, and is minimized wherc = 0, or v = 0. Therefore, if each sensor uniformly chooses

its moving direction from 0 to &, the maximum expected detection time is achieved when the

intruder does not move. The corresponding expected detetithe iszﬁvs. The optimal intruder
mobility strategy in this case can be intuitively explairesifollows. Since sensors move in all
directions with equal probability, the movement of the uigker in any direction will result in a
larger relative speed and thus a smaller first hit time in gaaticular direction. Consequently,
the minimum of the first hit times in all directions (detectibme) will become smaller.

We now present the solution to the minimax game between thection of mobile sensors
and the intruder in the following theorem.

Theorem 8: Consider a sensor network B(A,r) at time t = 0, with sensors moving
according to the random mobility model at a fixed speedvs. For the game between the
collection of mobile sensors and the mobile intruder, the ofjmal sensor strategy is for
each sensor to choose a direction according to a uniform digbution, i.e., fo(8) = %[ The
optimal mobility strategy of the intruder is to stay stationary. This solution constitutes a

Nash equilibrium of the game.
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Proof.

In the game between the collection of mobile sensors andntinedier, mobile sensors need
to choose an optimal moving direction distributiég(8) so as to detect the intruder as soon as
possible, while the intruder chooses its spaed [0, {"®) and directiorb; € [0, 2m) so as to stay
undetected as long as possible. Denote the resulting esgpdetection time as[X (fo(0), 6t, )]
The game payoffs for the mobile sensors and intruder-d&€X( fo, 6t, )] andE[X(fe, 6t,\)],
respectively.

For sensors, minimizing intruder detection time is equaato maximizing the effective sensor
speed after an intruder selects the optimal speed and idimedd/e first prove for any given
intruder speedx, that among all possible sensor direction distributiohs, minimum effective
sensor speed resulted from the optimal intruder directiomio, mirg, Vs, is maximized when
sensors choose directions according to a uniform distabuhe formal statement is described
as follows.

Denote the uniform distribution density d§"'™M = 1/2m From Theorem 7, the effective
sensor speed is a function of sensor direction distributi@mnsity, intruder speed and direction,
Vs(fo(8), 6, %) = Jo (B —6r) fo(6)d6.

We will prove that

minVs(fo(0), 6, ) < minvs( &M 6, v) (14)
6.\t 6t vt
for all fo(0).
First, let us consider the right-hand side of (14). We have
o funiform ) 1 2 0—6,)do
VS( ©) ’ t7Vt> - E[/O W( - t)
1 216
= ET/SI w(u)du
1 21 q
= Et/o w(u)du

for all 6, since the mapping — w(u) is periodic with period & This shows that

. 21
minv(FE7E™, B v) = o [ w(w)du (15)
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We now come back to the proof of (14). We have

nginvS( f@(e) ) et7 Vt)
t

1
211

1 2 p2m
- /0 /0 (0 — 8) fo(6) dad6,

_ %1 /0 T to(6) < /9 eznw(u)du> de
_ %(/Oznf@(e)dﬁ) (/Oznw(u)du)

1 211
= r%invs(fg“'ff’fm,et,vt) (16)
t

IN

2T[_
/0 Us( fo(6), 8, W) d6y

where the last three equalities follow from the fact thdu) is periodic with period &, from
the fact thatfg(0) is a probability density function of0, 21, and from (15), respectively.

The proof of (14) is concluded by taking first the minimum owvgin the left-hand side of
(16), then by taking the minimum over in the right-hand side of (16).

It follows that when sensors choose directions accordirguaiform distribution, the optimal
intruder mobility strategy is to stay stationary, i.g.= 0 (sincevs( fg”iform,et,vt) is maximized
whenc =0 (and equals to 1), i.e. when = 0), and6 is irrelevant in this case.

Based on the previous discussions on different mobilitgtegies of sensors and intruders,
under the optimal mobility strategies, neither side canrowe the payoff by changing the strategy
unilaterally. Specifically, when sensors choose theiradioa uniformly at random, the movement
of the intruder in any direction will result in a larger relet speed and thus a smaller first hit
time in that particular direction. Consequently, the minimof the first hit times in all directions
(detection time) will become smaller. When the intrudeyststationary, the detection time will
not improve if sensors choose a different distribution fog toving direction. Therefore, the
solution constitutes a Nash equilibrium of the game. O

This result suggests that in order to minimize the expectetéation time of an intruder,
sensors should choose their directions uniformly at ranbetween|0, 2r7). The corresponding

optimal mobility strategy of the intruder is to stay staoyn The uniformly random sensor

26



movement represents a mixed strategy which is a Nash equitibof the game between mobile
sensors and intruders. If sensors choose to move in any fixectidn (pure strategy), it can be
exploited by an intruder by moving in the same direction assees to maximize its detection
time. The optimal sensor strategy is to choose a mixture ailave pure strategies (move in
a fixed direction betweef0,2m)). The proportion of the mix should be such that the intruder
cannot exploit the choice by pursuing any particular purategy (move in the same direction as
sensors), resulting in a uniformly random distribution $ensor's movement. When sensors and
intruders follow their respective optimal strategies,tinei side can achieve better performance
by deviating from this behavior.

In this study we assume that the goal of the mobile intrudeisnaximize the expected
detection so that it can stay undetected as long as pos3ibig.is a desirable goal in some
applications such as intruder intelligence gathering.theoapplications, the intruder may want
to pass through a region monitored by sensors ( e.g., [2Z]) [@ to visit a set of particular
locations without being detected. In these cases, the tlgeof the intruder is different and
the corresponding optimal strategy would be different. émeyal, for a specific application, we
will need to first identify the objective of the intruder artteh study the corresponding game

between the intruder and mobile sensors.

VIl. SUMMARY

In this paper, we study the dynamic aspects of the coveragambile sensor network result-
ing from the continuous movement of sensors. Specifically,studied the coverage measures
related to the area coverage and intrusion detection détyatfi a mobile sensor network.

For the random initial deployment and the random sensor Iiybiodel under consideration,
we showed that while the area coverage at any given timenitsstamains unchanged, more area
will be covered at least once during a time interval. Thisngortant for applications that do not
require or cannot afford simultaneous coverage of all looatbut want to cover the deployed
region within a certain time interval. The cost is that a tamais only covered part of the time,
alternating between covered and not covered. To this endshaeacterized the durations and
fraction of time that a location is covered and not covered.

As sensors move around, intruders that will never be detdot@ stationary sensor network
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can be detected by moving sensors. We characterized thetidatéme of a randomly located

stationary intruder. The results suggest that sensor ihobén be exploited to effectively reduce
the detection time of an intruder when the number of sensdimited. We further considered a
more realistic sensing model where a minimum sensing timeqsired to detect an intruder. We
find that there is an optimal sensor speed that minimizesxpeoted detection time. Beyond the
optimal speed, excess mobility will be harmful to the intousdetection performance. Moreover,
we discussed the optimal mobility strategies that maxintie area coverage during a time
interval and minimize the detection time of intruders.

For mobile intruders, the intruder detection time dependghe mobility strategies of the
sensors as well as the intruders. We took a game theoretroagip and obtained the optimal
mobility strategy for sensors and intruders. We showedtti@bptimal sensor mobility strategy
is that each sensor chooses its direction uniformly at randoall directions. By maximizing
the entropy of the sensor direction distribution, the antooiprior information on sensor
mobility strategy revealed to an intruder is minimized. T¢mresponding intruder mobility
strategy is to stay stationary in order to maximize its d&tactime. This solution represents a
Nash equilibrium of the game between mobile sensors anddets. Neither side can achieve

better performance by deviating from their respectiveroptistrategies.
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