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Abstract— We consider a mobile ad hoc network consisting
of three types of nodes: source, destination, and relay nodes.
All the nodes are moving over a bounded region with possibly
different mobility patterns. We introduce and study the notion
of relay throughput, i.e. the maximum rate at which a node
can relay data from the source to the destination. Our findings
include the results that the relay throughput depends on the
node mobility pattern only via its (stationary) node position
distribution and that a node mobility pattern that results
in a uniform steady-state distribution for all nodes achieves
the lowest relay throughput. Random Waypoint and Random
Direction mobility models in both one and in two dimensions
are studied and approximate simple expressions for the relay
throughput are provided. Finally, the behavior of the relay
buffer occupancy is examined for the one-dimensional Random
Walk, and an explicit form of its mean value is provided in the
heavy-traffic case.

Keywords—Perfromance evaluation, Packet relaying, Mobility
models, MANET, Ad Hoc networks.

I. I NTRODUCTION

Grossglauser and Tse [6] observed that mobility in mobile
ad hoc networks (MANET) can be used to increase the average
network throughput. Their idea was to look at the diversity
gain achieved by using the other mobile nodes as relays. Their
relay mechanism is simple: if there is no route between the
source node (s) and the destination node(d), the source node
transmits its packets to one of its neighboring nodes (say,r) for
delivery to the noded. It was then shown in [3] that a bounded
delay can be guaranteed under this relaying mechanism. The
aim of these studies (see also [7]) is the scaling property
of the throughput or delay as the number of nodes in the
network becomes large. Our interest in the present work is in
the performance of the above mentioned relaying mechanism
in a network consisting of a fixed finite number of nodes.

It is important to mention that most of the studies of scaling
laws of delay and throughput in wireless ad hoc networks
assume a uniform spatial distribution of nodes, which is the
case, for example, when the nodes perform a symmetric
Random Walk over the region of interest [3], [6]. In the present
paper, we study the effect of the node mobility pattern on
the throughput and delay performance of the relaying scheme
of [6]. We are interested in themaximum relay throughputof
a mobile node, i.e., the maximum that a node can contribute
as a relay to the communication between two other nodes.
The relaying of data for other nodes requires a relay node to
allocate its own resources. In particular, a relay node has to

keep the data to be relayed in its buffer. Hence, the study of
the buffer behavior of a relay node forms an important topic
of research. The present work addresses the above two issues,
i.e., the maximum relay throughput and the relay node buffer
behavior.

Our point of departure is a simple observation which relates
the evolution of a relay node buffer to the evolution of the
workload process in a G/G/1 queueing system. The service
requirements and inter-arrival times in this queueing system
are determined by the characteristics of the mobility pattern
of the nodes.

Our main findings are the following:
1) The relay throughput depends only on the stationary dis-

tribution of the nodes’ position. Hence, any two mobility
patterns that have the same stationary distribution will
achieve the same relay throughput.

2) It is assumed in [6] that the stationary distribution of a
node position is uniform over the region of interest. This
has lead to many research efforts which base their work
on this particular assumption [3], [7]. We prove that the
relay throughput achieved is the lowest when nodes are
uniformly distributed.

3) Knowledge of the stationary node location distribution
alone is not enough to understand the behavior of relay
node buffer. A detailed analysis involving second-order
moments of contact times between mobile nodes is
necessary to obtain a full picture. We perform such an
analysis for the random walk mobility model over a
circle where a node can move, by a constant step size,
to the right or to the left with equal probability.

An important point that needs to be emphasized is that,
unlike [3], [6], [7] which study the system performance when
the number of nodes is large, we are interested in a relay node
performance while it is involved in relaying data between two
particular nodes. Developing models for performance analysis
of a relay node buffer and the relay throughput can help in
dimensioning a relay node buffer size and on achieving an
optimal performance using relaying mechanisms. We note that
the model studied in this paper is not restricted to three nodes,
nor that the model requires the same mobility pattern for all
of the nodes.

The rest of the paper is organized as follows: Section II
describes the relaying system considered. In Section III we
develop a queueing model for therelay buffer (RB). Section
IV studies the effect of mobility models on the relaying



throughput, and in Section V we find expressions for the relay
throughput for the Random Waypoint and the Random Direc-
tion models in both one and in two dimensions. Section VI
studies the RB behavior for the random walk mobility model.
In Section VII, we report numerical results on the stability,
relay throughput, contact time distribution, probability of a 2-
hop route, and the RB behavior. Section VIII concludes the
paper and gives research directions.

II. T HE SYSTEM MODEL

To study the maximum rate at which a node can relay data,
we start by considering the scenario where three nodes move
in a two-dimensional bounded region. One of these nodes is
the source of packets, one is the destination, and the third
one is the relaying node. The mobility patterns of the three
nodes are independent and may be different from each other;
this is in contrast with [3], [6] where the authors assume that
the mobility pattern of the nodes is such that the steady-state
distribution of the location of all the nodes is uniform over
the region of interest. In fact, [3] assumes that nodes perform
random walks (there are other mobility models which also
result in a uniform stationary distribution, e.g., the Random
Direction model [11]). As mentioned earlier, we are interested
in themaximum relay throughputof a relay node. As a starting
point we will restrict ourselves to the case where there is only
one relay node. At a later stage we will relax this assumption.
Also, we want to study the dependence of the relay node
buffer behavior on the mobility model. We assume that a
node detects its one-hop neighbor(s) by sending periodically
Hello messages. However, to detects two-hop neighbors nodes
exchange the addresses of tier neighbors.

The model is the following:

1) The three nodes move independently of each other ac-
cording to a (possibly node-dependent) mobility model
inside a bounded 2-dimensional region.

2) The source node has always data to send to the desti-
nation node. This is a standard assumption, also made
in [3], [6], [7], because we are interested in the maxi-
mum relay throughput of the relay node.

3) When the relay node comes within the transmission
range of the source node (we will also say that nodes
are in contact in this case), and if the destination node
is outside the transmission range of the source and of
the relay node, then the relay node accrues packets to be
relayed to the destination node at a constant raters. [We
could allow for a stochastic nature of traffic generated
by the source by assuming thatrs is an independent
stochastic process. However, such a study is out of the
scope of this work.]

4) When the destination node comes within the transmis-
sion range of the relay node, and if the destination and
the relay node are outside transmission range of the
source node, then the relay node sends the relay packets
(if any) to the destination node at a constant raterd.

5) If the relay node is within transmission range ofboth
the source node and the destination node, then the relay

node does not contribute torelaying. In this case there
is either a direct communication between the source and
destination or there is a two-hop route via the relay node
so that the relay node acts as a forwarding node and not
as a relay.

Our objective is to study the properties of the relay buffer
(stability, stationary occupancy distribution, throughput). To
this end, we first develop a queueing model that will give
many insights into the system behavior.

III. A Q UEUEING MODEL FOR THE RELAY BUFFER

After addressing the case where there are only three mobile
nodes in Section III-A, we investigate the situation of an
arbitrary number of source/destination/relay nodes, under the
additional assumption that all source and destination nodes are
fixed (cf. Section III-B).

A. Single Source, Destination, and Relay Nodes

The state of the relay node at timet is represented by the
random variable (r.v.)St ∈ {−1, 0, 1} where:

• St = 1 if at time t the relay node is a neighbor (i.e.,
within transmission range) of the source, and if the
destination is neither a neighbor of the source nor of the
relay node. In other words, whenSt = 1, the source node
sends relay packets to the relay node at timet;

• St = −1 if at time t the relay node is a neighbor of
the destination, and if the source is neither a neighbor
of the destination nor of the relay node. WhenSt =
−1 the relay node delivers relay packets (if any) to the
destination;

• St = 0 otherwise.

Mobiles have finite speeds. We will assume that the relay node
may only enter state1 (resp.−1) from state0: if St− 6= St

then necessarilySt = 0 if St− = 1 or St− = −1.
Denote byBt the RB occupancy at timet. The r.v. Bt

evolves as follows:

• it increases at raters if St = 1. This is because when
St = 1, the relay node receives data to be relayed from
the source node at raters;

• it decreases at raterd if St = −1 and if the RB is non-
empty. This is because ifSt = −1, and if there is any
data to be relayed, then the relay node sends data to the
destination node at raterd.

• it remains unchanged in all other cases.

Let {Zn}n (Z1 < Z2 < · · · ) denote the consecutive jump
times of the process{St, t ≥ 0}. An instance of the evolution
of St andBt as a function oft is displayed in Figure 1

The evolution of the discrete indexed process{SZk
, k ≥ 1}

consists of sequences of1, 0 and−1. This naturally motivates
us to look at the times when the relay node returns to the
source node after being neighbor of the destination node at
least once. This is done in the following.

We define acycle as the interval of time that starts att =
Zk, for somek with St = 1, and (necessarily)St− = 0 and
SZk−2 = −1, and ends at the smallest timet + τ such that
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Fig. 1. Evolution of{St}t and relay node buffer occupancy.

St+τ = 1 and St+s = −1 for somes < τ . In Figure 1, the
time-interval [Z7, Z17) constitutes a cycle. Note that there is
no restriction on the number of times the relay node becomes
neighbor of the source node or of the destination node during
a cycle. Hence, during a cycle the relay node will transmit
packets to the destination and will receive packets from the
source.

Let Wn be the time at which thenth cycle begins. Let

σn
∆=

∫ Wn+1

t=Wn

1{St=1}dt (1)

be the amount of time spent by the relay node in state1 during
the nth cycle. Similarly, let

αn
∆=

∫ Wn+1

t=Wn

1{St=−1}dt (2)

be the amount of time spent by the relay node in state−1
during thenth cycle. Observe that during the amount of time
σn, the RB increases at raters, and it is decreases at raterd

during the amount of timeαn. Let B̃n be the RB occupancy
at the beginning of thenth cycle. Clearly,

B̃n+1 =[B̃n + rsσn − rdαn]+ (3)

where [x]+ = max(x, 0). In other words,B̃n+1 can be
interpreted as the workload seen by the(n+1)st arrival in
a G/G/1 queue, wherersσn is the service requirement of the
nth customer, andrdαn is the inter-arrival time between the
nth and the(n + 1)st customer. This interpretation will be
used next.

Assumption A: Throughout Section III-A we assume that
the sequence{Cn, σn, αn}n is stationary and ergodic, with
0 < E[Cn] < ∞, 0 < E[σn] < ∞ and0 < E[αn] < ∞.

Clearly, the statistical properties of the random variablesCn,
σn, andαn will depend on the node mobility patterns. Hence,
our study will be restricted to the class of mobility models
under which the stationarity and ergodicity assumptions hold
for the sequence{Cn, σn, αn}n.
Definition: The long-term fraction of time the RB receives
data is

πs
∆= lim

t→∞
1
t

∫ t

u=0

1{Su=1}du, (4)

and the long-term fraction of time that the destination node is
the neighbor of only the relay node ( i.e., the fraction of time
that the RB is draining off) is

πd
∆= lim

t→∞
1
t

∫ t

u=0

1{Su=−1}du. (5)

It can be shown that these limits exist under Assumption
A. The proof is beyond the scope of this paper. Moreover,
Assumption A implies that [1]

πs = lim
t→∞

P (St = 1) =
E[σn]
E[Cn]

(6)

and

πd = lim
t→∞

P (St = −1) =
E[αn]
E[Cn]

. (7)

Theorem 1: If rsE[σn] < rdE[αn] then B̃n converges in
probability to a proper and finite r.v.̃B (i.e., limn P (B̃n < x)
= P (B̃ < x)). If rsE[σn] > rdE[αn], then B̃n converges to
+∞ P − a.s. 2

Proof. Follows from the relation to the G/G/1 queue made
above and [10].

Remark 1: In terms ofπs andπd the stability condition of
Theorem 1 writes

rsπs < rdπd.
Remark 2: If all nodes have the same mobility model, then

clearly πs = πd, since the relay node is equally likely to
be within the transmission range of the source and of the
destination. Therefore, by Remark 1, the stability condition
is

rs < rd.
Theorem 2: If rsπs < rdπd, then therelay throughputTr,

defined as the stationary output rate of the relay node, is given
by

Tr = rsπs. 2

Proof. In steady-state the RB can be thought of as a standard
G/G/1 queue so that the output rate is the same as the input
rate and is given byrsπs.

Remark 3:The relay throughputTr only depends onrs

and the stationary distribution of the node mobility pattern.
In particular, two different mobility patterns with the same
stationary distribution (for the location of the nodes) will yield
the same relay throughput.
It is clear from Theorem 2 and Remark 1 thatπs and πd

play an important role in determining the stability and the
throughput of the RB. Much of the rest of this paper will be
devoted to the study of these quantities.

B. Multiple Source, Destination, and Relay Nodes

We now assume that there areK source nodes,M destina-
tion nodes andN relay nodes, all with the same transmission
rangeR (the latter will be assumed throughout). The source
and destination nodes are stationary. The relay nodes move
independently of each otherinside a connected areaA accord-
ing to the same mobility pattern. The distance between any
two source nodes, and between any two destination nodes, is



assumed to be greater than2R. This implies that a relay node
can not receive (resp. transmit) data from (resp. to) two or
more source (resp. destination) nodes at the same time.

Furthermore, assume that the routing protocol generates
routes of length no more thanh-hops, i.e., the lifetime of a
packet in number of hops is not greater thanh. The distance
between any source and any destination node is set to be
greater thanhR. Therefore, there does not exist a direct route
from any source to any destination node, which implies that
packets have to use mobile relay nodes to transfer data.

The RB of a relay node is composed ofM queues; one for
each of theM destinations. The system behaves as follows:

1) When there arei relay nodes inside the transmission
range of source nodek, where i ∈ {1 · · ·N} and
k ∈ {1 · · ·K}, then the source transmits to thei
relay nodes the packets addressed to destination node
m ∈ {1 · · ·M} with probability Pm

k in a round-robin
scenario, where

∑M
m=1 Pm

k = 1. So, queuem of the
relay node accrues packets at a fixed raterSk

Pm
k /i,

whererSk
is the transmission rate of source nodek.

2) When the relay node receives a packet from a source
that is destined to destination nodem, it buffers this
packet in its queue of indexm.

3) When there arej relay nodes with non-empty queue
m inside the transmission range of destinationm, these
relay nodes share the channel bandwidth fairly. More
precisely, queuem of thesej relay nodes drains off at
a fixed raterDm/j, whererDm is the transmission rate
of a relay node to the destination nodem. The service
discipline in queuem of the relay node is FIFO.

Let f(x), x ∈ A, be the stationary node location probability
density. Denote byxSk

and xDm the fixed location inA of
sourcek ∈ {1, · · · ,K} and destinationm ∈ {1, · · · ,M},
respectively.

Hence, the probability that a relay node is the neighbor of
a node located inx ∈ A is

π(x) =
∫

{y∈A:d(x,y)≤R}
f(y)dy, (8)

whered(u, v) is the Euclidean distance between vectorsu and
v.

By conditioning on the number of nodes within range of
source nodek, we find that the input rate at queuem of each
relay node is

τm
Sk

=Pm
k rSk

N∑

i=1

1
i

(
N − 1
i− 1

)
π(xSk

)i π(xSk
)
N−i

=Pm
k rSk

1− (
1− π(xSk

)
)N

N
, (9)

wherea := 1− a.
The overall long-term arrival rate to queuem of a relay

node from all of the sources is

τm
S :=

K∑

k=1

τm
Sk

=
1
N

K∑

k=1

Pm
k rSk

[
1− (

1− π(xSk
)
)N

]
. (10)

The exact derivation ofτm
D , the long-term service rate of

queuem at a relay node, is intractable since it depends on the
(stationary distribution of) location of the other relay nodes
with respect to the destinationDm, and on whether or not
queuem at each relay node is empty or not and located within
transmission range ofDm. More precisely, ifi relay nodes
are within the transmission range of destinationDm, and if
queuem in each of these relay nodes is non-empty, then the
service rate in queuem at each of thei relay nodes isrDm

/i.
The above reasoning indicates thatrDm/N is the minimum
instantaneous service rate at each queuem. This yields the
following lower bound—called̂τm

D —on the long-term service
rate of queuem:

τ̂m
D = rDm

1− (
1− π(xDm

)
)N

N
. (11)

As a result, a sufficient condition for the stability of queuem
at each relay node is

τm
S < τ̂m

D . (12)

If queuem at a relay node is stable, then the relay throughput
Tm

r at this queue is equal to its long-term arrival rate, i.e,

Tm
r =τm

S =
K∑

k=1

τm
Sk =

1
N

K∑

k=1

Pm
k rSk

[
1− π(xSk)

N
]
.

(13)

The network throughput,T , is the sum of the relay throughputs
at all theM queues of all theN relay nodes, namely

T =
N∑

n=1

M∑
m=1

Tm
r =

K∑

k=1

rSk

[
1− (

1− π(xSk)
)N

]
. (14)

Observe that1− (
1− π(xSk)

)N
is the probability that there

is at least one relay node inside the transmission range of the
source nodek.

We conclude this section by briefly addressing the situation
where all of the nodes are moving. Since an exact calculation
of the throughput of queuem at a relay node is very difficult,
we will derive an approximation for this quantity. This approx-
imation is based on the assumption that routes cannot exceed
two hops. We assume that all nodes move independently of
each other with the same mobility pattern, and that they have
the same transmission range. Letp1 be the probability that
two nodes are within transmission range of one another. Let
p2 be the probability that three nodes constitute a two-hop
route. Then, under the above simplifying assumption

N∑

i=1

Pm
k rSk

i

(
N − 1
i− 1

)
(p1 − p2)i (1− p1)N+1−i

=Pm
k rSk

(1− p1)
(
(1− p2)N − (1− p1)N

)

N
(15)

is the contribution of source nodek to the long-term arrival
rate in queuem at any relay node. Therefore, the overall
long-term input rate at queuem at any relay node can be



approximated by summing up the r.h.s. of the above identity
over all the values ofk. This gives

τm
S ≈ (1− p1)

(
(1− p2)N − (1− p1)N

)

N

K∑

k=1

Pm
k rSk

. (16)

WhenPm
k = 1/M (that is, there is a uniform probability that

source nodek sends to destination nodem) and when the
transmission rates of all sources are equal torS , then (16)
becomes

τm
S ≈rS

(1− p1)
(
(1− p2)N − (1− p1)N

)

MN
. (17)

In the next section, we will investigate the impact of the
mobility pattern on the relay throughput. We will show that
the throughput is minimized when in steady-state the nodes
are uniformly distributed over the area.

IV. COMPARISON OFMOBILITY MODELS

We consider the scenario where nodes move independently
of each other according to some mobility pattern. Assume
that the nodes location distribution is stationary. The nodes
position can take values in a discrete setX with cardinality
#X = G. Let G(x), x ∈ X denote the set of all points in
the transmission range of a node located atx. We assume that
there is complete symmetry, so that#G(x) = #G(y) for all
x, y ∈ X and that ifx ∈ G(y) then y ∈ G(x). This can be
assumed when there is noboundary effect, for example, as is
the case of motion over a torus or over a circle (representing,
respectively, motion over a plane or line with wrap around).

Let P be the probability measure overX that represents
the stationary node location distribution. As the cardinality of
X is equal toG, P can be represented as anG-dimensional
(column) vector. The uniform stationary node location overX,
calledU , is aG-dimensional vector whose entries are all equal
to 1

G . Let ex, x ∈ X, denote a probability measure overX
which gives all mass to positionx, i.e.,ex is anG-dimensional
vector whose entries are all equal to0 except for thexth

components which is equal to1.
For any stationary node location distributionP over X,

let g(P ) denote the probability that two nodes are neighbor
of each other. LetH denote the neighborhood matrix, i.e.,
Hx,y = 1 if y ∈ G(x) andHx,y = 0 otherwise. NoteH is a
symmetric matrix. In terms ofPx (resp.Py), the probability
that a node is at locationx (resp.y) in the stationary regime
g(P ) writes

g(P ) =
∑

x∈X

Px

∑

y∈G(x)

Py =
∑

x∈X

Px

∑

y∈X

Hx,yPy = PT HP

wherePT is the transpose ofP and we use the fact that the
locations of the nodes are independent.

Theorem 3: A uniform distribution of nodes over the re-
gion of interest achieves the minimum probability of contact
between any two nodes. 2

Proof: Consider anyP of the form

P =U + δex − δey, (18)

for some0 < δ < 1 andx, y ∈ X, x 6= y. Then

g(P ) =PT HP

=g(U) + δ2(eT
x Hex + eT

y Hey − eT
x Hey − eT

y Hex)

+ 2δ(ex − ey)T HU, (19)

where we have used the fact that for allx ∈ X eT
x Hex = 1 as

x ∈ G(x). SinceH is a symmetric matrix, we havePT HQ =
QT HP for all P, Q probability measures onX. Also, it is
easy to see thateT

y Hex = 1 if x ∈ G(y) and is0 otherwise.
Hence we get

g(P ) =g(U) + 2δ2(1− 1{x∈G(y)}) + 2δ(ex − ey)T HU

=g(U) + 2δ21{x/∈G(y)} +
2δ(#G(x)−#G(y))

G
,

where in the last expression we have used the, easy to observe,
fact thateT

x HU = #G(x)
G . Hence, since#G(x) = #G(y) for

all x, y ∈ X, it is seen thatg(P )−g(U) = 2δ21{x/∈G(y)}) ≥
0. Which implies that

U ∈ argmin
P=U+δex−δey

g(P ). (20)

Now, any other probability distribution over the setX is
a point in G−dimensional canonical simplex. The uniform
distribution is at the centroid of this simplex and any other
distribution P , when viewed as anG dimensional vector (a
point in the simplex), can be written as

P =U + ε, (21)

whereU is the uniform distribution andε is anG-dimensional
vector whose entries are in the interval[− 1

G , G−1
G ] and the

entries sum to zero. Clearly, any suchε can be written as a
(possibly non-unique) finite sum

ε =
∑

x∈I(P )

(ex − ey(x))δx, (22)

where I(P ) ⊂ X is some index set,y(x) ∈ X, and δx >
0, x ∈ I(P ). This is becauseex forms a basis for the
G−dimensional space and becauseP is a probability vector
with

∑
x∈X εx = 0.

Recall that if the stationary node distribution isP , we can
write g(P ) as g(P ) = PT HP , whereH is an G × G sym-
metric matrix indicating the neighborhood relation. We have
already shown that whenP = U , the uniform distribution, the
directional derivative ofPT HP is positive along any direction
of the form(ex−ey) whereex is G−dimensional vector with
all except thexth entry equal to zero. We now use continuity of
the derivative ofg(U) to conclude that its directional derivative
along any direction is positive. HenceU ∈ argmin

P
g(P ).

The above result does not imply that therelay throughput
achieves its minimum under the uniform stationary node
distribution. This is because the relay throughput under dis-
tribution P , denotedTr(P ) = rsπs(P ) and with πs(P ) =
limt→∞ P (St = 1) under the probability measureP , is

Tr(P ) =rs

(
g(P )−

∑

x∈X

Px

∑

y∈G(x)

Py

∑

z∈G(x)∪G(y)

Pz

)
, (23)



and it can be easily seen that for anyx ∈ X, πs(ex) = 0.
Sinceπs(·) is a probability, this implies thatP = ex achieves
minimum of πs(·). However, it is reasonable to assume that
the uniform distribution is a local minimum forπs(·) because
the second term in expression forπs(·) above is of smaller
order as compared to the first term.

Observe that if the source node and the destination node
are fixed, and if they are far apart (so that a two-hop commu-
nication between them via a relay node is not possible), then
a uniform distribution of relay node achieves the minimum
relay throughput.

In the next section, we will find expressions for the relay
throughput in the case nodes move according to the Random
Waypoint and the Random Direction models.

V. THROUGHPUT INRANDOM WAYPOINT AND RANDOM

DIRECTION MODELS

In this section, we compute the relay throughput in the case
where (i) the relay node moves along a finite interval according
either to the Random Waypoint model or to the Random Direc-
tion model, the source and destination nodes being stationary
(Section V-A.1), (ii) all nodes move independently of each
other, with the same mobility model (Random Direction or
Random Waypoint), either along a finite interval (Section V-
A.2) or inside a square (Section V-B).

We have shown in Theorem 2 that the relay throughputTr

is given byTr = rsπs, wherers is the transmission rate of the
source to the relay node (rs is a given parameter), andπs is the
stationary probability that the source is sending packets to the
relay node (see Section III). In the following, we will compute
πs for each case mentioned above. This will be carried out
under the assumption that all nodes have the same transmission
rangeR.

A. One Dimension

For the Random Waypoint mobility model over the interval
[0, L], the stationary probability density function of a node
location is [2]

f(x) =
6(L− x)x

L3
, x ∈ [0, L]. (24)

The stationary probability density function under the Random
Direction mobility model is uniform [11], i.e.,

f(x) =
1
L

, x ∈ [0, L]. (25)

1) Only Relay Node is Mobile:We assume that the source
and the destination nodes are fixed in[0, L], and that the relay
node moves along this interval according to either the Random
Direction or the Random Waypoint mobility model.

We first focus on the stability condition. From Remark 1
the stability condition is given byrsπs < rdπd, where these
quantities are defined in Section III. Let us computeπs and
πd for either mobility model (recall thatrs and rd are given
parameters). We have

πs =
∫ (s+R)∧L

x=(s−R)+
f(x)dx, πd =

∫ (d+R)∧L

x=(d−R)+
f(x)dx,

where f(·) is the stationary node location distribution, and
a ∧ b=min(a, b). Thus, the stability condition reads

rs

∫ (s+R)∧L

x=(s−R)+
f(x)dx < rd

∫ (d+R)∧L

x=(d−R)+
f(x)dx. (26)

Consider now the relay throughput. In the stable case it is
given by (see Theorem 2)

rs

∫ (s+R)∧L

x=(s−R)+
f(x)dx. (27)

In the particular case where the relay node moves according
to the Random Direction mobility model, the stability condi-
tion is (use (26)) withf(x) given in (25))

rs((s+R)∧L)−(s−R)+<rd((s+R)∧L)−(s−R)+,

and the relay throughput,T f
RD, achieved is (cf. (25) and (27))

T f
RD = rs

((s+R)∧L)−(s−R)+

L
. (28)

For R < s < L− R andR < d < L− R, T f
RD = rs

2R
L and

πs = πd, regardless of the position of the source node and
of the destination node. In this case, the stability condition
reduces tors < rd.

When the relay moves according to the Random Waypoint
mobility model, then the stability condition is (use (24) and
(26))

rs[2(A−B)(3− (A2 + AB + B2))]

< rd[2(C −D)(3− (C2 + CD + D2))],

with

A :=(s + R) ∧ L, C := (d + R) ∧ L,

B :=(s−R)+, D := (d−R)+,

and the relay throughput,T f
RW , is given by

T f
RW = rs

2(A−B)(3− (A2 + AB + B2))
L3

. (29)

2) All Nodes are Mobile:We now assume that the source,
destination and relay nodes are all mobile, and move along
[0, L] according to the same mobility model: the Random
Waypoint or the Random Direction model. First, observe from
Remark 2, that in this case the stability condition is given by
rs < rd.

Let us now compute the throughputTr = rsπs for each
mobility model. We have

πs =
∫ L

0

f(x)
∫ (x+R)∧L

(x−R)+
f(y)dydx−

∫ L

0

f(x)

[∫ (x+R)∧L

(x−R)+
f(y)dy

]2

dx

−
∫ L

0

f(x)
∫ (x+R)∧L

(x−R)+
f(y)

∫ (y+R)∧L

(y−R)+
f(z)dzdydx, (30)

wheref(x) is given either by (24) or by (25), depending on
the mobility model in use. It is easy to computeπs in explicit
form for both functionsf(x). We will instead provide compact
approximation formulas, since the exact ones are lengthy. We



approximateπs by the first term in the r.h.s. of (30). Note that
this term is the probability that two nodes are neighbors. This
approximation is justified by the fact that, for each function
f(x) in (24) and (25), the second and the third term in the
r.h.s. of (30) are much smaller than the first term, when the
ratio ρ := R/L is small with respect to1. This yields the
following approximate throughputs:

TRW ≈ rs
ρ(12− 2ρ5 − 20ρ2 + 15ρ3)

5
(31)

for the Random Waypoint mobility model, and

TRD ≈ rsρ(2− ρ), (32)

for the Random Direction mobility model. Observe that these
formulas depend onR andL only through their ratio.

We conclude this section by considering the case where
rs = rd := r. In this case, the relay buffer is not stable. To
handle this situation, it is proposed in [6] to use a probability
of relaying, pr, which is close to1, so that when the relay
node enters the neighborhood of the source node, the source
node transmits data to be relayed with probabilitypr < 1, and
does not transmit with the complementary probability. Note
that this scheme ensures stability and gives near maximum
throughput as well.

B. Two Dimensions

In this section we consider nodes moving in a square. We
start by computing the relay throughput; then we find the
probability of these nodes form a two-hop route.

1) Three Nodes Moving:Nodes move independently of
each other inside a square of side lengthL. They move
according to the same mobility model, the Random Direction
or the Random Waypoint model.

Similarly to Section V-A.2 the stability condition isrs < rd.
The probability that two nodes are neighbors is

π(f) =
∫

x∈[0,L]2
f(x)

∫

x2:|x−x2|≤R

f(x2)dx2dx ≈ πR2

∫

x∈[0,L]2
f2(x)dx,

where we have used the continuity off(·), and the assumption
that R is negligible with respect toL. This approximation is
in agreement with Theorem 3, which states that the minimum
probability of contact is achieved by the uniform distribution,
since the latter integral is theL2-norm of f(·), which is
minimized whenf(·) is the uniform distribution.

When the RB is stable, the relay throughput is approximated
by rsπ(f), wherers is the source transmission range. It can be
shown, numerically, that for the Random Waypoint mobility
model over a squareπ(f) ≈ 1.36π(R/L)2 [5], this implies
that the relay throughput,T 2d

RW , is approximated by

T 2d
RW ≈ 1.36πrsρ

2, (33)

whereρ := R/L. Under the Random Direction mobility we
find that π(f) ≈ πρ2. Hence, the relay throughput,T 2d

RD, is
approximated by

T 2d
RD ≈πrsρ

2. (34)

Note thatT 2d
RD < T 2d

RW .

2) Probability of a Two-Hop Route:The throughput of data
between a pair of nodes when there exists a route between
them, calledforwarding throughput, is a function of the route
length in hops. A first step to derive the forwarding throughput
is to compute the distribution of the route length in hops. In
this section, we compute the probability of a two-hop route
between two nodess and d, assuming there areN other
nodes. All the nodes are mobile inside a squareA = [0, L]2

and moving (independently) according to either the Random
Waypoint or Random Direction models.

Let xs (resp.xd) represents the position of nodes (resp.d).
There is a two-hops route between nodes andd, if the noded
is inside the annulus of centerxs and of interior and exterior
radius equal toR and2R, and there is at least an intermediate
node inside,DI , the intersection of the two disks of radiusR
centered aroundxs and xd. The probability of the two-hop
routes between nodess andd whenR << L writes

PN (2) ≈
∫

A

f(xs)
∫

C

f(xd)
[
1−

( ∫

DI

f(x)dx
)N]

dxddxs

≈ 2π

N∑

i=1

(−1)i+1

(
N

i

)
u(i)vf (i)

(R

L

)2(i+1)

,

where u(i) =
∫ 2

1
rA(r)idr, and vf (i) =

∫
[0,1]2

f(x)i+2dx.
Here A(r) is the area ofDI when R = 1 and the distance
between nodess andd is equal tor. This gives

A(r) =2 arcos
(r

2

)
− r

2

√
4− r2. (35)

We observe thatPN (2) is a function of(R/L)2. The values
of u(i) andvf (i) are easy to obtain numerically.

Until now we have looked at the effect of mobility patterns
on the “average” throughput and showed that throughput de-
pends only on the stationary node distribution. We then showed
that minimum throughput is achieved when the stationary
distribution of node position is uniform. In the next section,
we will study the relay buffer behavior in the case where the
relay node performs a Random Walk over a circle, and the
end of the section we derive the mean relay buffer size in
heavy-traffic.

VI. RELAY BUFFERBEHAVIOR

In this section, the effect of mobility model on the relay
buffer occupancy is studied. We assume that the mobility
models under consideration have stationary node location
distribution. The plan is to view this system as a G/G/1 queue
in heavy-traffic and then to look at the effect of mobility
pattern on the relay buffer occupancy. We know from heavy-
traffic analysis of a G/G/1 queue [9] that the tail behavior
(the large deviation exponent) of the buffer occupancy is
determined by the variance of the service and inter-arrival
times.

Moreover, it is also to be understood that the effective arrival
process in the queueing model (introduced in Section III-A) is
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Fig. 2. Random walk on circle.

not the contact time between the relay and source nodes, i.e.,
∫ Zn+1

u=Zn

1{S(u)=1}du, (36)

but is composed of many (random number of) such contact
times since

σn =
∫ Wn+1

u=Wn

1{S(u)=1}du. (37)

That this is the case can be easily seen by studying the
evolution of the{St} process. Since it is possible that in a
cycle, the{St} process alternates between values 0 and 1 for
many times before taking the value of−1.

Clearly, a larger relay buffer occupancy would imply that
the amount of time required to deliver all the packets would be
composed of many contact periods between the relay node and
the destination, hence there can be several inter-visit between
the relay node and the destination required to deliver the
packets. This implies that we can not study the delay incurred
by the nodes by considering only one inter-visit time (or the
meeting time) or only one contact time. This shows that the
buffer behavior (hence the delays) will depend onbothcontact
times and the inter-visit times. This section is devoted to such a
study for the particular case where the relay node is performing
Random walk and the source and destination are fixed. This
section is meant for illustration of the above phenomenon.

We consider the following scenario. The relay node is
moving according to a symmetric random walk (RW) on a
circle of circumference1 4R + 2w steps – see Figure 2. The
RW step size is fixed and is equal toµ meters. The speed of
the relay node is assumed to be constant and equal tov, so the
time required to jump from one step to the next one, is equal
to µ/v seconds. The source and the destination are held fixed,
and they are located as shown in Figure 2. The quantitiesw
andR are assumed to be integers. Also, the data transmission
between source and destination only takes place through the
relay node.

When the relay node becomes a neighbor of the source
(when passing points E or F), it starts to accumulate data to
be relayed to the destination at raters. When the relay node

1R is the transmission range of source, destination, and relay node.

enters the neighborhood of the destination, via points G or
H, it delivers the data to destination at raterd. Once in the
interval [E, F ], the relay node remains there for a random
amount of time before exiting via pointsE or F . Symmetry
implies that this time has the same distribution whether the
relay node enters[E, F ] through the pointE or F . Similar is
the case for the segment[G,H]. We call this (random) time
thecontact timebetween the relay node and the source (or the
destination). Once the relay node exits[E, F ], it either enters
[J,K] or [I, O]. Now, the relay node stays in this region for a
random amount of time (during which it neither receives nor
transmits), and then either reenters[E, F ] or enters[G, H].

The number of times that the relay node enters[E,F ]
without entering [G, H] is denoted by the r.v.L, and is
geometrically distributed with parameterp, independent of
whether the relay node exited[E,F ] via E or F , that is,

P (L = k) = (1− p)pk−1.

The parameterp is the probability that a symmetric random
walker starting at pointJ hits pointF before reachingG.

Let Aj , j ≥ 1, be independent and identically distributed
random variables representing the first time that a random
walker, starting at pointF , exits [E,F ], so that the service
requirement in the queueing model of Section III-A isrsσ,
where

σ =
L∑

j=1

Aj . (38)

In the following, A denotes a generic r.v. with the same
distribution asAj .

Using results from random walk literature (for example [4]),
it can be shown that

E[A] = 2R
µ

v
,

V ar[A] =
(µ

v

)2

· 4R

3
(2R + 1)(R + 1),

p = 1− 1
w

,

E[L] = w,

V ar[L] = w(w − 1).

SinceL is independent ofA, we get

E[σ] = E[A]E[L] = 2wR
µ

v
V ar[σ] = V ar[A]E[L] + (E[A])2V ar[L]

= 4w2R2
(µ

v

)2

+
4
3
wR(2R2 + 1)

(µ

v

)2

.

In our case, the relay buffer occupancy at the instants when
the relay node enters[E, F ] after having been in[G, H], is

B̃n+1 = (B̃n + rsσn − rdαn)+. (39)

In the scenario under study,σn and αn have the same
probability distribution. Whenrs ≈ rd with rs < rd, then
(39) gives the evolution of the customer waiting times in a
G/G/1 queue in heavy-traffic. We will approximate the mean



customer waiting time in this queue by the corresponding
quantity in aGI/GI/1 in heavy-traffic. In the latter queue,
it is known [9, P. 29] that the stationary waiting time is
exponentially distributedwith mean

E[B̃] =
(r2

s + r2
d)V ar(σ)

2E[σ](rd − rs)
=

µ(r2
s + r2

d)
v(rd − rs)

(Rw+
1
3
(2R2 +1)),

(40)
where we have used the fact thatαn and σn have the same
probability distribution.

VII. N UMERICAL RESULTS

In this section we present simulation results to validate
results in Theorem 1 (stability issues), Theorem 2 (throughput
depends only on stationary distribution), Section V (through-
puts obtained by Random Waypoint and Random Direction
Models), the probability of two-hop route, the relay buffer
behavior as studied in Section VI, and the probability distri-
bution of the contact time. Throughout this section, we will
assume that the transmission range of the nodes is constant
and is equal toR.

A. Validation of Theorem 1

We consider the scenario of three nodes: a source, a destina-
tion, and a relay node. each moving according to a symmetric
random walk over a circle. It follows from Theorem 1 that the
relay node buffer occupancy is stableiff the ratiop = rs

rd
< 1.

Figure 3 plots the evolution of relay node buffer with time for
different values ofp. It is evident from the figure that when
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Fig. 3. Time-evolution of relay node buffer for Random Walk model over a
circle for different values of ratio,p = rs

rd
.

p = 1.0, the buffer occupancy process is unstable. While for
the casep = 0.9 < 1.0, this process is stable. Similar results
were obtained even forp ≈ 1.0 with p < 1.0 but are not
shown here.

B. Validation of Theorem 2 and Section V

Theorem 2 states that the relay throughput depends only on
the stationary node distribution. Section V provides the value
of relay throughput under Random Direction and Random
Waypoint mobility models. To validate both of these results,

we ran simulations to find the relay throughput for case of the
Random Direction and the Random Waypoint mobility models
with different parameters.

We illustrate that the throughput depends only on the
stationary distribution of the node position by looking at
the scenario where three nodes move over a line of length
L = 4 kilometers according to the Random Direction model.
We assume that the time between two consecutive decision
instants (travel time) is fixed and equal to15 seconds and the
distribution of speed was chosen to be i) Uniform over some
interval, ii) Exponentially distributed, and iii) fixed. Note that
the case where speed is fixed corresponds to the Random Walk.
Since the stationary node location distribution is same for all
the three choice of speed distribution, Theorem 2 implies that
the relay throughput will be identical. The numerical results
plotted in Figure 4 are in accordance with this result. Also
evident is the fact that relay throughputTr = πs, for rs = 1.
In Figure 5 we plot values ofπs when the three nodes move
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Fig. 4. Values ofπs obtained for the Random Direction model over a
segment of lengthL. Various distributions for the speed were taken.

according to the Random Waypoint model over a square of
side-lengthsL for different values of transmission range,R.
We keep the speed of the mobiles fixed. The plot shows
that πs (and henceTr) is a function ofρ = R

L alone. The
numerical values also support the result of Section V-B where
for the Random Waypoint model in square, the throughput is
approximately1.36πρ2. Similarly, the values of the throughput
from theory and simulations provide a good match for all
of the scenario studied in Section V. Because of the space
restriction, we did not include these numerical results due to
space constraints.

C. Validation of Section III-B

Section III-B studies multiple relay nodes with fixed source
nodes and destination nodes. It reports stability condition and
derives the value of the relay throughput and the network
throughput. To validate the stability condition, we take the
scenario of one source node, one destination node, and3
relay nodes move according to the Random Waypoint model
inside a square of side-lengthL = 4000m. The source and
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destination nodes are fixed and they are symmetric according
to the center of the square, and the separated distance between
them is of2000m. The stable case is shown in Figure 6 where
rs = 0.9rd, and the unstable case is shown in Figure 7 where
rs = 1.1rd. The relay throughput and the network throughput
as a function of the number of the relay nodes are shown in,
respectively, Figures 8 and 9 for different value ofR/L. In
this scenario, the probability that the relay node is neighbor of
the source of location(1000, 1000) is equal to0.0485, 0.0275,
and0.0126 for R/L equal to0.1, 0.075, and0.05 respectively.
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D. Validation of Section III-B

In this section we validate the approximation of Section
III-B of the case where all source and destination nodes are
moving (c.f, Equation 16). We consider a scenario ofN relay
nodes andK source nodes andM destination nodes. All the
nodes move according to the Random Waypoint model within
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Fig. 7. Time-evolution of relay buffer for relay nodes moving according to
Random Waypoint model inside a square of side-length4000m, with fixed
and symmetric source and destination nodes w.r.t.to square center. Herers =
1.1rd (the unstable case)
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a square region of side-lengthL equal to4000. We assume
that the lifetime of the packets in hops is equal to 4 hops. In



Figure 10, we show the approximation of Equation 16 as well
as the simulation result of,τm

S , the long-term arrival rate to
the queuem of the relay noden from the source nodes. We
observe that the above approximation is accurate forR/L ≤
0.05, and the relative error between the approximation and
simulation is less than5%, for R/L = 0.05.
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E. Validation of Two-Hop Route Probability

We haveN +2 nodes moving inside a square of side length
L = 4000 according to the Random Waypoint model. We
validate the approximation formula for the probability of a
two hops route for different values ofN (cf., section V-B.2).
In Figure 11, we show the results of the simulation and the
approximation forR/L ∈ {0.025, 0.0375, 0.05}. We observe
that for R/L ≤ 0.05 the approximation is accurate.
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Fig. 11. Probability of two-hop route as function of number of nodes. All
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F. Validation of Section VI

We consider the relay node buffer occupancy in the scenario
in Section VI. The third line of Table I reports the percentage
of the relative error of the relay buffer occupancy found in (40)
and the corresponding simulated valueE[Bsim], for different
values of the parametersR and w with µ = 50 meters and
rdµ/v = 200 data units. ParametersR and w are chosen so
that the circumference of the circle is equal to3000 meters (i.e.
(4R+2w)µ = 3000 meters). In the simulation the relay node
buffer is sampled at the beginning of each cycle (as defined
in Section III). Throughout these experimentsrs

rd
= 0.95,

so as to reflect the heavy-traffic scenario under which (40)
was established. We observe that the relative error between
Equation (40) and the simulation is very small.

R 11 9 7 5

w 8 12 16 20

|E[Bsim]−E[B̃]|
E[B̃]

(%) 2 1 1 2

TABLE I

VALIDATION OF EQUATION (40) (FOR µ = 50 METERS AND rdµ/v = 200

DATA UNITS).

G. Validation of the Contact Time Distribution

We consider the scenario where the nodes move according
to the Random Direction model and Random Waypoint model
inside a square of side lengthL = 4000m. The nodes speed
is constant and is equal toV . For the Random Direction
model, the travel time,T , is greater thanR/V . The contact
time is defined as the interval of time that a pair of nodes
stay inside one another transmission range after being outside
one another transmission range. In Figure 12 and 13, we
show the normalized contact time distribution defined as the
contact time divided byR/V of the Random Waypoint and
the Random Direction model. We observe in both cases that
for R/V ≤ 20s andR/L ≤ 0.05, the normalized contact time
distribution is almost independent ofR/V , of R/L, andT . So
in the case Random Direction model, we deduce numerically
that the mean contact time is equal to1.26R

V . Similarly
in the case of Random Waypoint model, the mean contact
time is equal to1.24R

V . Knowing the mean contact time and
the probability that a pair of nodes are inside each other
transmission range2, we deduce that the mean intermeeting
time the time when the pair of nodes are not in contact is
equal to: 1.26R

V

(
1
π

(
L
R

)2 − 1
)
, in the case of the Random

Direction model,1.24R
V

(
0.73

π

(
L
R

)2 − 1
)
, in the case of the

Random Waypoint model.

2See section V-B.1
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Fig. 13. Normalized contact time distribution. Nodes move inside square
with lengthL = 4000m according to Random Waypoint model.

VIII. C ONCLUSIONS

We have studied the performance of relaying in mobile ad
hoc networks by developing a queueing model. The parameters
of the queueing model depend on the node mobility pattern.

Our main findings are that (under the assumptions placed
on our model) the relay throughput only depends on the sta-
tionary node location distribution, and that uniform stationary
distribution of nodes results in the smallest relay throughput.
Approximate throughput formulas have been derived for both
the Random Waypoint and the Random Direction mobility
models; these formulas have been found to be in agreement
with simulation results. Approximation formula for the mean
buffer occupancy of the relay node has been obtained for the
Random Walk mobility model.

We have implicitly assumed that the order of delivery of data
does not matter. This is an important simplifying assumption
that has allowed us to assume that the relay node does not
transmit data from its relay buffer when there is either a direct
or two-hop route (via the relay node) between the source and
destination. Relaxing this assumption would be important for

applications using TCP-like protocols.
Most of our work in this paper has focused on the average

behavior of the relay node buffer occupancy process. It would
be interesting to study the tail of the relay buffer occupancy
process for various mobility models. Also, the process{Bn}n

is embedded at regeneration instants; it would interesting to
study the relay node buffer at arbitrary times.

This study forms a research effort towards developing
performance models for relay protocol, and understanding the
impact of mobility on their performance.
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