Impact of Mobility on the Performance of Relaying
In Ad Hoc Networks

A. Al-Hanbali*, A. A. Kherani, R. Groenevelt, P. Nairi and E. Altmari
* INRIA, 2004 Route des Lucioles, B.P.-93, Sophia-Antipolis Cedex, France, 06902.
tUniversi€ de Nice-Sophia Antipolis. Department of Computer Science, France.

Abstract—We consider a mobile ad hoc network consisting keep the data to be relayed in its buffer. Hence, the study of
of three types of nodes: source, destination, and relay nodes.the buffer behavior of a relay node forms an important topic
All the nodes are moving over a bounded region with possibly ot research. The present work addresses the above two issues,

different mobility patterns. We introduce and study the notion . .
of relay throug)r/mp%t ie. the maximum rate at w¥1ich a node |- the maximum relay throughput and the relay node buffer

can relay data from the source to the destination. Our findings behavior.- . . . .
include the results that the relay throughput depends on the  Our point of departure is a simple observation which relates

node mobility pattern only via its (stationary) node position the evolution of a relay node buffer to the evolution of the
distribution and that a node mobility pattern that results \yorkjoad process in a G/G/1 queueing system. The service
in a uniform steady-state distribution for all nodes achieves requirements and inter-arrival times in this queueing svstem
the lowest relay throughput. Random Waypoint and Random q . o q __g Y
Direction mobility models in both one and in two dimensions are determined by the characteristics of the mobility pattern
are studied and approximate simple expressions for the relay of the nodes.
throughput are provided. Finally, the behavior of the relay Our main findings are the following:
buffer occupancy is examined for the one-dimensional Random 1) Thg relay throughput depends only on the stationary dis-
Walk, and an explicit form of its mean value is provided in the L , . -
- tribution of the nodes’ position. Hence, any two mobility
heavy-traffic case. . L .
patterns that have the same stationary distribution will
Keywords—Perfromance evaluation, Packet relaying, Mobility achieve the same relay throughput.
models, MANET, Ad Hoc networks. 2) Itis assumed in [6] that the stationary distribution of a
node position is uniform over the region of interest. This
has lead to many research efforts which base their work
Grossglauser and Tse [6] observed that mobility in mobile  on this particular assumption [3], [7]. We prove that the
ad hoc networks (MANET) can be used to increase the average relay throughput achieved is the lowest when nodes are
network throughput. Their idea was to look at the diversity  uniformly distributed.
gain achieved by using the other mobile nodes as relays. TheiB) Knowledge of the stationary node location distribution
relay mechanism is simple: if there is no route between the alone is not enough to understand the behavior of relay

I. INTRODUCTION

source nodes) and the destination nodg), the source node node buffer. A detailed analysis involving second-order
transmits its packets to one of its neighboring nodes (9dgr moments of contact times between mobile nodes is
delivery to the nodd. It was then shown in [3] that a bounded necessary to obtain a full picture. We perform such an

delay can be guaranteed under this relaying mechanism. The analysis for the random walk mobility model over a
aim of these studies (see also [7]) is the scaling property circle where a node can move, by a constant step size,
of the throughput or delay as the number of nodes in the to the right or to the left with equal probability.
network becomes large. Our interest in the present work is inAn important point that needs to be emphasized is that,
the performance of the above mentioned relaying mechanismiike [3], [6], [7] which study the system performance when
in a network consisting of a fixed finite number of nodes. the number of nodes is large, we are interested in a relay node
It is important to mention that most of the studies of scalingerformance while it is involved in relaying data between two
laws of delay and throughput in wireless ad hoc networlgrticular nodes. Developing models for performance analysis
assume a uniform spatial distribution of nodes, which is ttef a relay node buffer and the relay throughput can help in
case, for example, when the nodes perform a symmetdimensioning a relay node buffer size and on achieving an
Random Walk over the region of interest [3], [6]. In the presemiptimal performance using relaying mechanisms. We note that
paper, we study the effect of the node mobility pattern ahe model studied in this paper is not restricted to three nodes,
the throughput and delay performance of the relaying schemer that the model requires the same mobility pattern for all
of [6]. We are interested in thmaximum relay throughpuif of the nodes.
a mobile node, i.e., the maximum that a node can contributeThe rest of the paper is organized as follows: Section Il
as a relay to the communication between two other nodescribes the relaying system considered. In Section Il we
The relaying of data for other nodes requires a relay nodedevelop a queueing model for thelay buffer(RB). Section
allocate its own resources. In particular, a relay node haslt studies the effect of mobility models on the relaying



throughput, and in Section V we find expressions for the relay = node does not contribute telaying In this case there
throughput for the Random Waypoint and the Random Direc- is either a direct communication between the source and
tion models in both one and in two dimensions. Section VI destination or there is a two-hop route via the relay node
studies the RB behavior for the random walk mobility model. so that the relay node acts as a forwarding node and not
In Section VII, we report numerical results on the stability, as a relay.

relay throughput, contact time distribution, probability of a 26ur objective is to study the properties of the relay buffer
hop route, and the RB behavior. Section VIII concludes thgtability, stationary occupancy distribution, throughput). To
paper and gives research directions. this end, we first develop a queueing model that will give

II. THE SYSTEM MODEL many insights into the system behavior.

To study the maximum rate at which a node can relay data, Ill. A QUEUEING MODEL FOR THE RELAY BUFFER

we start by considering the scenario where three nodes moV&\ger addressing the case where there are only three mobile
'?] a two—dlmefnS|onkaI bounde_d r(;‘]g|on. Qne ,Of these nr?deﬁn'ﬁdes in Section 1lI-A, we investigate the situation of an
the source of packets, one is the destination, and the thifdi oy number of source/destination/relay nodes, under the

one is the relaying node. The mobility patterns of the thregy iional assumption that all source and destination nodes are
nodes are independent and may be different from each othfg(éd (cf. Section 1II-B)

this is in contrast with [3], [6] where the authors assume that
the mobility pattern of the nodes is such that the steady-stae Single Source, Destination, and Relay Nodes
distribution of the location of all the nodes is uniform over |p. ciate of the relay node at tiniés represented by the
the region of interest. In fact, [3] assumes that nodes perfora}, 4om variable (rv.p, € {~1,0,1} where:
random walks (there are other mobility models which also
result in a uniform stationary distribution, e.g., the Random *
Direction model [11]). As mentioned earlier, we are interested
in the maximum relay throughputf a relay node. As a starting
point we will restrict ourselves to the case where there is only
one relay node. At a later stage we will relax this assumption.
Also, we want to study the dependence of the relay node®
buffer behavior on the mobility model. We assume that a
node detects its one-hop neighbor(s) by sending periodically
Hello messages. However, to detects two-hop neighbors nodes
exchange the addresses of tier neighbors.
The model is the following:

Sy = 1 if at time ¢ the relay node is a neighbor (i.e.,

within transmission range) of the source, and if the

destination is neither a neighbor of the source nor of the

relay node. In other words, whef = 1, the source node

sends relay packets to the relay node at time

S; = —1 if at time ¢ the relay node is a neighbor of

the destination, and if the source is neither a neighbor

of the destination nor of the relay node. Whéh =

—1 the relay node delivers relay packets (if any) to the

destination;

e S; = 0 otherwise.

1) The three nodes move independently of each other %gg'lg;;i";;':gf;g?:; W%"‘?:Lif?g:got_h;t ghe r:;lasy node
. . . — : ' .

cording to a (possibly node-dependent) mobility mOd%Een necessarilg, — 0 if S, —1or S, — —1.

inside a bounded 2-dimensional region. Denote bvB. the RB i Th B
2) The source node has always data to send to the desti- enote by, the occupancy at time. The r.v. B

nation node. This is a standard assumption, also ma%\éolves as follows:

mum relay throughput of the relay node. St = 1, the relay node receives data to be relayed from
3) When the relay node comes within the transmission Fhe source node at rate; _ _

range of the source node (we will also say that nodes® it decreases at rate; if S; = —1 and if the RB is non-

arein contactin this case), and if the destination node ~ €mpty. This is because &, = —1, and if there is any

is outside the transmission range of the source and of data to be relayed, then the relay node sends data to the
the relay node, then the relay node accrues packets to be destination node at rate;.

relayed to the destination node at a constantrate it remains unchanged in all other cases.

could allow for a stochastic nature of traffic generated Let {Z,},, (Z1 < Z2 < ---) denote the consecutive jump
by the source by assuming that is an independent times of the proces§S;, ¢ > 0}. An instance of the evolution
stochastic process. However, such a study is out of thé S; and B; as a function of is displayed in Figure 1

scope of this work.] The evolution of the discrete indexed procgssg;, , k > 1}

4) When the destination node comes within the transmisensists of sequences bf0 and—1. This naturally motivates
sion range of the relay node, and if the destination ant to look at the times when the relay node returns to the
the relay node are outside transmission range of tBeurce node after being neighbor of the destination node at
source node, then the relay node sends the relay packetst once. This is done in the following.

(if any) to the destination node at a constant nate We define acycle as the interval of time that starts at

5) If the relay node is within transmission range lmjth 7, for somek with S; = 1, and (necessarilyp; = 0 and

the source node and the destination node, then the relsyy, , = —1, and ends at the smallest timet+ = such that



t and the long-term fraction of time that the destination node is
5 pmeee the neighbor of only the relay node ( i.e., the fraction of time
P ! that the RB is draining off) is
S ‘ N
mq = lim — 1i5,=—1ydu. (5)

0

t—oo ¢ [, =

It can be shown that these limits exist under Assumption
B A. The proof is beyond the scope of this paper. Moreover,
Assumption A implies that [1]

E[Un]

T\ ™o = tim P(S =1) = Fre ©
Z, 2,2, 2,2.2, Z,Z, Z AN/ Z
17273 747576 7178 79 10711712713 14 and
Fig. 1. Evolution of{S;}+ and relay node buffer occupancy. g = lim P(St _ 71) _ g[gn] ' (7)
Siy, =1 andS;,, = —1 for somes < 7. In Figure 1, the fmroo [Cn]

time-interval [Z7, Z,7) constitutes a cycle. Note that there iS Theorem 1: If roElon] < rqE[ay] then B, converges in

no restriction on the number of times the relay node becomgghapility to a proper and finite r.\B (i.e., lim,, P(B,, < z)
neighbor of the source node or of the destination node during p(3 < 2)). If r,E[o,,] > rqE]ay], then B, converges to

a cycle. Hence, during a cycle the relay node will transmit,, p _ ;4 g. O

packets to the destination and will receive packets from th8oof Follows from the relation to the G/G/1 queue made

source. . _ o ) above and [10]. .
Let W, be the time at which the'" cycle begins. Let Remark 1:In terms ofr, andr, the stability condition of

A /Wnﬂ Theorem 1 writes
t

Op = . 1{S,,=1}dt (1) FoTy < TgTg.

be the amount of time spent by the relay node in stataring
the n'* cycle. Similarly, let

Remark 2:If all nodes have the same mobility model, then
clearly 7, = w4, since the relay node is equally likely to
be within the transmission range of the source and of the

A Wt destination. Therefore, by Remark 1, the stability condition
an = 1{s,=—13dt @ s
t=W,

be the amount of time spent by the relay node in state
during thent” cycle. Observe that during the amount of tim
o,, the RB increases at ratg, and it is decreases at ratg
during the amount of time,,. Let B,, be the RB occupancy

rs < Tq.
e Theorem 2: If ryms < rgmq, then therelay throughput?’,,
defined as the stationary output rate of the relay node, is given

at the beginning of the!” cycle. Clearly, Iy = roms. -
g ? _ y y Proof. In steady-state the RB can be thought of as a standard
Bui1 =[Bn + 750m — rq0,] " (3) GI/G/1 queue so that the output rate is the same as the input

where [z]* = max(z,0). In other words,B,,; can be rate and is given bys. -

Remark 3:The relay throughpufl;. only depends onr;
and the stationary distribution of the node mobility pattern.
In particular, two different mobility patterns with the same
stationary distribution (for the location of the nodes) will yield
the same relay throughput.

Ht is clear from Theorem 2 and Remark 1 that and 74
play an important role in determining the stability and the
throughput of the RB. Much of the rest of this paper will be
devoted to the study of these quantities.

interpreted as the workload seen by the+1)%¢ arrival in

a G/G/1 queue, where,o,, is the service requirement of the
nth customer, and-,«,, is the inter-arrival time between the
n** and the(n + 1)** customer. This interpretation will be
used next.

Assumption A: Throughout Section IlI-A we assume tha
the sequenc€C,,,0,,a,}, is stationary and ergodic, with
0 < E[Cy] < 00,0 < Elo,] < o0 and0 < Elay,] < oo.

Clearly, the statistical properties of the random variablgs
on, anday, will depend on the node mobility patterns. Henceg  Multiple Source, Destination, and Relay Nodes
our study will be restricted to the class of mobility models

under which the stationarity and ergodicity assumptions hohdWe now assume that there ake source nodesy)/ destlr_la-_
tion nodes andV relay nodes, all with the same transmission
for the sequencéC,,, 0., an }n.

Definition: The long-term fraction of time the RB receivesrangeR (_the_latter will be assumed throughout). The source
data is and destination nodes are stationary. The relay nodes move
. independently of each otherside a connected arehaccord-
s 2 lim 1 1(5,-1ydu, (4) ing to the same mobility patternThe distance between any
t=o0 o two source nodes, and between any two destination nodes, is

u=



assumed to be greater thaR. This implies that a relay node The exact derivation ofrj}, the long-term service rate of
can not receive (resp. transmit) data from (resp. to) two queuem at a relay node, is intractable since it depends on the
more source (resp. destination) nodes at the same time. (stationary distribution of) location of the other relay nodes
Furthermore, assume that the routing protocol generateith respect to the destinatioP,,,, and on whether or not
routes of length no more thal-hops, i.e., the lifetime of a queuem at each relay node is empty or not and located within
packet in number of hops is not greater tharThe distance transmission range ob,,. More precisely, ifi relay nodes
between any source and any destination node is set to dre within the transmission range of destinatiby,, and if
greater tharh R. Therefore, there does not exist a direct routgueuem in each of these relay nodes is non-empty, then the
from any source to any destination node, which implies thagervice rate in queus: at each of the relay nodes is-p,, /i.
packets have to use mobile relay nodes to transfer data. The above reasoning indicates thas /N is the minimum
The RB of a relay node is composed f queues; one for instantaneous service rate at each queueThis yields the
each of theM destinations. The system behaves as followsfollowing lower bound—called—on the long-term service

1) When there are relay nodes inside the transmissioriate of queuen:
range of source nodé, wherei € {1.---N} and
k € {1---K}, then the source transmits to the
relay nodes the packets addressed to destination node
m € {1l--- M} with probability P/ in a round-robin As a result, a sufficient condition for the stability of queue
scenario, Whererf:1 P = 1. So, queuen of the at each relay node is
relay node accrues packets at a fixed rateP;" /1, m o am
whererg, is the transmission rate of source nade TS <7D (12)

2) When the relay node receives a packet from a sourggueuem at a relay node is stable, then the relay throughput
that is destined to destination node, it buffers this 7m 4t this queue is equal to its long-term arrival rate, i.e,
packet in its queue of index.

3) When there arg relay nodes with non-empty queue o K m 1 " -

m inside the transmission range of destinationthese ~ 1r =75 = > TE = N > Fi'rs [1 — m(sk)

relay nodes share the channel bandwidth fairly. More k=1 k=1 (13)
precisely, queuen of these; relay nodes drains off at

a fixed raterp, /j, whererp  is the transmission rate The network throughpufl’, is the sum of the relay throughputs

of a relay node to the destination node The service at all the M queues of all theV relay nodes, namely
discipline in queuen of the relay node is FIFO. N

N
pm ey 1T (1 _;(mDm')) . 1)

K

M K
Let f(x), z € A, be the stationary node location probability 7 — Z Z ™ = ZTSk [1 (- 7T($Sk)>N] (14)
density. Denote byrg, andxp  the fixed location inA of 1 m—1 1
sourcek € {1,---,K} and destinationn € {1,---,M}, N
respectively. Observe thatl — (1 — 7(zg;))" is the probability that there
Hence, the probability that a relay node is the neighbor &F at least one relay node inside the transmission range of the
a node located in: € A is source nodek.
We conclude this section by briefly addressing the situation
m(z) :/ f(y)dy. (8) where all of the nodes are moving. Since an exact calculation
{yeAd(z,y)<R}

of the throughput of queus: at a relay node is very difficult,
whered(u,v) is the Euclidean distance between vectond we will derive an approximation for this quantity. This approx-
. imation is based on the assumption that routes cannot exceed
By conditioning on the number of nodes within range ofvo hops. We assume that all nodes move independently of
source nodé:, we find that the input rate at quewe of each each other with the same mobility pattern, and that they have

relay node is the same transmission range. Lt be the probability that
N . two nodes are within transmission range of one another. Let
T8 =P'rg, Zl ( N -1 )W(xsk)iﬁ(xsk)]v_l p2 be the probability that three nodes constitute a two-hop
' im1 i—1 route. Then, under the above simplifying assumption
" 1—(1—7r(:c5k))N N pm N_1
:Pk TSk N ) (9) Z % ( i1 )(pl _ p2)i (1 o pl)N—H—i
wherea := 1 — a. i=1 N N
The overall long-term arrival rate to queue of a relay — Py (1—p1) ((1 —p2)” —(1—p1) ) (15)
node from all of the sources is kook N

K 1 & N is the contribution of source nodeto the long-term arrival
7§ ::ZT&Z = NZP]TTS;C {1 — (1 —m(zs,)) } (10) rate in queuem at any relay node. Therefore, the overall
k=1 k=1 long-term input rate at queue at any relay node can be



approximated by summing up the r.h.s. of the above identityr some0 < § < 1 andz,y € X, x # y. Then
over all the values ok. This gives

g(P)=PTHP
1— 1— )N — (1 —p V) XK _ 2( T T _.T _.T
o ;:1( p1)((1 —p2) (1—p1)V) ZPIZ;”TSI« (16) g(U) + (e, Hey + e, Hey —e; Hey — e, Hey)
N = +20(e; — e,) " HU, (19)

When Pj™ = 1/M (that is, there is a uniform probability thatwhere we have used the fact that foralE X el He, = 1 as
source nodek sends to destination node) and when the x € G(x). SinceH is a symmetric matrix, we havB” HQ =
transmission rates of all sources are equak4o then (16) QT HP for all P, Q probability measures oX. Also, it is

becomes easy to see that] He, = 1 if 2 € G(y) and is0 otherwise.
map (=P = (L =p)™) o Hence we get
Tg RTs
s MN 9(P) =g(U) +26°(1 = Lzea()y) + 26(ec — ¢,)"HU
In the next section, we will investigate the impact of the 5 20(#G(x) — #G(y))
mobility pattern on the relay throughput. We will show that =9(U) + 26" zgay)y + G ’
the throughput is minimized when in steady-state the nodggere in the last expression we have used the, easy to observe,
are uniformly distributed over the area. fact thate? HU = #%(z). Hence, sincetG(z) = #G(y) for
IV. COMPARISON OFMOBILITY MODELS a”\f;f\}h%/ E X, 'I'F IS Sﬁe” thay(P) — g(U) = 20°1(xga(y))) =
We consider the scenario where nodes move independer?t]y 'ch implies that
of each other according to some mobility pattern. Assume Ue argmin g(P). (20)
that the nodes location distribution is stationary. The nodes P=Utdes—dey

position can take values in a discrete $étwith cardinality Now, any other probability distribution over the s&t is
#X = G. Let G(z),2 € X denote the set of all points ina point in G—dimensional canonical simplex. The uniform
the transmission range of a node located.aiVe assume that distribution is at the centroid of this simplex and any other
there is complete symmetry, so th#tG(z) = #G(y) for all distribution P, when viewed as ai: dimensional vector (a
z, y € X and that ifz € G(y) theny € G(z). This can be point in the simplex), can be written as
assumed when there is moundary effegtfor example, as is P—U+
: . . = €, (21)

the case of motion over a torus or over a circle (representing,
respectively, motion over a plane or line with wrap around)whereU is the uniform distribution ane is anG-dimensional

Let P be the probability measure ove¥ that represents vector whose entries are in the interal &, ©=1] and the
the stationary node location distribution. As the cardinality ¢fntries sum to zero. Clearly, any suettan be written as a
X is equal toG, P can be represented as &hdimensional (possibly non-unique) finite sum
(column) .vector. _The upiform stationary node I.ocation aXer ¢ — Z (ex — €y(a))0s 22)
calledU, is aG-dimensional vector whose entries are all equal Y
to . Lete,,z € X, denote a probability measure ovar _ _
which gives all mass to positian, i.., e, is anG-dimensional Where I(P) C X is some index sety(z) € X, andd, >
vector whose entries are all equal foexcept for thezt® 0, = € I(P). This is because, forms a basis for the
components which is equal to G—dimensional space and becauBds a probability vector

For any stationary node location distributidh over X, with >~ ¢ x €2 = 0.
let g(P) denote the probability that two nodes are neighbor Recall that if the stationary node distribution /5 we can
of each other. Letd denote the neighborhood matrix, i.e.Write g(P) asg(P) = PTHP, where H is anG x G sym-
H,,=1if y € G(z) and H,, = 0 otherwise. NoteH is a Metric matrix indicating the ne|ghborr_100d rglat_|on._ We have
symmetric matrix. In terms of, (resp.P,), the probability already shown that wheR = U, the uniform distribution, the

that a node is at location (resp.y) in the stationary regime directional derivative o H P is positive along any direction
g(P) writes of the form (e, —e,) wheree, is G—dimensional vector with

. all except ther?” entry equal to zero. We now use continuity of
g(P)=> P, Y P,=)Y Py H,uP,=P"HP  the derivative ofy(U/) to conclude that its directional derivative
zeX yeG(x) z€X  yeX along any direction is positive. Hendé € argming(P). =

zel(P)

where PT' is the transpose aP and we use the fact that the The above result does not imply that théjay throughput
locations of the nodes are independent. achieves its minimum under the uniform stationary node

Theorem 3: A uniform distribution of nodes over the re-distribution. This is because the relay throughput under dis-
gion of interest achieves the minimum probability of contadtibution P, denotedT,.(P) = r,ms(P) and with 7;(P) =
between any two nodes. O limy_ P(S; = 1) under the probability measur®, is

Proof. Consider anyP of the form
TT(P) =Ts g(P) - Z P, Z Py Z P, (23)
P =U + de, — dey, (18) ( T€X  yeG(z) 2€G(x)UG(y) )



and it can be easily seen that for anye X, ws(e;) = 0. where f(-) is the stationary node location distribution, and
Sincer,(+) is a probability, this implies thaP = ¢, achieves a A b=min(a,b). Thus, the stability condition reads
minimum of 7,(-). However, it is reasonable to assume that

(s+R)AL (d+R)AL
the uniform distribution is a local minimum for,(-) because 7'5/ f(z)dz < rd/ f(z)dx. (26)
the second term in expression fog(-) above is of smaller r=(s—R)* r=(d-R)*
order as compared to the first term. Consider now the relay throughput. In the stable case it is
Observe that if the source node and the destination no@een by (see Theorem 2)
are fixed, and if they are far apart (so that a two-hop commu- (s+R)AL
nication between them via a relay node is not possible), then 7“5/ f(z)dz. 27)
a uniform distribution of relay node achieves the minimum z=(s—R)*
relay throughput. In the particular case where the relay node moves according

In the next section, we will find expressions for the relay, the Random Direction mobility model, the stability condi-
throughput in the case nodes move according to the Randggy, is (use (26)) withf(z) given in (25))

Waypoint and the Random Direction models.

Ts((s+R)AL)—(s—R) T <rq((s+R)AL)—(s—R)™T,
V. THROUGHPUT INRANDOM WAYPOINT AND RANDOM

DIRECTION MODELS and the relay throughpLﬂ”,};D, achieved is (cf. (25) and (27))

In this section, we compute the relay throughput in the case ((s+R)AL)—(s—R)™T
where (i) the relay node moves along a finite interval according L :
e_|therto the Random Waypoint mod(_al or to the Ra_ndom D.'reEbr R<s<L_ RandR<d<L—R T. —r2R and
tion model, the source and destination nodes being stationary ~ reqardless of the position of tthsourceLnode and
(Section V-A.1), (ii) all nodes move independently of eacfis =~ Ta regar po - o

. . . of the destination node. In this case, the stability condition
other, with the same mobility model (Random Direction or

) . SN - educes to, < ry.
Random Waypoint), either along a finite interval (Section V. When the relay moves according to the Random Waypoint

A.2) or inside a square (Section V-B). . . o
We have shown in Theorem 2 that the relay throughut (n;gl)a)lhty model, then the stability condition is (use (24) and

is given byT,. = r ms, Wherer, is the transmission rate of the 9 9
source to the relay node(is a given parameter), and is the rs[2(A - B)(3 - (A" + AB + B))]
stationary probability that the source is sending packets to the < 14[2(C — D)(3 = (C? + CD + D?)],
relay node (see Section Ill). In the following, we will compute

7w, for each case mentioned above. This will be carried otht
under the assumption that all nodes have the same transmission 4
rangeR. B

T, =7 (28)

=(s+R)ANL, C:=(d+R)NL,
=(s—R)T, D:=(d-R)",
A. One Dimension

For the Random Waypoint mobility model over the interva"i1
[0, L], the stationary probability density function of a node
location is [2]

nd the relay throughpuTI’;W, is given by

2(A— B)(3— (A*+ AB + B?))
L3 '
6(L — x)z 2) All Nodes are Mobile:We now assume that the source,
f(x) =13 7 € [0, L]. (24)  destination and relay nodes are all mobile, and move along
The stationary probability density function under the Randoff}: £ according to the same mobility model: the Random
Direction mobility model is uniform [11], i.e., Waypoint or the_RanQom Direction m_c_)del. F|r§t_, opserye from
1 Remark 2, that in this case the stability condition is given by
f('r) =-, TE [OaL] (25) s <Td.
L Let us now compute the throughpil} = r 7, for each
1) Only Relay Node is MobileVe assume that the sourcemobility model. We have

and the destination nodes are fixed(nLZ], and that the relay 9
node moves along this interval according to either the Random [ (z+R)NL L (@+R)NL
= [ fl=) f(z) ( dx
0 0

(29)

TIJ;W =Ts

Direction or the Random Waypoint mobility model. Ts = (%Rﬂy)dydx_ %RJ;(ry)dy
We first focus on the stability condition. From Remark 1
the stability condition is given by,r, < 474, where these L @+RINL p(y+RINL
quantities are defined in Section IIl. Let us computeand _/ f(@) (x_RJ;Ey) (y_R)EZW*Zdyd”f’ (30)
mq for either mobility model (recall that, andr, are given

parameters). We have where f(x) is given either by (24) or by (25), depending on

(4 FINL (@ RINL the mobility model in use. It is easy to computgin explicit
S / f@)de, 7= / F(2)da, form for both functionsf (x). We will instead provide compact
x x

—(s—R)+ —(d—R)+ approximation formulas, since the exact ones are lengthy. We



approximater, by the first term in the r.h.s. of (30). Note that 2) Probability of a Two-Hop RouteThe throughput of data
this term is the probability that two nodes are neighbors. Thigtween a pair of nodes when there exists a route between
approximation is justified by the fact that, for each functiothem, calledforwarding throughputis a function of the route
f(z) in (24) and (25), the second and the third term in thiength in hops. A first step to derive the forwarding throughput
r.h.s. of (30) are much smaller than the first term, when th& to compute the distribution of the route length in hops. In
ratio p := R/L is small with respect td. This yields the this section, we compute the probability of a two-hop route

following approximate throughputs: between two nodes and d, assuming there aréV other
p(12 — 2% — 200 + 15p°) nodes. A_II thg nodes are mobile ins_ide a squAr& [0, L]?
Trw ~Ts 5 (31) and moving (independently) according to either the Random

Waypoint or Random Direction models.
Let z, (resp.zy) represents the position of noddresp.d).
Trp =7sp(2 — p), (32) There is a two-hops route between nedandd, if the noded

for the Random Direction mobility model. Observe that thedd |n5|de the annulus of centeg anq of interior apd exterlgr
formulas depend otk and L only through their ratio. radius equal ta? and2R, and there is at least an intermediate

We conclude this section by considering the case whe@gde inside Dy, the intersection of the two disks of radies

rs = rq := r. In this case, the relay buffer is not stable. Tgentered around, and zq. The probability of the two-hop

handle this situation, it is proposed in [6] to use a probabilitgplJtes between nodasandd when & << L writes

of relaying, p,, which is close tol, so that when the relay N o AN

node enters the neighborhood of the source node, the soufée (2) ~ / f(l’s)/ f(za) [1 - (/ f(l’)dx) }dl’ddﬂﬁs
node transmits data to be relayed with probabiity< 1, and A N © Dr

does not transmit with the complementary probability. Note ~ %Z(_l)iﬂ (N> u(i)vf(i)(E)Q(iH)
that this scheme ensures stability and gives near maximum P i L
throughput as well.

B. Two Dimensions whereu(i) = [ rA(r)idr, andvg(i) = [, f(2)"+2da.

In this section we consider nodes moving in a square. V(?'eere A(r) is the area ofD; when R = 1 and the distance

start by computing the relay throughput; then we find th%etween nodes andd is equal tor. This gives
probability of these nodes form a two-hop route. B r r o
1) Three Nodes MovingNodes move independently of A(r) =2arcos (5) “gVi- re. (35)
each other inside a square of side length They move N . )
according to the same mobility model, the Random Directioffe observe thaP¥(2) is a function of(R/L)". The values

for the Random Waypoint mobility model, and

9

or the Random Waypoint model. of u(¢) andvy (i) are easy to obtain numerically.
Similarly to Section V-A.2 the stability condition is < r. Until now we have looked at the effect of mobility patterns
The probability that two nodes are neighbors is on the “average” throughput and showed that throughput de-
pends only on the stationary node distribution. We then showed
7(f) = (:E)/ f(z2)dzodr ~ wR? f*(z)dz, that minimum throughput is achieved when the stationary
v€[0,L]2 Jao:jz—aa|<R z€[0,L]? distribution of node position is uniform. In the next section,

where we have used the continuity ), and the assumption we will study the relay buffer behavior in the case where the
that R is negligible with respect td.. This approximation is relay node performs a Random Walk over a circle, and the
in agreement with Theorem 3, which states that the minimuemd of the section we derive the mean relay buffer size in
probability of contact is achieved by the uniform distributionheavy-traffic.
since the latter integral is thé&s-norm of f(-), which is
minimized whenf(-) is the uniform distribution. VI. RELAY BUFFERBEHAVIOR
When the RB is stable, the relay throughput is approximated
by r,7(f), wherer, is the source transmission range. It can be In this section, the effect of mobility model on the relay
shown, numerically, that for the Random Waypoint mobilitpuffer occupancy is studied. We assume that the mobility
model over a square(f) ~ 1.36m(R/L)? [5], this implies models under consideration have stationary node location
that the relay throughput;'2%,,, is approximated by distribution. The plan is to view this system as a G/G/1 queue
720 13607 02 (33) in heavy-traffic and then to look at the effect of mobility
RW ™ & P pattern on the relay buffer occupancy. We know from heavy-
wherep := R/L. Under the Random Direction mobility wetraffic analysis of a G/G/1 queue [9] that the tail behavior
find thatw(f) ~ mp®. Hence, the relay throughpuf;2%,, is (the large deviation exponent) of the buffer occupancy is
approximated by determined by the variance of the service and inter-arrival
od 9 times.
Tih ~=7rep”. (34) Moreover, it is also to be understood that the effective arrival
Note thatT2%, < T2, process in the queueing model (introduced in Section IlI-A) is



enters the neighborhood of the destination, via points G or
H, it delivers the data to destination at ratg Once in the
«F interval [E, F], the relay node remains there for a random
’ amount of time before exiting via point8 or F'. Symmetry
implies that this time has the same distribution whether the
relay node enter§Z, F] through the pointE or F'. Similar is
the case for the segmef, H]. We call this (random) time
the contact timebetween the relay node and the source (or the
destination). Once the relay node eXifs, F, it either enters
[/, K] or [I,O]. Now, the relay node stays in this region for a
random amount of time (during which it neither receives nor
wo transmits), and then either reentéfs I'] or enters|G, HJ.

The number of times that the relay node entéfs F|
without entering [G, H| is denoted by the r.v.Z, and is

. geometrically distributed with parameter independent of
not the contact time between the relay and source nodes, (Shether the relay node exitdd, F] via E or F, that is

Znt1
/ 1¢s(u)=1}du, (36) P(L=k)=(1-pp""
u=2n,

2R'S

\E
\\

Fig. 2. Random walk on circle.

a1(':li1e parametep is the probability that a symmetric random

but i d of d ber of h t ; : . . .
ut is composed of many (random number of) such con walker starting at point/ hits point F' before reachings.

times since . : : .
Wos Let A;,5 > 1, be independent and identically distributed
o :/ " 1 5(ay—1 . (37) random variables representing the first time that a random
u=w, B walker, starting at poinf’, exits [E, F], so that the service

That this is the case can be easily seen by studying tfféluirement in the queueing model of Section Ill-Arigs,

evolution of the{S;} process. Since it is possible that in &vhere

cycle, the{S;} process alternates between values 0 and 1 for L

many times before taking the value ofl. o= A (38)
Clearly, a larger relay buffer occupancy would imply that Jj=1

the amount of time required to deliver all the packets would hg the following, A denotes a generic r.v. with the same

composed of many contact periods between the relay node gitgtribution as A

the destination, hence there can be several inter-visit betweeysing results from random walk literature (for example [4]),

the relay node and the destination required to deliver tiiecan be shown that

packets. This implies that we can not study the delay incurred

by the nodes by considering only one inter-visit time (or the E[A] = 23%7

meeting time) or only one contact time. This shows that the pN\2 4R

buffer behavior (hence the delays) will dependbmth contact Var[A] = (5) 5 QR+ DR+,
times and the inter-visit times. This section is devoted to such a 1

study for the particular case where the relay node is performing p = 1- w’

Random walk and the source and destination are fixed. This E[L] = w,

section is meant for illustration of the above phenomenon. Var[l] = w(w—1).

We consider the following scenario. The relay node is
moving according to a symmetric random walk (RW) on &incelL is independent oA, we get
circle of circumference4R + 2w steps — see Figure 2. The

7!
RW step size is fixed and is equal gometers. The speed of Elo] = EB[AE[L] = QU’RE
the relay node is assumed to be constant and equaldo the Var[o] = Var[AJE[L]+ (E[A])*Var[L]
time required to jump from one step to the next one, is equal o N2 4 ) L2
to 11/v seconds. The source and the destination are held fixed, = 4uw'R <E> +3wRQ2R"+1) (;) :

and they are located as shown in Figure 2. The quantities .
. ._"In our case, the relay buffer occupancy at the instants when
and R are assumed to be integers. Also, the data transmiss

n . . ;
between source and destination only takes place through tﬁ% relay node enters, '] after having been ifG:, HJ, is

relay node. B71,+1 = (Bn + rs0n — Tdofn)+- (39)
When the relay node becomes a neighbor of the source .
(when passing points E or F), it starts to accumulate data'fb the Scenario under studyy, and a, have the same

be relayed to the destination at rate When the relay node Probability distribution. Wherr, ~ 74 with r, < rq, then
(39) gives the evolution of the customer waiting times in a

IR is the transmission range of source, destination, and relay node. = G/G/1 queue in heavy-traffic. We will approximate the mean



customer waiting time in this queue by the correspondinge ran simulations to find the relay throughput for case of the

quantity in aGI/GI/1 in heavy-traffic. In the latter queue,Random Direction and the Random Waypoint mobility models

it is known [9, P. 29] that the stationary waiting time iswith different parameters.

exponentially distributedvith mean We illustrate that the throughput depends only on the
9 9 9 9 stationary distribution of the node position by looking at

E[B] = (rs +7g)Var(o) = plrs ) (Rw+1(2R2+1))7 the scenario where three nodes move over a line of length
2Blo](ra=rs)  v(ra—rs) 3 (40) L = 4 kilometers according to the Random Direction model.

where we have used the fact that ando,, have the same W€ @ssume that the time between two consecutive decision
probability distribution.

instants (travel time) is fixed and equal 16 seconds and the

distribution of speed was chosen to be i) Uniform over some
VII. NUMERICAL RESULTS interval, ii) Exponentially distributed, and iii) fixed. Note that

In this section we present simulation results to validatfe case where speed is fixed corresponds to the Random Walk.

results in Theorem 1 (stability issues), Theorem 2 (throughpﬁince the stationary node location distribution is same for all
depends only on stationary distribution), Section V (throughPe three choice of speed distribution, Theorem 2 implies that
puts obtained by Random Waypoint and Random Directidhe relay throughput will be identical. The numerical results
Models), the probability of two-hop route, the relay buffeplotted in Figure 4 are in accordance with this result. Also
behavior as studied in Section VI, and the probability distrevident is the fact that relay throughplit = =, for r, = 1.
bution of the contact time. Throughout this section, we wilP Figure 5 we plot values of, when the three nodes move
assume that the transmission range of the nodes is constant
and is equal taR. 0.18

A. Validation of Theorem 1 0.16 - f// o

We consider the scenario of three nodes: a source, a destina- 014 [ /

tion, and a relay node. each moving according to a symmetric 1o |-

random walk over a circle. It follows from Theorem 1 that the

relay node buffer occupancy is stalifiethe ratiop = == < 1. “
. . rdo R

Figure 3 plots the evolution of relay node buffer with time for =~ 0.08 -

different values ofp. It is evident from the figure that when

Fixed Speed=20m/s,n -

Fixed Speed S=20m/s, T,

T Uniform speed S=[10,30]m/s,.

9 — 1 Uniform speed S=[10,30]m/s, T,

.0 ------- g\ ;Ql 0.02 - Exponential speed S=[10,30]m/s,T,

a“.l . IExponentliaI speed|S=[10,39]m/s, .
0

40000 T T
Stable case, p=
Unstable case, p=

- O
o

35000

30000 ) )‘
ﬁ"wﬁ'h\'. y A 0=R/L
25000 i \! m i w V Fig. 4. Values ofrs obtained for the Random Direction model over a
segment of length.. Various distributions for the speed were taken.

according to the Random Waypoint model over a square of
! side-lengthsL for different values of transmission rangg,

N i‘fi N We keep the speed of the mobiles fixed. The plot shows
! i

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

20000

e

15000

10000 : . .
: /\ ' m[ A that 7, (and henceZ;) is a function ofp = £ alone. The
5000 |- KA )"

Relay buffer size

J numerical values also support the result of Section V-B where
o for the Random Waypoint model in square, the throughput is
0 500000 1e+06 1.56+06 2e+06 2.56+06 3e+06 approximately1.367rp2. Similarly, the values of the throughput
Time (s) from theory and simulations provide a good match for all

Fig. 3. Time-evolution of relay node buffer for Random Walk model over f the scenario studied in Section V. Because of the space
circle for different values of ratiop = 7=. restriction, we did not include these numerical results due to
p = 1.0, the buffer occupancy process is unstable. While fapace constraints.

the casep = 0.9 < 1.0, this process is stable. Similar results L )
were obtained even fop ~ 1.0 with p < 1.0 but are not C. Validation of Section III-B

shown here. Section IlI-B studies multiple relay nodes with fixed source
o _ nodes and destination nodes. It reports stability condition and
B. Validation of Theorem 2 and Section V derives the value of the relay throughput and the network

Theorem 2 states that the relay throughput depends onlytbnoughput. To validate the stability condition, we take the
the stationary node distribution. Section V provides the valgeenario of one source node, one destination node, 3and
of relay throughput under Random Direction and Randomlay nodes move according to the Random Waypoint model
Waypoint mobility models. To validate both of these resulténside a square of side-length = 4000m. The source and
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Fig. 5. Simulation results showings for Random Waypoint model over a Fig. 7. Time-evolution of relay buffer for relay nodes moving according to

square of side-lengths for different values of transmission rangR, Also
shown are corresponding values from Section V-B.

1.1r4 (the unstable case)

Random Waypoint model inside a square of side-lentfib0m, with fixed
and symmetric source and destination nodes w.r.t.to square centem Here

destination nodes are fixed and they are symmetric according 0.05 T T ;
to the center of the square, and the separated distance between o, "™ _Tﬁgg;; Joip o — ]
them is 0f2000m. The stable case is shown in Figure 6 where Sn Tomy. :
rs = 0.974, and the unstable case is shown in Figure 7 where i Simu. , R/L=0.05 - i
rs = 1.1r4. The relay throughput and the network throughput ~ 0.035 |- \\ Theori. , RAL=0.05 - --~- T
as a function of the number of the relay nodes are shown in, 0.3 -
respectively, Figures 8 and 9 for different value BfL. In 2 o005 L - \\\
this scenario, the probability that the relay node is neighbor of A -
the source of locatioi1000, 1000) is equal ta0.0485, 0.0275, 002
and0.0126 for R/L equal to0.1, 0.075, and0.05 respectively. 0.015 -
001 [ I i
0.005 -
6000 — ‘ ‘ ‘ ‘ ‘ ‘ ‘
elay1 —— 0 i i i i ] ] ]
“f‘ EZE% ******* 5 10 15 20 25 30 35 40
Wi helaygo -
o 5000 - 4 Number of relav nodes
- N "ﬂ‘ﬁ‘{l“ »L, Fig. 8. Relay throughput as function of number of relay nodes in a square
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Fig. 6. Time-evolution of relay buffer for three relay nodes moving according*d)’ 0.2 frflii L -
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D. Validation of Section III-B

moving (c.f, Equation 16). We consider a scenaria\ofelay

Number of Relav nodes

In this section we validate the approximation of Sectiopig. 9. Network throughput as function of number of relay nodes in square
I1I-B of the case where all source and destination nodes aggion of side-lengtht000m with fixed source and fixed destination nodes.

nodes andk source nodes and/ destination nodes. All the a square region of side-length equal t04000. We assume
nodes move according to the Random Waypoint model withihat the lifetime of the packets in hops is equal to 4 hops. In



Figure 10, we show the approximation of Equation 16 as wélil Validation of Section VI
as the simulation result of;Z*, the long-term arrival rate to _ _ _
the queuem of the relay node: from the source nodes. We. We c_onS|derthe rellay _node buffer occupancy in the scenario
observe that the above approximation is accurateRipE < in Section YI. The third line of Table I reports the percgntage
0.05, and the relative error between the approximation aﬁ’(ﬁ the relative error 9f the.relay buffer occupancy fognd in (40)
simulation is less than%, for R/L = 0.05. and the corresponding simulated v_alE@Bs?;m], for different
values of the parametel® and w with 4 = 50 meters and
rqpt/v = 200 data units. Parameter® and w are chosen so

002 that the circumference of the circle is equaBt®0 meters (i.e.
0.018 f i _—— (4R + 2w)p = 3000 meters). In the simulation the relay node
Femiee_ \\ . . . .
0.016 | T — — buffer is sampled at the beginning of each cycle (as defined
----------------- ] ] in Section Ill). Throughout these experiments = 0.95,
0.014 [ e . LT .
so as to reflect the heavy-traffic scenario under which (40)
_ 0.012 1= was established. We observe that the relative error between
o001 Equation (40) and the simulation is very small.
0.008 fomietiiniiiiaiiam S e NI R LR eTE
0.006 |- ‘ ‘ R 1| 9|75
0.004 |- “ Approx. R/L 0.075 ——
Sim. R/L 0.075 -
0.002 - o Approx. R/L 0.05 -- . w 8 | 12|16 | 20
‘ ‘ ‘ ‘ Sim. R/L 0.05 -
0 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20 . .
Number of relav nodes % % | 2| 1]1]2
Fig. 10. Long-term arrival rate at queue of relay noden from source
node k as function of number of relay node¥, where K = 4, M = 5, TABLE |

pP™=1/M, and =1.
k / TS VALIDATION OF EQUATION (40) (FOR . = 50 METERS AND7gu/v = 200

DATA UNITS).

E. Validation of Two-Hop Route Probability

We haveN -+ 2 nodes moving inside a square of side lengt®. Validation of the Contact Time Distribution

L = 4000 according to the Random Waypoint model. We ) i )
validate the approximation formula for the probability of a e consider the scenario where the nodes move according

two hops route for different values d¥ (cf., section V-B.2). to the Random Direction model and Random Waypoint model

In Figure 11, we show the results of the simulation and tH@Side @ square of side lengih = 4000m. The nodes speed

approximation forR/L € {0.025,0.0375,0.05}. We observe IS constant and is equal t’. For the Random Direction
that for R/L < 0.05 the approximation is accurate. model, the travel timeT’, is greater tharnR/V. The contact

time is defined as the interval of time that a pair of nodes
stay inside one another transmission range after being outside

x107° feci i
B omrox FIo505 one another transmission range. In Figure 12 and 13, we
2 a2 0s7s show the normalized contact time distribution defined as the
Al o e A contact time divided byR/V of the Random Waypoint and
©- Sim. R/L=0.025 the Random Direction model. We observe in both cases that

for R/V < 20s andR/L < 0.05, the normalized contact time
distribution is almost independent &/V, of R/L, andT. So

in the case Random Direction model, we deduce numerically
that the mean contact time is equal 1026%. Similarly

in the case of Random Waypoint model, the mean contact
time is equal t01.24€. Knowing the mean contact time and
the probability that a pair of nodes are inside each other
transmission rangé, we deduce that the mean intermeeting
time the time when the pair of nodes are not in contact is

o s 20 e w5 a0  equal to:1.262(L(%)® — 1), in the case of the Random

1
Number of nodes . . i 2 .
_ N _ Direction model,1.24£ (222 (£)" — 1), in the case of the
Fig. 11. Probability of two-hop route as function of number of nodes. AI'I_-\>( 4

nodes move according to Random Waypoint model inside square of side leng ﬁndom Waypoint model.
4000m.

5}

Probability of 2 hops route

0.5

2See section V-B.1
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Fig. 13.
with length L = 4000m according to Random Waypoint model.

VIIl. CONCLUSIONS

applications using TCP-like protocols.

Most of our work in this paper has focused on the average
behavior of the relay node buffer occupancy process. It would
be interesting to study the tail of the relay buffer occupancy
process for various mobility models. Also, the procéss, },,
is embedded at regeneration instants; it would interesting to
study the relay node buffer at arbitrary times.

This study forms a research effort towards developing
performance models for relay protocol, and understanding the
impact of mobility on their performance.
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We have studied the performance of relaying in mobile ad
hoc networks by developing a queueing model. The parameters
of the queueing model depend on the node mobility pattern.

Our main findings are that (under the assumptions placed
on our model) the relay throughput only depends on the sta-
tionary node location distribution, and that uniform stationary
distribution of nodes results in the smallest relay throughput.
Approximate throughput formulas have been derived for both
the Random Waypoint and the Random Direction mobility
models; these formulas have been found to be in agreement
with simulation results. Approximation formula for the mean
buffer occupancy of the relay node has been obtained for the
Random Walk mobility model.

We have implicitly assumed that the order of delivery of data
does not matter. This is an important simplifying assumption
that has allowed us to assume that the relay node does not
transmit data from its relay buffer when there is either a direct
or two-hop route (via the relay node) between the source and
destination. Relaxing this assumption would be important for



