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Abstract

General formulas are proposed to quantify the effects of changing the model parameters in

the so-called BCMP network [6]. These formulas relate the derivative of the expectation of

any function of both the state and the paramaters of the network with respect to any model

parameter (i.e., arrival rate, mean service demand, service rate, visit ratio, traffic intensity) to

known functions of the state variables. Applications of our results to sensitivity analysis and

optimization problems are given.
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1 Introduction

Although the use of queueing networks in the modeling and analysis of telecommunication networks

and computer systems was initiated with the work of A. K. Erlang [21] at the beginning of the

century, it became widespread only after the pioneering work of Jackson [30], Gordon and Newell

[25], Baskett, Chandy, Muntz, and Palacios [6], Kelly [33], on a special class of queueing networks

known as product form queueing networks. A nice feature of product form queueing networks is

that for certain classes of Markovian networks, the solution of the balance equations is in the form

of a product of simple factors. Afterwards, various generalizations were obtained that extended

the product form property to state-dependent routing and/or blocking phenomena (Towsley [65],

Hordijk and van Dijk [26]), service disciplines that may depend on the class of the customer (Chandy

and Martin [12]), non-differentiable service time distribution functions (Samelson and Bulgren [53]),

stationary dependent service times (Jansen and König [31]), and concurrent classes of customers

(Chiola et al. [14], Le Boudec [38]). A fairly complete survey on product form queueing networks

can be found in Disney and König [20].

Besides these theoretical results, efficient computational algorithms for computing the primary

performance measures (expected number of customers at a given node, mean waiting times, mean

sojourn times, utilization factor of each node, throughputs, etc.) have been proposed by Buzen

[8], Reiser and Kobayashi [49], Chandy and Sauer [13], Reiser and Lavenberg [50], McKenna and

Mitra [39, 41], Strelen [59], Conway and Georganas [16] for BCMP networks, and Akyildiz and von

Brand [2] for product form networks with blocking mechanisms.

More recently, first order qualitative properties of queueing networks are receiving attention in

the literature. These studies aim to determine the sensitivity of various performance measures of

the network with respect to particular parameters such as arrival rates, service rates, number of

servers, number of customers for closed networks, etc.. For closed product form queueing networks

with a single class of customers, Stewart and Stohs [58] have shown that if the service rates are

load independent, then the system throughput increases when the service rate of one of the queues

increases. This result has been generalized by Shanthikumar and Yao [55] to the case where the

service rates are nondecreasing functions of the queue lengths. For the same network, Shanthikumar

and Yao [56] have also investigated the effect of increasing the customer population on the queue

lengths. Monotonicity properties in product form queueing networks with loss of customers have

been established by Nain [42] and Ross and Yao [51]. Monotonicity results have also been derived

lately for non-Markovian queueing networks by Adan and Van der Wal [1], Shanthikumar and Yao

[57], Tsoucas and Walrand [68].
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These properties have been obtained using stochastic comparison techniques involving different

stochastic orderings, coupling and pathwise arguments. However, these probabilistic methods do

not provide gradient estimates allowing one to quantify the impact of a model parameter modifica-

tion on the network behavior (e.g., rate of increase/decrease of any monotonic function of the state

of the network, etc.).

Simulations can also be used to derive gradient estimates, as it is used in classical performance

analysis of discrete event systems (e.g., computation of the buffer occupancy in queueing networks).

To do so, methods avoiding lengthy, biased and inaccurate computations have been proposed in the

last decade. Of particular interest are the methods based on pertubation analysis (Ho [27, 28, 29],

Cao [9, 10, 11], Suri [62, 64]) and on likelihood ratios (Glynn [23], Glynn and Sanders [24]) which

enable to compute gradient estimates by observing only one sample path (i.e., by running only

one simulation). A comprehensive survey on pertubation analysis can be found in Suri [63] and

an overview on likelihood ratio gradient estimation can be found in Glynn [22]. In particular,

likelihood ratios have been successfully applied to light traffic analysis of open queueing networks

(Reiman and Simon [47], Reiman and Weiss [48]). A new proof of the result in [47] based on rare

perturbation analysis and Campbell’s formula for point processes has recently been proposed by

Baccelli and Brémaud [4].

There also exists a perturbation theory for general Markov reward processes based on Markov

reward equations. Pioneering results have been obtained by Schweitzer [54] and Meyer [40] for

stationary probabilities of finite Markov chains. Lately, error bounds of reward functions have

been derived by van Dijk and Puterman [72] and van Dijk [69] for various Markov reward models.

The Markov reward method has also been used by van Dijk [70] to obtain monotonicity results for

non-product form queueing networks.

Our objective is to derive explicit formulas for the derivatives of various performance measures in

the network studied by Baskett, Chandy, Muntz, and Palacios [6] (BCMP network). More precisely,

we show that the derivative of the expectation of any function of the state of the system (defined

to be the state of the network and of the model parameters) with respect to any model parameter

(i.e., arrival rate, mean service demand, service rate, visit ratio, traffic intensity), simply expresses

in terms of known functions of the state variables (queue lengths, typically). Then, the derivative

can be evaluated with the aid of the aforementioned computational algorithms.

Observe that partial derivatives of queueing measures in product form queueing networks have

been used in many previous works. In [66, 67] Trivedi et al. considered the problem of the

optimal selection of CPU speed and device capacities in a computer system so as to maximize the
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throughput. Kobayashi, Gerla and de Souza e Silva in [36, 18] considered routing and load balancing

problems with the aim of maximizing system throughput. Partial derivatives were also used by

Kenevan and von Mayrhauser [34] to establish convexity results for a single class closed product

form queueing network. Suri [60, 61] obtained expressions in terms of the difference of probability

distributions for the partial derivatives of specific performance measures such as throughput in

closed queueing networks with homogeneous service times. Jordan and Varaiya [32] carried out

similar analysis to get sensitivity results in a generalized Erlang loss system. This approach was

also employed to devise various algorithms for computing queue length moments using MVA-like

recursions (cf. Conway et al. [17], de Souza e Silva and Muntz [19] and Strelen[59]).

Our results can be used to analyze both quantitative and qualitative effects due to any changes

in the model parameters of a BCMP network. In particular, first order properties (monotonic-

ity/nonmonotonicity) and second order properties (concavity, convexity) of the system performance

measures can be brought to light via our formulas.

The paper is organized as follows. In Section 2 we recall the main features of the BCMP network and

introduce some definitions and notation. Section 3 contains the key results of the paper whereas

Section 4 presents applications including monotonicity and optimization issues, as well as some

numerial results. Section 5 contains a discussion on implementation issues.

2 The Model

The network considered in this paper is similar to that analyzed in [6], the only difference being in

the modeling of the exogeneous arrivals (see below).

There are N ≥ 1 stations and R ≥ 1 different classes of customers. Customers travel through

the network and change class according to transition probabilities. Thus a customer of class r

which leaves station i upon its service completion will enter station j as a customer of class s with

the probability pi,r;j,s. The transition matrix P = [pi,r;j,s] defines a Markov chain whose states

are labeled by the pairs (i, r). This Markov chain is assumed to be decomposable into L ergodic

subchains. Denote by E1, E2, . . . , EL the sets of states in each of these subchains. A customer of

class r at station i will be said to be of type (i, r). A customer of type El is a customer whose type

belongs to El.

Customers may arrive at the network from N×R external sources according to independent Poisson

processes. To be more specific, define Ml(S) as the number of customers of type El when the state

of the network is S. Then, the exogeneous arrival rate of customers of type (i, r) ∈ El when the
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state of the network is S is λirγl(Ml(S)), where γl is an arbitrary mapping IN → [0,+∞) and

λir ≥ 0 (throughout this paper IN := {0, 1, 2, . . .}).

If λir = 0 for all 1 ≤ i ≤ N , 1 ≤ r ≤ R, then the network is closed . If there exists a nontrivial

partition (LA, LB) of the set {1, 2, . . . , L} such that

∀(i, r) ∈
⋃

l∈LA

El, λir = 0,

and

∀l ∈ LB ∃(i, r) ∈ El, λir > 0,

then the network is mixed . If for all l, 1 ≤ l ≤ L there exists (i, r) ∈ El such that λir > 0, then

the network is open. We say that El is closed if λir = 0 for all (i, r) ∈ El (in which case Ml(S) is

constant) and that El is open if for some (i, r) ∈ El, λir > 0.

In case El is open, then we assume that there exists at least one state (i, r) ∈ El such that

0 ≤
∑

(j,s)∈El

pi,r;j,s < 1. (2.1)

Thus, 1 −
∑

(j,s)∈El
pi,r;j,s is the probability that a customer of type (i, r) ∈ El leaves the system

upon its service completion at station i, if El is open.

Four distinct types of service stations are considered:

Type 1. The service discipline is First-Come-First-Served (FCFS) and multiple servers are allowed.

All customers have the same service demand distribution which is a negative exponential with mean

τi > 0 if station i is a station of type 1.

Type 2. There is a single server and the service discipline is Processor Sharing (PS).

Type 3. There is an Infinite number of Servers (IS).

Type 4. There is a single server and the service discipline is preemptive resume Last-Come-First-

Served (LCFS).

When station i is of type 1, we write i ∈ FCFS. The notation i ∈ PS, i ∈ IS and i ∈ LCFS will

have the obvious meaning.

For i ∈ FCFS, let αi be any mapping IN → [0,+∞) such that αi(0) = 0 with the interpretation

that αi(j) is the service rate at station i when there are j > 0 customers at this station. In

particular, if αi(j) = min(ci, j) then station i has ci servers in parallel working at unit speed. For
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stations of type 2, 3 or 4, each class of customers may have a distinct and arbitrary service demand

distribution (GI-servers). Let τir > 0 denote the mean service demand of a customer of type (i, r)

for i ∈ {PS, IS, LCFS}.

Let S be the set of feasible states for the network under consideration. Let Xir denote the number

of customers of class r at station i. The state of the network is S = (X1,X2, . . . ,XN ) where

Xi = (Xi1, Xi2, . . . , XiR) ∈ INR for i = 1, 2, . . . , N . Let ni ∈ (ni1, ni2, . . . , niR) ∈ INR. For any

(possible random) vector a = (a1, a2, . . . , aR) in INR the notation |a| =
∑R

r=1 ar will be used.

The joint equilibrium distribution of queue sizes in the network is (cf. [6]):

P (S = (n1,n2, . . . ,nN )) = C d(S) g1(n1) g2(n2) · · · gN (nN ), (2.2)

for all S ∈ S, where C is a normalizing constant and d(S) is a function of the number of customers

in the system. More precisely, if the network is closed then d(·) ≡ 1, otherwise

d(S) =
∏
l∈LO

Λ
Ml(S)
l

Ml(S)−1∏
m=0

γl(m)

 , (2.3)

where LO := {l | 1 ≤ l ≤ L, El is open} and Λl =
∑

(i,r)∈El
λir for all l ∈ LO.

Each gi(ni) in (2.2) is a function that depends on the type of station i:

• if i ∈ FCFS, then

gi(ni) = |ni|!

 |ni|∏
j=1

1

αi(j)

( R∏
r=1

ρnir
ir

nir!

)
; (2.4)

• if i ∈ {PS, LCFS}, then

gi(ni) = |ni|!
R∏

r=1

ρnir
ir

nir!
; (2.5)

• if i ∈ IS, then

gi(ni) =
R∏

r=1

ρnir
ir

nir!
, (2.6)

where ρir = τi θir if i ∈ FCFS and ρir = τir θir for i ∈ {PS, IS, LCFS}. The θir’s satisfy the set of

linear equations (cf. [6])

θir = qir(l) +
∑

(j,s)∈El

θjs pj,s;i,r, (2.7)
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for all (i, r) ∈ El, l = 1, 2, . . . , L, where

qir(l) :=


λir

Λl
, if λir > 0;

0, if λir = 0.

(2.8)

The parameter ρir is usually referred to as the traffic intensity at station i due to customers of

class r, whereas in the case of closed networks θir is called the visit ratio of customers of class r to

station i (see e.g., [18, 50]).

3 Sensitivity Results

From now on we assume that the network is in equilibrium.

Two types of first order sensitivity results are derived in this section: results with respect to

workload intensities (mean service demands and service rates in Theorem 1, visit ratios and traffic

intensities in Theorem 3) and results with respect to exogeneous arrival rates (Theorem 2). We

conclude this section by showing through an example that these results also enable us to infer

higher order properties of the system performance measures (Remark 4).

Let us first introduce some notation. Unless otherwise mentioned (see (3.1) in Theorem 1), we

assume that ∂x/∂y = 0 for all x, y ∈ A, x ̸= y, where A := {λir, τi, τir, αi(j), γl(j)}i,j,r,l, with the

exception that ∂λir/∂λjs may be non zero for (i, r) ̸= (j, s) (this assumption is needed to cover

the modeling of the exogeneous arrivals in the standard BCMP formulation, since in that case∑
(i,r)∈El

λir = 1 for all l ∈ LO, see [6]). For sake of simplicity, we also assume that the elements

of the routing matrix P do not depend on x for all x ∈ A (i.e., ∂p(i, r; j; s)/∂x = 0).

Sensitivity results will be obtained with respect to any model parameter lying in the set X :=

(τi, τir, ρir, λir, θir, αi(j), αi(j)/τi, γl(j))i,j,r,l.

Let Φ be a mapping S × X → IR. We say that Φ satisfies assumption A1 if

1. E [Φ(S,x)],
∂Φ(n,x)

∂x
, E

[
∂Φ(S,x)

∂x

]
,
∂E [Φ(S,x)]

∂x
exist;

2.
∂E [Φ(S,x)]

∂x
=
∑
n∈S

∂{Φ(n,x)P (S = n)}
∂x

,

for all x ∈ {τi}i, n ∈ S, x ∈ X . Similarly, we say that Φ satisfies assumption A2 (resp. A3,
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A4, A5, A6, A7, A8) if conditions 1 and 2 hold simultaneously for all x ∈ {αi(j)}i,j (resp.

x ∈ {αi(j)/τi}i,j , x ∈ {τir}i,r, x ∈ {λir}i,r, x ∈ {γl(j)}l,j , x ∈ {θir}i,r, x ∈ {ρir}i,r).

It is easily seen that conditions 1 and 2 are satisfied when Φ(n,x) is continuous as a function of

x, and when it is bounded by a polynomial in n. In particular, condition 2 is satisfied for closed

networks.

We now establish sensitivity results with respect to the mean service demands (resp. service rates)

in the case of an arbitrary network (i.e., open, closed or mixed).

Theorem 1 If Φ satisfies assumption A1, then for i ∈ FCFS (resp. for i ∈ {PS, IS, LCFS} such

that τir = τi for r = 1, 2, . . . , R),

∂E [Φ(S,x)]

∂τi
= E

[
∂ Φ(S,x)

∂τi

]
+

Cov (Φ(S,x), |Xi|)
τi

. (3.1)

If Φ satisfies assumption A2 (resp. A3), then for i ∈ FCFS, j ≥ 1,

∂E [Φ(S,x)]

∂x
= E

[
∂ Φ(S,x)

∂x

]
− Cov (Φ(S,x),1(|Xi| ≥ j))

x
, (3.2)

for x ∈ {αi(j)}i,j (resp. x ∈ {αi(j)/τi}i,j).

If Φ satisfies assumption A4, then for i ∈ {PS, IS, LCFS}, r = 1, 2, . . . , R,

∂E [Φ(S,x)]

∂τir
= E

[
∂ Φ(S,x)

∂τir

]
+

Cov (Φ(S,x), Xir)

τir
. (3.3)

Proof. We first prove (3.1). It follows from (2.2) and assumption A1 that

∂E [Φ(S,x)]

∂τi
=

∑
n∈S

∂

∂τi

{
C d(n) Φ(n,x)

N∏
k=1

gk(nk)

}
,

= C
∑
n∈S

d(n)

(
∂Φ(n,x)

∂τi

) N∏
k=1

gk(nk) +

(
∂C

∂τi

)∑
n∈S

d(n) Φ(n,x)
N∏
k=1

gk(nk)

+ C
∑
n∈S

d(n) Φ(n,x)

(
∂

∂τi

N∏
k=1

gk(nk)

)
. (3.4)

One can easily check from (2.4)-(2.6) that

∂

∂τi

N∏
k=1

gk(nk) =
|ni|
τi

N∏
k=1

gk(nk). (3.5)
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Now differentiating the identity

C =
1∑

n∈S d(n)
∏N

k=1 gk(nk)
, (3.6)

we obtain

∂C

∂τi
= −C2

(
∂

∂τi

∑
n∈S

d(n)
N∏
k=1

gk(nk)

)
,

which, together with (3.5), yields

∂C

∂τi
= −C

τi
E [|Xi|]. (3.7)

Consequently, cf. (3.4), (3.5), and (3.7),

∂E [Φ(S,x)]

∂τi
= E

[
∂Φ(S,x)

∂τi

]
− E [|Xi|] E [Φ(S,x)]

τi
+

E [Φ(S,x) |Xi|]
τi

,

= E

[
∂Φ(S,x)

∂τi

]
+

Cov (Φ(S,x), |Xi|)
τi

.

The proofs of (3.2) and (3.3) follow similarly and are therefore omitted.

Remark 1 A relation similar to (3.7) was first derived by Kobayashi and Gerla [36] in a less

general context.

Remark 2 Theorem 3.1 of Strelen [59] is a simple corollary of relation (3.1). Set Φ(n,x) =

nj1−1
i1

nj2
i2
· · ·njk

ik
, with k ≥ 1, 1 ≤ l ≤ k, jl ≥ 1, 1 ≤ il ≤ N . Then, using (3.1), we see that

E
[
|Xi1 |j1 |Xi2 |j2 · · · |Xik |

jk
]
=

E [|Xi1 |] E
[
|Xi1 |j1−1|Xi2 |j2 · · · |Xik |

jk
]
+ τi1

∂E
[
|Xi1 |j1−1|Xi2 |j2 · · · |Xik |jk

]
∂τi1

.

The following theorem addresses sensitivity results with respect to exogeneous arrival rates when

the network is either open or mixed.

Theorem 2 Assume that Φ satisfies assumption A5. If there exists an external source of cus-

tomers of type (i, r) ∈ El (i.e., λir > 0), then

∂E [Φ(S,x)]

∂λir
= E

[
∂ Φ(S,x)

∂λir

]
+Cov

Φ(S,x), ∑
l′∈LO

Ml′(S)

Λl′

∑
(j,s)∈El′

∂λjs

∂λir


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+ Cov

Φ(S,x), ∑
l′∈LO

∑
(j,s)∈El′

(
Xjs

θjs

)(
∂θjs
∂λir

) . (3.8)

In particular, if El = {(i, r)} and if ∂λjs/∂λj′s′ = 0 for all j, j′, s, s′ such that (j, s) ̸= (j′, s′),

then

∂E [Φ(S,x)]

∂λir
= E

[
∂ Φ(S,x)

∂λir

]
+

Cov (Φ(S,x),Ml(S))

Λl
. (3.9)

Assume that Φ satisfies assumption A6. If El is open, then for j ≥ 0,

∂E [Φ(S,x)]

∂γl(j)
= E

[
∂ Φ(S,x)

∂γl(j)

]
+

Cov (Φ(S,x),1(Ml(S) ≥ j))

γl(j)
. (3.10)

Proof. Assume that (i, r) ∈ El. We have, cf. (2.2) and assumption A5,

∂E [Φ(S,x)]

∂λir
= C

∑
n∈S

(
∂Φ(n,x)

∂λir

)
d(n)

N∏
k=1

gk(nk) +

(
∂C

∂λir

)∑
n∈S

Φ(n,x) d(n)
N∏
k=1

gk(nk)

+ C
∑
n∈S

Φ(n,x)

(
∂d(n)

∂λir

) N∏
k=1

gk(nk)

+ C
∑
n∈S

Φ(n,x) d(n)

(
∂

∂λir

N∏
k=1

gk(nk)

)
. (3.11)

From (2.2), (2.4)-(2.6), it is easily seen that

∂

∂λir

N∏
k=1

gk(nk) =
N∏
k=1

gk(nk)
∑

l′∈LO

∑
(j,s)∈El′

(
njs

θjs

)(
∂θjs
∂λir

)
. (3.12)

It follows from (2.3) that

∂d(n)

∂λir
= d(n)

∑
l′∈LO

Ml′(n)

Λl′

∑
(j,s)∈El′

∂λjs

∂λir
. (3.13)

By differentiating (3.6) with respect to λir and by using (3.12) and (3.13), we obtain

∂C

∂λir
= −

 ∑
l′∈LO

Ml′(S)

Λl′

∑
(j,s)∈El′

∂λjs

∂λir
+
∑

l′∈LO

∑
(j,s)∈El′

(
E [Xjs]

θjs

)(
∂θjs
∂λir

)C. (3.14)

Substituting (3.12), (3.13), and (3.14) into (3.11) yields (3.8). The same line of arguments gives us

(3.10).
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Finally, (3.9) is readily derived from (3.8) by observing that

∂θir
∂λir

= 0,

whenever El = {(i, r)}. Indeed, in this case qir(l) = 1 (see (2.8)), so that θir = 1/(1− pi,r;i,r) from

(2.7), and therefore ∂θir/∂λir = 0.

Remark 3 The partial derivatives {∂θjs/∂λir}i,r;j,s involved in Theorem 2 are uniquely determined

by the equations, cf. (2.7),

∂θjs
∂λir

=
∂qjs(l)

∂λir
+

∑
(j′,s′)∈El

pj′,s′;j,s
∂θj′s′

∂λir
, ∀(j, s) ∈ El, l ∈ LO, (3.15)

where the first term in the right-hand side of (3.15) is obtained from (2.8).

Theorem 3 Assume that Φ satisfies assumptions A7 (resp. A8).

Then, for all i ∈ {FCFS, PS, IS, LCFS}, r = 1, 2, . . . , R,

∂E [Φ(S,x)]

∂x
= E

[
∂ Φ(S,x)

∂x

]
+

Cov (Φ(S,x), Xir)

x
, (3.16)

for x = θir (resp. x = ρir).

Proof. The proof is analogous to those of Theorems 1 and 2, and is therefore omitted.

It is worthwhile noting that (3.16) analyses the effect of increasing θir while keeping the θjs’s

unchanged for all (j, s) ̸= (i, r). Therefore, it is assumed that ∂θjs/∂θir = 0 for all (j, s) ̸= (i, r).

This can be achieved by modifying the routing matrix P. Indeed, for any h > 0, it is always possible

to find a routing matrix [phj,s;j′,s′ ] such that

θhjs = qjs(l) +
∑

(j′,s′)∈El

θhj′,s′ p
h
j′,s′;j,s,

with θhjs := θjs for (j, s) ̸= (i, r) and θhir := θir + h, where {θjs}(j,s)∈El
is a solution of (2.7)

(choose, for instance, phj,s;j′,s′ = 1 − θir(1 − pi,r;i,r)/(θir + h) for (j, s) = (j′, s′) = (i, r), phj,s;j′,s′ =

θir pi,r;j′,s′/(θir + h) for (j, s) = (i, r) and (j′, s′) ̸= (i, r), and phj,s;j′,s′ = pj,s;j′,s′ for (j, s) ̸= (i, r)).

The same comment applies to the partial derivatives {∂ρjs/∂ρir}(j,s) ̸=(i,r).
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Remark 4 Higher order derivatives of the sample function Φ can also be obtained from Theorems

1-3. For instance, an iterative use of formula (3.1) yields

∂2E [Φ(S,x)]

∂τ2i
= E

[
∂2Φ(S,x)

∂τ2i

]
+ 2

Cov (∂Φ(S,x)/∂τi, |Xi|)
τi

−(1 + 2E [|Xi|])
Cov (Φ(S,x), |Xi|)

τ2i
+

Cov (Φ(S,x), |Xi|2)
τ2i

, (3.17)

for i ∈ FCFS, provided that Φ(n,x) and ∂Φ(n,x)/∂τi both satisfy assumption A1.

Remark 5 Formula (3.16) generalizes Theorem 1 in de Souza e Silva and Muntz [19]. Indeed,

letting Φ(n) = nir we readily get from (3.3) that Var (Xir) = x ∂E [Xir]/∂x, for x = θir or x = ρir.

Remark 6 As mentioned in [6], pp. 256-257, the product form (2.2) is preserved when various

forms of state-dependent service rates are incorporated in stations PS, IS and LCFS. If so, formulas

(2.4)-(2.6) have to be modified accordingly. However, Theorems 1-3 remain valid provided the

introduced service dependencies do not involve the parameters in A.

Remark 7 Similarly, the product form (2.2) is preserved under various forms of state-dependent

arrival rates. In this case, Theorems 1-3 still hold if the introduced arrival dependencies do not

involve the parameters in A.

As a consequence of Remark 7, Theorem 1 is applicable to the product form queueing network with

population size constraints as introduced by Lam [37]. Note, however, that Theorems 2 or 3 are

not directly applicable in that case.

Remark 8 Formula (3.1) shows that the derivative and the expectation in ∂E [Φ(S,x)]/∂τi can be

interchanged if and only if Cov (Φ(S,x), |Xi|) = 0. Similar results can also be derived from (3.2),

(3.3), (3.8)-(3.10), (3.16). Such interchange properties are very useful in perturbation analysis (cf.

[10, 11]).

4 Applications

Many results of practical interest can be derived from Theorems 1-3. We point out some of

them below. Recall that any vector n ∈ S can be written as n = (n1,n2, . . . ,nN ) with ni =

(ni1, ni2, . . . , niR), where nir ∈ IN. Recall also that x ∈ X denotes the vector of system parameters

(see Section 3).
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4.1 Sensitivity of queue lengths

Let f be any nondecreasing mapping IN → IR.

1. Let Φ(n,x) = f
(∑

k∈NI
|nk|

)
, NI ⊂ {1, 2, . . . , N}.

Fix i ∈ FCFS. We assume that Φ satisfies assumptions A1 A2 and A3 (this holds, in

particular, if f is bounded by a polynomial). Then, cf. (3.1), (3.2),

∂E
[
f
(∑

k∈NI
|Xk|

)]
∂τi

= Cov

f
 ∑

k∈NI

|Xk|

 , |Xi|

 /τi; (4.1)

∂E
[
f
(∑

k∈NI
|Xk|

)]
∂x

= −Cov

f
 ∑

k∈NI

|Xk|

 ,1(|Xi| ≥ j)

 /x, (4.2)

for all x ∈ {αi(j), αi(j)/τi; j ≥ 1}.

Assume that NI = {i}. We know from Barlow and Proschan ([5], Theorem 4.7, p. 146) that

Cov (g(X), h(X)) ≥ 0 for any random variable X and for any nondecreasing mappings g and

h. Applying this result to the right-hand side of (4.1) (resp. (4.2)) yields:

• |Xi| is increasing in τi (resp. decreasing in αi(j), αi(j)/τi, j = 1, 2, . . .) in the sense of

stochastic ordering ([52], pp. 251-252);

•
∑

k ̸=i |Xk| is decreasing in τi (resp. increasing in αi(j), αi(j)/τi, j = 1, 2, . . .) in the

sense of stochastic ordering when the network is closed.

The above results extend earlier results of Shanthikumar and Yao (see [55], Corollary 3.1)

to multiclass closed/open/mixed BCMP networks (note however that our results are only

established for the stochastic ordering, whereas the results in [55] hold for the (stronger)

likelihood ratio ordering).

2. Let Φ(n,x) = f(njs) with (j, s) ∈ El.

Assume that Φ satisfies assumption A4. Then, cf. (3.3),

∂E [f(Xjs)]

∂τir
= Cov (f(Xjs), Xir) /τir, (4.3)

for i ∈ {PS, IS, LCFS},

Assume that El = {(i, r)}. Then, similar to case 1 above, we deduce from (4.3) that

12



• Xir is increasing in τir in the sense of stochastic ordering;

•
∑

(j,s)̸=(i,r) Xjs is decreasing in τir in the sense of stochastic ordering when the network

is closed.

Assume now that El is open and that El = {(j, s)}. Then, cf. (3.9),

∂E [f(Xjs)]

∂λjs
= Cov (f(Xjs), Xjs) /λjs, (4.4)

provided that f does not depend on λjs, which shows that

• Xjs is increasing in λjs in the sense of stochastic ordering, for all 1 ≤ j ≤ N , 1 ≤ s ≤ R.

3. Let Φ(n,x) = |ni|

Then, for i ∈ FCFS, cf. (3.17),

∂2 E [|Xi|]
∂τ2i

=
Cov (|Xi|, |Xi|2)

τ2i
− (1 + 2E [|Xi|])

Var (|Xi|)
τ2i

. (4.5)

In particular, formulas can also be derived for ∂E [f(Xjs)]/ ∂τi for i ∈ FCFS and for ∂E [f(|Xj |)]/

∂τir for i ∈ {PS, IS, LCFS}.

4.2 Sensitivity of throughputs

1. Let Φ(n,x) =
njs

τjs nj
1{njs>0}.

Then E [Φ(S,x)] = E
[
(Xjs/|Xj |)1{Xjs>0}

]
/τjs is the throughput of customers of class s in

station j if j ∈ PS.

For i ∈ PS, we have, cf. (3.3),

∂E [Φ(S,x)]

∂τir
= −1{(i,r)=(j,s)}

E [Φ(S,x)]

τir
+

1

τir τjs
Cov

(
Xjs

|Xj |
1{Xjs>0};Xir

)
. (4.6)

If only customers of class r may visit station i (i.e., |Xi| = Xir) and if (j, s) = (i, r), then

(4.6) reduces to

τ2ir
∂E [Φ(S,x)]

∂τir
= −P (Xir > 0) + Cov (1(Xir > 0;Xir) .
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2. Let Φ(n,x) = njs/τjs.

Then E [Φ(S,x)] = E [Xjs]/τjs is the throughput of customers of class s in station j if j ∈ IS.

We have, for i ∈ IS, cf. (3.3),

∂E [Φ(S,x)]

∂τir
= −1{(i,r)=(j,s)}

E [Xjs]

τ2js
+

Cov (Xjs, Xir)

τirτjs
. (4.7)

If (i, r) = (j, s), then (4.7) reduces to

τ2ir
∂E [Φ(S,x)]

∂τir
= Var (Xir)− E [Xir].

3. Let Φ(n,x) = αj(|nj |)/τj .

Recall that αj(0) = 0. Then E [Φ(S,x)] = E [αj(|Xj |)]/τj , and E [Φ(S,x)] is the throughput

of station j if j ∈ FCFS.

We have, for i ∈ FCFS, cf. (3.1),

∂E [Φ(S,x)]

∂τi
= −1{i=j}

E [αj(|Xj |)]
τ2i

+
Cov (αj(|Xj |), |Xi|)

τiτj
. (4.8)

If i = j, then (4.8) simply becomes

τ2i
∂E [Φ(S,x)]

∂τi
= Cov (αi(|Xi|), |Xi|)− E [αi(|Xi|)]. (4.9)

Corollary 3.1 in Shanthikumar and Yao [55] implies that the left-hand side of (4.8) is nonpos-

itive, for any single class closed Jackson network. We have not been able to derive this result

by showing that the right-hand side of (4.8) is nonpositive.

A numerical illustration of the results obtained in this section is now given. The computations

have been performed using the queueing modeling software QNAP 2 [46]. We consider the mixed

queueing network depicted in Figure 1. There are two subchains: customers of class 1 belong to the

open chain and (ten) customers of class 2 belong to the closed chain. All stations are FCFS stations

but station 3 that is an IS station with class-dependent (exponential) service demands. Further,

station 2 has nonmonotone state-dependent service rates with α2(1) = 1, α2(2) = 2, α2(3) = 7,

and α2(j) = 1 for j ≥ 4. The nominal mean service demands are τ1 = 0.5, τ2 = 1.0, τ31 = 1.5,

τ3 := τ32 = 2.4, τ4 = 1.1 and τ5 = 1.7.

Let Ti (resp. Tir) be the throughput of station i (resp. the throughput of customers of class r at

station i). Figure 2 displays the mapping τ2 → ∂T2/∂τ2 (resp. τ32 → ∂T32/∂τ32, τ4 → ∂T4/∂τ4)
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for τ2 (resp. τ32, τ4) lying in [0.5, 10], when the other mean service demands are kept fixed to their

nominal values. We may observe from Figure 2 that (i) the throughput of station 2 is monotone

(nonincreasing) and nonconvex as a function τ2, (ii) the throughput of customers of class 2 at station

3 is monotone (nonincreasing) and convex as a function of τ32, (iii) the throughput of station 4 is

neither monotone nor convex as a function of τ4.
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Figure 1: Mixed BCMP queueing network.
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4.3 Parameter optimization problems

Many optimization problems in queueing networks are formulated in terms of the search for an

optimal value of a system parameter so that some cost function is minimized/maximized. In many

cases, the cost function is expressed as the mathematical expectation of a function of the system

state.

One of the most direct ways of solving this kind of problems is to compute the derivative of the cost

function with respect to the system parameter and to find the minima/maxima of the cost function.

Unfortunately, this approach is often not feasible because the derivative of the cost function is hard

to obtain.

In product form queueing networks, however, owing to Theorems 1-3, the determination of the

derivative is reduced to computing the covariance between some state variables. This provides

a new approach, at least from a numerical point of view, to the solution of some optimization

problems.

As an easy example, let the cost function be E [a |Xi| + b/τi], where a and b are nonnegative real

coefficients representing holding and service costs, respectively. Recall that |Xi| denotes the queue

length of an FCFS station i in a BCMP network and that τi is the mean service demand of the

customers visiting that station. One might want to find a value of τi that minimizes this cost

function. Using Theorem 1, one immediately obtains

∂E [a|Xi|+ b/τi]

∂τi
= − b

τ2i
+

a

τi
Var (|Xi|). (4.10)

The problem is then reduced to the computation of the roots of the right-hand side of equation

(4.10). Further applications to parameter optimizations can be found in [18, 36, 44, 45, 66, 67, 73].

4.4 Correlation between state variables

Let us choose Φ(n) as in application 1 of Section 4.1. Assume that the network is closed and that

there is only one class of customers. Then, for j ≥ 1,

Cov (f(|Xk|), |Xi|) ≤ 0; (4.11)

Cov (f(|Xk|),1(|Xi| ≥ j)) ≥ 0, (4.12)

for all i ̸= k, and further

Cov

f
 ∑

k∈NI

|Xk|

 , |Xi|

 ≥ 0; (4.13)
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Cov

f
 ∑

k∈NI

|Xk|

 ,1(|Xi| ≥ j)

 ≤ 0, (4.14)

for all i ∈ FCFS. Formulas (4.12) and (4.14) hold under the additional assumptions that the

mappings {αi, i ∈ NI} are nondecreasing when the set NI contains at least two elements.

To prove (4.11)-(4.14), let us recall the following result due to Shanthikumar and Yao (use Corollary

3.1 in [55] with µi(j) := αi(j)/τi). In a closed network with a single class of customers, let (NA, NB)

denote a nontrivial partition of {1, 2, . . . , N}. Then,

1. |Xj | (j ∈ NA) is decreasing in µi(j) in the sense of likelihood ratio ordering for all i ∈ NB;

2.
∑

j∈NB
|Xj | is increasing in µi(j) in the sense of likelihood ratio ordering for all i ∈ NB,

provided (i) the service rate at station i is nondecreasing in |Xi| for all i ∈ NA, (ii) |NB| = 1 or

|NB| ≥ 2 and the service rate at station i is nondecreasing in |Xi| for all i ∈ NB (|G| denotes the

cardinality of any set G).

The proof of (4.11)-(4.14) now follows from the above results and formulas (4.1), (4.2), and from

the property that “likelihood ratio ordering ⇒ stochastic ordering” (see Ross [52], Chap. 8).

Note that the negative correlation (4.11) implies the negative dependence (introduced by Block et

al. [7]) between the numbers of customers in FCFS stations and that the positive correlation (4.12)

has been obtained by Ott and Shanthikumar [43] for queueing networks with identical visit ratios

and service rates.

5 Implementation issues and computational algorithms

As already mentioned in the introduction, there exists several efficient computational algorithms

for computing the primary performance measures of BCMP-like networks [8], [13], [16], [39], [41],

[50], [49], [59]. We show below that some of these algorithms can be used to compute the sensitivity

results obtained in this paper.

Two cases need to be distinguished. In the first case, the sample function Φ(n,x) is a polynomial

with respect to the state variables nir, 1 ≤ i ≤ N , 1 ≤ r ≤ R, for any vector of system parameters

x ∈ X (e.g., Φ(n,x) = |ni|).

Then, it is seen from Theorems 1-3 that the computation of the derivative of E [Φ(S,x)] with
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respect to some system parameter reduces to the computation of covariances between the state

variables Xir, 1 ≤ i ≤ N , 1 ≤ r ≤ R, once the derivative of Φ(n,x) is (formally) obtained. These

covariances can be numerically computed using the approximate algorithm of Strelen [59].

In the second case, the function Φ(n,x) is arbitrary (for optimization purposes we may have to

deal for instance with non-polynomial cost functions of the state variables). In this case, a good

candidate for the computation of our sensitivity results is the well-known convolution algorithm of

Reiser and Kobayashi [49]. This algorithm initially aims to compute detailed performance measures

of BCMP networks (e.g., marginal probabilities of the number of customers in the stations). How-

ever, since the convolution algorithm relies on the computation of a multidimensional generating

function of a detailed state of the network, it can also provide covariances between state variables.

6 Concluding remarks

In this paper, various formulas have been established which relate the derivative of the expecta-

tion of any function of the state of the system with respect to any model parameter (i.e., arrival

rate, mean service demand, service rate, visit ratio, traffic intensity) to covariances between state

variables (Section 3). Applications of these results including monotonicity results have been given

(Section 4). In particular, the results in Section 4.2 show that, in general, the throughputs in

mixed/closed BCMP networks are not monotonic functions of the system parameters. We have

also shown in Section 4.4 how monotonicity properties could be used to determine correlations

between certain state variables.

It is worthwhile to note that the results in this paper provide an approach to the numerical com-

putation of the derivative of the expectation of any function of the state of the system with respect

to any model parameter, and is thus of particular interest for numerical solutions of various opti-

mization problems arising in queueing systems. Efficient computational algorithms enabling such

computations have been identified in Section 5.

Although the general relations in Theorems 1-3 have been obtained within the context of BCMP

networks, similar results can be derived for other queueing networks such as, for instance, networks

with blocking phenomena and/or state dependent routing [3, 26, 65, 71], networks with failures

[15], provided the product form is preserved.
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