
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights

Author's personal copy

Review Article

Lifetime and availability of data stored on a P2P system:
Evaluation of redundancy and recovery schemes

Abdulhalim Dandoush ⇑, Sara Alouf, Philippe Nain
INRIA, B.P. 93, 06902 Sophia Antipolis Cedex, France

a r t i c l e i n f o

Article history:
Received 23 October 2013
Received in revised form 13 February 2014
Accepted 15 February 2014
Available online 22 February 2014

Keywords:
Peer-to-Peer network
Distributed storage system
Performance evaluation
Absorbing Markov chain
Data availability
System engineering

a b s t r a c t

This paper studies the performance of Peer-to-Peer storage and backup systems (P2PSS).
These systems are based on three pillars: data fragmentation and dissemination among
the peers, redundancy mechanisms to cope with peers churn and repair mechanisms to
recover lost or temporarily unavailable data. Usually, redundancy is achieved either by
using replication or by using erasure codes. A new class of network coding (regenerating
codes) has been proposed recently. Therefore, we will adapt our work to these three redun-
dancy schemes. We introduce two mechanisms for recovering lost data and evaluate their
performance by modeling them through absorbing Markov chains. Specifically, we evalu-
ate the quality of service provided to users in terms of durability and availability of stored
data for each recovery mechanism and deduce the impact of its parameters on the system
performance. The first mechanism is centralized and based on the use of a single server
that can recover multiple losses at once. The second mechanism is distributed: reconstruc-
tion of lost fragments is iterated sequentially on many peers until that the required level of
redundancy is attained. The key assumptions made in this work, in particular, the assump-
tions made on the recovery process and peer on-times distribution, are in agreement with
the analysis in [1] and in [2] respectively. The models are thereby general enough to be
applicable to many distributed environments as shown through numerical computations.
We find that, in stable environments such as local area or research institute networks
where machines are usually highly available, the distributed-repair scheme in erasure-
coded systems offers a reliable, scalable and cheap storage/backup solution. For the case
of highly dynamic environments, in general, the distributed-repair scheme is inefficient,
in particular to maintain high data availability, unless the data redundancy is high. Using
regenerating codes overcomes this limitation of the distributed-repair scheme. P2PSS with
centralized-repair scheme are efficient in any environment but have the disadvantage of
relying on a centralized authority. However, the analysis of the overhead cost (e.g. compu-
tation, bandwidth and complexity cost) resulting from the different redundancy schemes
with respect to their advantages (e.g. simplicity), is left for future work.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Conventional storage solutions rely on robust dedicated
servers and magnetic tapes on which data are stored. These

equipments are reliable, but they are also expensive and do
not scale well. The growth of storage volume, bandwidth,
and computational resources for PCs has fundamentally
changed the way applications are constructed. Almost
10 years ago, a new network paradigm has been proposed
where computers can build a virtual network (called over-
lay) on top of another network or an existing architecture
(e.g. Internet). This new network paradigm has been

http://dx.doi.org/10.1016/j.comnet.2014.02.015
1389-1286/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: adandoush@gmail.com (A. Dandoush),

sara.alouf@inria.fr (S. Alouf), philippe.nain@inria.fr (P. Nain).

Computer Networks 64 (2014) 243–260

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet

Author's personal copy

labeled Peer-to-Peer (P2P) distributed network. A peer in
this paradigm is a computer that play the role of both sup-
plier and consumer of resources.

This P2P model has proved to be an alternative to the
client/server model and a promising paradigm for Grid
computing, file sharing, voice over IP, backup and storage
applications. Some of the recent efforts for building highly
available storage or backup system based on the P2P para-
digm include OceanStore [3], CFS [4], Total Recall [5,6] and
UbiStorage [7]. Wuala [6], is an example of P2P distributed
storage system, with more than 100 million stored files,
where a node can simultaneously be supplier and client.
Wuala guarantees very high data availability (theoretically
with probability 99:9% the data is available). Each new
user is immediately allowed to use 1 GB of free storage
space. Moreover, users can buy more storage space and,
possibly, share their own local disk spaces. The distributed
architecture of Wuala is based on Chord [8]. The recovery
process is triggered periodically and managed using a cen-
tralized authority and more precisely, is carried out by a
few Super-Nodes. Although scalable and economically
attractive compared to traditional storage/backup systems,
these P2P systems pose many problems such as reliability,
data availability and confidentiality.

We can distinguish between backup and storage sys-
tems. P2P backup systems aim to provide long data life-
time without constraints on the data availability level or
the reconstruction time. For this reason, the backup system
designers are interested in the permanent departures of
peers rather than the intermediate disconnections, on the
contrary to storage systems, even if the disconnections
durations were long.

1.1. Redundancy schemes

P2PSS is considered today one of the important applica-
tions where benefits of data redundancy and network cod-
ing have emerged [9]. A significant research activity has
been devoted to evaluating the fundamental tradeoff be-
tween the storage space and the amount of data required
to repair data.

In a P2P network, peers are free to leave and join the
system at any time. As a result of the intermittent avail-
ability of peers, redundant data is inserted into the system
to ensure high availability of the stored data. Existing sys-
tems achieve redundancy either by replication, where
there are two replication levels, or by erasure codes (e.g.
[10]). The two replication levels are as follows:

� The whole-file-level replication scheme. A file f is repli-
cated r times over r different peers (as in PAST [11])
so that the tolerance against failures or peers departure
is equal to r as the system maintains r þ 1 copies of the
f. The ratio 1=fr þ 1g defines the useful storage space in
the system. Hereafter, we will refer to this replication
scheme as replication.
� The fragment-level replication scheme. This scheme con-

sists of dividing the file f into s equally sized fragments,
and then make r copies of each of them and place one
fragment copy per peer, as in CFS [4].

The erasure code (EC) scheme consists of dividing the file f
into b equally sized blocks (say SB bits). Each block of data
D is partitioned into s equally sized fragments (say
FEC ¼ SB=s bits) to which, using one of the erasure codes
scheme (e.g. [10]), r redundant fragments are added of
the same size. Recovering any fragment (if it is lost) or add-
ing a new redundant fragment of a given block of data
requires the download of any other s fragments out of
the available fragments of that block (downloading again
the size of the original block SB). Therefore, for each stored
block of data, the tolerance against failures or peers depar-
ture is equal to r. The useful storage space in the system is
defined by the ratio s=ðsþ rÞ. OceanStore [3], Total Recall
[5], Wuala [6], and UbiStorage [7] are some examples of
existing P2P systems that use erasure coding mechanisms
to provide some level of system reliability and data
availability.

For the same amount of redundancy, erasure codes pro-
vide higher availability of data than replication [12,13].

A new class of codes, so-called regenerating codes (RC)
has been proposed recently in [14]. RC can be considered a
generalization of erasure code (EC), which reduces the
communication cost of EC by slightly increasing the stor-
age cost. The size of fragments in RC is larger of that in
EC. In [14], the authors consider in Theorem 1, p. 5 a simple
scheme in which they require that any s fragments (the
minimum possible) can reconstruct the original block of
data. All fragments have equal size FRC ¼ h � SB. A newcom-
mer produces a new redundant fragment by connecting to
any s nodes and downloading hSB=s bits from each. In this
theorem, the authors assume that the source node of the
block of data will store initially n fragments of size hSB bits
on n storage nodes. In addition, newcommers arrive
sequentially and each one connects to an arbitrary k-sub-
set of previous nodes (including previous newcommers).
They define hc :¼ s

s2�sþ1 to be, in the worth case, the lower
bound on the minimal amount of data that a newcomer
must download. The worth case is occured when a data
collector (client) need to recover the original block of data
from only newcomers. In general, if h P hc there exists a
linear network code so that all data collectors can recon-
struct the considered block by downloading s fragments
from any s nodes. So, using this simple scheme of RC, add-
ing a new redundant fragment of a given block requires a
new peer to download 1=s percent of s stored fragments
(hSB=s of each) so that the new peer regenerates one ran-
dom linear combination of the parts of fragments already
downloaded. Until the time of writing this paper, the
regenerating codes is not yet used in any P2P system. How-
ever, we will show through numerical results that RC is a
promising redundancy scheme for P2P storage and backup
systems. An interesting survey on the main problems in
distributed storage applications with network coding can
be found in [15].

1.2. Recovery mechanisms and policies

However, using redundancy mechanisms without
repairing lost data is not efficient, as the level of redun-
dancy decreases when peers leave the system. Conse-
quently, P2P storage/backup systems need to compensate

244 A. Dandoush et al. / Computer Networks 64 (2014) 243–260

Author's personal copy

the loss of data by continuously storing additional redun-
dant data onto new hosts.

Systems may rely on a central authority that recon-
structs fragments when necessary; these systems will be
referred to as centralized-recovery systems. Alternatively,
secure agents running on new hosts can reconstruct by
themselves the data to be stored on the hosts disks. Such
systems will be referred to as distributed-recovery systems.
A centralized server can recover at once multiple losses of
the same document in the centralized-recovery scheme. In
the distributed case, each new host—thanks to its secure
agent—recovers only one loss per document.

Regardless of the recovery mechanism used, two repair
policies can be enforced. In the eager policy, when the sys-
tem detects that one host has left the network, it immedi-
ately initiates the reconstruction of the lost data, and
stores it on a new peer upon recovery. This policy is simple
but makes no distinction between permanent departures
that need to be recovered, and transient disconnections
that do not.

Having in mind that connections may experience tem-
porary, as opposed to permanent failures, one may want
to deploy a system that defers the repair beyond the detec-
tion of a first loss of data. This alternative policy, so-called
lazy, inherently uses less bandwidth than the eager policy.
However, it is obvious that an extra amount of redundancy
is necessary to mask and to tolerate host departures for ex-
tended periods of time.

The aim of this paper is to develop mathematical mod-
els to evaluate fundamental performance metrics (data
lifetime and availability) of P2PSS. Our contributions are
as follows:

� Analysis of centralized and distributed recovery
mechanisms.
� Proposition of a general model that captures the behav-

ior of both eager and lazy repair policies and the three
replication schemes, and accommodates both tempo-
rary and permanent disconnections of peers.
� Numerical investigation using realistic parameters val-

ues to support the mathematical models and to com-
pare erasure codes with regenerating codes.
� Guidelines on how to engineer a P2P backup or storage

system in order to satisfy given requirements.

In the following, Section 2 reviews related work and
Section 3 introduces the assumptions and notation used
throughout the paper. Sections 5 and 6 are dedicated to
the modeling of the centralized- and distributed-recovery
mechanism, respectively. In Section 8, we provide some
numerical results showing the performance of the central-
ized and decentralized schemes while either erasure codes
or regenerating codes are used. Section 9 concludes the
paper.

2. Related work and motivation

Although the literature on the architecture and file sys-
tem of distributed backup and storage systems is abun-
dant, most of these systems are configured statically to

provide durability and/or availability with only a cursory
understanding of how the configuration will impact overall
performance. Some systems allow data to be replicated
and cached without constraints on the storage overhead
or on the frequency at which data are cached or recovered.
These yield to waste of bandwidth and storage volume and
do not provide a clear predefined durability and availabil-
ity level. Hence, the importance of the thorough evaluation
of P2P storage systems before their deployment.

There have been recent modeling efforts focusing on the
performance analysis of P2P backup and storage systems in
terms of data durability and availability such as [16–18].
However, in all these models, findings and conclusions rely
on the assumption that the peers availability and the
recovery process are exponentially distributed with some
parameters for the sake of simplification or for the lack
of works characterizing their distribution under realistic
settings and assumptions.

In [19] a general queuing models for P2P service sys-
tems is developed. In modeling P2P storage systems as a
queueing system, the study assumes the availability of
the file is not an issue thanks to redundancy. Then, it does
not consider neither the permanent departure nor the
recovery process. The key performance problem would be
whether there is sufficient bandwidth to support the
download requests. Moreover, the authors assume server
online/offline times and file length to follow exponential
distributions.

Most of systems that take data availability into account
do so in a basic way. The general approach is to leverage
one single parameter, the mean peer availability in the sys-
tem [20].

The question about how to detect or define permanent
failures and when trigger a recovery process is typically ad-
dressed by the use of timeouts [21,20]. After a given time-
out, a system parameter, a node is declared as failed and a
repair is triggered. Authors in [21] propose an approach to
replica management based on the availability history of
hosts. The approach is achieved by an adaptive per-node
timeout, instead of relying on a system-level timeout. On
one hand, advanced timeout are often computed with Mar-
kov models as in [20] using some assumptions such as
homogeneous behavior, or memoryless exponential distri-
butions that are not verified in certain systems [22,2].
One the other hand, such an approach cannot guarantee
that more than or equal to s fragments (required fragments
to regenerate data) are present in the system and we do not
have any idea about the waiting time in a state where less
than s fragments are available.

Recently, Martalo et al. [23], provide an interesting
analysis for a distributed storage architecture based on a
DHT-based overlay like Wuala project. They propose a
proactive sporadic recovery strategy, according to which
a document is regenerated each time a client or a peer
downloads it in the system. The authors aimed to propose
a replacement of the Wuala-based system, where resource
maintenance is periodic and centralized. However, regen-
erating documents and thus redundant information within
the proposed scheme, e.g. each time clients download doc-
uments, is not fair for both the popular and non-popular
documents. For the popular documents, the proposed

A. Dandoush et al. / Computer Networks 64 (2014) 243–260 245

Author's personal copy

scheme is expensive in terms of the storage overhead but
guarantee high availability as Wula-like system. Where
for the non-popular documents, the scheme may lead to
loss the data temporarily or permanently. Moreover, we
can expect the performance for the private documents
where only few users can access them. However this
scheme can be good for the bandwidth utilization.

Characterizing peers availability both in local and wide
area environments has been the focus of [2]. In this paper,
Nurmi, Brevik and Wolski investigate three sets of data,
each measuring machine availability in a different setting,
and perform goodness-of-fit tests on each data set to as-
sess which out of four distributions best fits the data. They
have found that a hyper-exponential model fits more accu-
rately the machine availability durations than the expo-
nential, Pareto, or Weibull distribution.

To understand how the recovery process could be better
modeled, we performed a packet-level simulation analysis
of the download and the recovery processes in erasure-
coded systems; cf. [1]. We found that the download time
of a fragment of data located on a single peer follows
approximately an exponential distribution. We also found
that the recovery time essentially follows a hypo-exponen-
tial distribution with many distinct phases.

In light of the conclusions of [2], namely, that machine
availability is modeled with a hyper-exponential distribu-
tion, and building on the findings of [1] we will propose
in this paper a more general and accurate models that
are valid under different distributed environments. Thus,
the models presented in Sections 5 and 6 can be seen as
a generalization of those presented in [24] and has little
in common with [17]. Although [17,24] are not valid under
different systems and cannot give a very accurate results,
they are very simple and give a good background to easily
understand this paper.

3. System description and assumptions

In the following, we will distinguish the peers, which
are computers where data is stored and which form a stor-
age system, from the users whose objective is to retrieve
the data stored in the storage system.

We consider a distributed storage system which peers
randomly join and leave. The following assumptions on
the P2PSS design will be enforced throughout the report:

� A block of data D is partitioned into s equally sized frag-
ments to which, using erasure codes or regenerating
code, r redundant fragments are added. The case of rep-
lication-based redundancy is equally captured by this
notation, after setting s ¼ 1 and letting the r redundant
fragments be simple replicas of the unique fragment of
the block. This notation—and hence our modeling—is
general enough to study both replication-based and
erasure code-based storage systems.
� Mainly for privacy issues, a peer can store at most one

fragment of any data D.
� We assume the system has perfect knowledge of the

location of fragments at any given time, e.g. by using
a Distributed Hash Table (DHT) or a central authority.

� The system keeps track of only the latest known loca-
tion of each fragment.
� Over time, a peer can be either connected to or discon-

nected from the storage system. At reconnection, a peer
may or may not still store its fragments. We denote by p
the probability that a peer that reconnects still stores its
fragments.
� The number of connected peers at any time is typically

much larger than the number of fragments associated
with D, i.e., sþ r. Therefore, we assume that there are
always at least sþ r connected peers—hereafter referred
to as new peers—which are ready to receive and store
fragments of D.

We refer to as on-time (resp. off-time) a time-interval
during which a peer is always connected (resp. discon-
nected). During a peer’s off-time, the fragments stored on
this peer are momentarily unavailable to the users of the
storage system. At reconnection, and according to the
assumptions above, the fragments stored on this peer will
be available only with a persistence probability p (and with
probability 1� p they are lost). In order to improve data
availability and increase the reliability of the storage sys-
tem, it is therefore crucial to recover from losses by contin-
uously monitoring the system and adding redundancy
whenever needed.

We will investigate the performance of the two differ-
ent repair policies: the eager and the lazy repair policies.
Recall that in the lazy policy, the repair is delayed until
the number of unavailable fragments reaches a given
threshold, denoted k. We must have k 6 r since D is lost
if more than r fragments are missing from the storage sys-
tem. Both repair policies can be represented by the thresh-
old parameter k 2 f1; 2; . . . ; rg, where k can take any value
in the set f2; . . . ; rg in the lazy policy and k ¼ 1 in the eager
policy.

Any repair policy can be implemented either in a cen-
tralized or a distributed way. In the following description,
we assume that the system misses k fragments so that lost
fragments have to be restored.

In the centralized implementation, a central authority
will: (1) download in parallel s fragments from the peers
which are connected, (2) reconstruct at once all the
unavailable fragments, and (3) upload the reconstructed
fragments in parallel onto as many new peers for storage.
The central authority updates the database recording frag-
ments locations as soon as all uploads terminate. Step 2
executes in a negligible time compared to the execution
time of Steps 1 and 3 and will henceforth be ignored in
the modeling.

In the distributed implementation, a secure agent on
one new peer is notified of the identity of one out of the
k unavailable fragments for it to reconstruct it. Upon noti-
fication, the secure agent (1) downloads s fragments (or s
parts of s fragments if RC is used) of D from the peers which
are connected to the storage system, (2) reconstructs the
specified fragment and stores it on the peer’s disk; (3) sub-
sequently discards the s downloaded fragments, in the case
of erasure code, so as to meet the privacy constraint that
only one fragment of a block of data may be held by a peer.
This operation iterates until less than k fragments are

246 A. Dandoush et al. / Computer Networks 64 (2014) 243–260

Author's personal copy

sensed unavailable and stops if the number of missing
fragments reaches k� 1. The recovery of one fragment
lasts mainly for the execution time of Step 1. We will thus
consider the recovery process to end when the download
of the last fragment (out of s) is completed.

In both implementations, once a fragment is recon-
structed, any other copy of it that ‘‘reappears’’ in the sys-
tem due to a peer reconnection is simply ignored, as only
one location (the newest) of the fragment is recorded in
the system. Similarly, if a fragment is unavailable, the sys-
tem knows of only one disconnected peer that stores the
unavailable fragment.

Given the system description, data D can be either avail-
able, unavailable or lost. Data D is said to be available if any
s fragments out of the sþ r fragments can be downloaded
by the users of the P2PSS. Data D is said to be unavailable if
less than s fragments are available for download, however
the missing fragments to complete D are located at a peer
or a central authority on which a recovery process is ongo-
ing. Data D is said to be lost if there are less than s frag-
ments in the system including the fragments involved in
a recovery process. We assume that, at time t ¼ 0, at least
s fragments are available so that the document is initially
available.

We now introduce the assumptions considered in our
models.

Assumption 1. [off-times] We assume that successive
durations of off-times of a peer are independent and
identically distributed (iid) random variables (rvs) with a
common exponential distribution function with parameter
k > 0.

Assumption 1 is in agreement with the analysis in [16].

Assumption 2. [on-times] We assume that successive
durations of on-times of a peer are iid rvs with a common
hyper-exponential distribution function with n phases; the
parameters of phase i are fpi;lig, with pi the probability
that phase i is selected and 1=li the mean duration of
phase i. We naturally have

Pn
i¼1pi ¼ 1.

Assumption 2, with n > 1, is in agreement with the
analysis in [2]; when n ¼ 1, it is in agreement with the
analysis in [16].

Assumption 3. [independence] Successive on-times and
off-times are assumed to be independent. Peers are
assumed to behave independently of each other.

Assumption 4. [download/upload durations] We assume
that successive download (resp. upload) durations of a
fragment are iid rvs with a common exponential distribu-
tion function with parameter a (resp. b). We further
assume that concurrent fragments downloads/uploads
are not correlated.

Assumption 4 is supported by our findings in [1]. As al-
ready mentioned, the fragment download/upload time was
found to follow approximately an exponential distribution.
As for the concurrent downloads/uploads, we have found
in simulations that these are weakly correlated and close
to be ‘‘independent’’ as long as the total workload is

equally distributed over the active peers. There are two
main reasons for the weak correlation between concurrent
downloads/uploads as observed in simulations: (i) the
good connectivity of nowadays core networks and (ii) the
asymmetry in peers upstream and downstream band-
widths, as on average, a peer tends to have higher down-
stream than upstream bandwidth [25,26]. So, as the
bottleneck would be the upstream capacity of peers, the
fragment download times are close to be iid rvs.

A consequence of Assumption 4 is that each of the block
download time and the durations of the centralized and
the distributed recovery processes is a rv following a
hypo-exponential distribution [27]. Indeed, each of these
durations is the summation of independently distributed
exponential rvs (s for the block download and in the dis-
tributed scheme, and sþ k in the centralized scheme if k
fragments are to be reconstructed) having each its own
rate. This is a fundamental difference with [17] where
the recovery process is assumed to follow an exponential
distribution.

It is worth mentioning that the simulation analysis of
[1] has concluded that in most cases the recovery time fol-
lows roughly a hypo-exponential distribution. This result is
expected as long as fragments downloads/uploads are
exponentially distributed and very weakly correlated.

Given Assumptions 1–4, the models developed in this
report are more general and/or more realistic than those
in [16,17,24]. Table 1 recapitulates the parameters intro-
duced in this section. We will refer to s; r and k as the pro-
tocol parameters, p; k and fpi;ligi¼1;...;n as the peers
parameters, and a and b as the network parameters.

4. Preliminaries and notation

We will focus in this section on the dynamic of peers in
the storage system. In particular, we are interested in com-
puting the stationary distribution of peers. According to
Assumptions 1–3 in the previous section, each time a peer
rejoins the system, it picks its on-time duration from an
exponential distribution having parameter li with proba-
bility pi, for i 2 ½1 . . . n�. In other words, a peer can stay con-
nected for a short time in a session and for a long time in
another one.

This dynamicity can be modeled as a general queueing
network with an arbitrary but finite number n of different
classes of customers (peers) and an infinite number of

Table 1
System parameters.

D Block of data

s Original number of fragments for each block of data
r Number of redundant fragments
k Threshold of the recovery process

p Persistence probability
k Rate at which peers rejoin the system
fpi;ligi¼1;...;n Parameters of the peers failure process

a Download rate of a piece of data (fragment)

b Upload rate of a fragment in the centralized-repair
scheme

A. Dandoush et al. / Computer Networks 64 (2014) 243–260 247

Author's personal copy

servers. In this network, a new customer enters directly,
with probability pi, a server with a service rate li. Define
PIð~n ¼ ðn1; . . . ; nnÞÞ :¼ limt!1PðN1ðtÞ ¼ n1; . . . ;NnðtÞ ¼ nnÞ
to be the joint distribution function of the number of cus-
tomers of class 1; . . . ;n in steady-state (or, equivalently,
the number of busy servers) where NiðtÞ is the number of
peers of class i in the system at time t for i ¼ 1; . . . ; n. We
have the following known results [28,29]:

PIð~nÞ ¼ 1=G
Yn

i¼1

qni
i

ni!

where qi ¼ kpi=li is the rate at which work enters class i
and G is the normalizing constant.

G ¼
X
~n2Nn

Yn

i¼1

qni
i

ni!

Denote the expected number of customers of class i in the
system by E½ni� where

E½ni� ¼
X
~n2Nn

niPIð~nÞ ¼ qi

Yn

l¼1

eql ; for i ¼ 1; . . . ;n

.
For later use, we will compute the probability of select-

ing a new peer in phase i, denoted by RðiÞ, or equivalently
the percentage of the connected peers in phase i as follows:

RðiÞ ¼ E½ni�Pn
l¼1E½nl�

¼ qiPn
l¼1ql

¼ pi=liPn
l¼1pl=ll

ð1Þ

We introduce as well functions S and f such that for a
given n-tuple ~a ¼ ða1; . . . ; anÞ; Sð~aÞ :¼

Pn
i¼1ai and fið~aÞ :

¼ ai=Sð~aÞ.
We conclude this section by a word on the notation: a

subscript ‘‘c’’ (resp. ‘‘d’’) will indicate that we are consider-
ing the centralized (resp. distributed) recovery scheme.
The notation~ei

j refers to a row vector of dimension j whose
entries are null except the ith entry that is equal to 1; the
notation ~1j refers to a column vector of dimension j whose
each entry is equal to 1; and the notation~0 refers to a null
row vector of appropriate dimension. 1fAg is the character-
istic function of event A. The notation ½a�þ refers to
maxfa;0g. The set of integers ranging from a to b is de-
noted ½a . . . b�. Given a set of n rvs fBiðtÞgi2½1...n�;

~BðtÞ denotes
the vector ðB1ðtÞ; . . . ;BnðtÞÞ and ~B denotes the stochastic
process f~BðtÞ; t P 0g.

5. Centralized repair systems

In this section, we address the performance of P2PSS
using the centralized-recovery scheme.

We will focus on a single block of data D, and pay atten-
tion only to peers storing fragments of this block. At any
time t, the state of a block D can be described by both
the number of fragments that are available for download
and the state of the recovery process. When triggered,
the recovery process goes first through a ‘‘download
phase’’ (fragments are downloaded from connected peers
to the central authority) then through an ‘‘upload phase’’
(fragments are uploaded to new peers from the central
authority).

More formally, we introduce n-dimensional vectors
~XcðtÞ, ~YcðtÞ; ~ZcðtÞ; ~UcðtÞ, and ~VcðtÞ, where n is the number
of phases of the hyper-exponential distribution of peers

on-times durations, and a 5n-dimensional vector ~WcðtÞ
¼ ð~XcðtÞ;~YcðtÞ;~ZcðtÞ; ~UcðtÞ; ~VcðtÞÞ. Vectors ~YcðtÞ and~ZcðtÞ de-
scribe the download phase of the recovery process whereas
~UcðtÞ and ~VcðtÞ describe its upload phase. The formal defi-
nition of these vectors is as follows:

� ~XcðtÞ :¼ ðXc;1ðtÞ; . . . ;Xc;nðtÞÞ where Xc;lðtÞ is a ½0 . . . sþ r�-
valued rv denoting the number of fragments of D stored
on peers that are in phase l at time t.
� ~YcðtÞ :¼ ðYc;1ðtÞ; . . . ;Yc;nðtÞÞ where Yc;lðtÞ is a ½0 . . . s� 1�-

valued rv denoting the number of fragments of D being
downloaded at time t to the central authority from
peers in phase l (one fragment per peer).
� ~ZcðtÞ :¼ ðZc;1ðtÞ; . . . ; Zc;nðtÞÞ where Zc;lðtÞ is a ½0 . . . s�-val-

ued rv denoting the number of fragments of D hold at
time t by the central authority and whose download
was done from peers in phase l (one fragment per peer).
Observe that these peers may have left the system by
time t.
� ~UcðtÞ :¼ ðUc;1ðtÞ; . . . ;Uc;nðtÞÞ where Uc;lðtÞ is a
½0 . . . sþ r � 1�-valued rv denoting the number of
(reconstructed) fragments of D being uploaded at time
t from the central authority to new peers that are in
phase l (one fragment per peer).
� ~VcðtÞ :¼ ðVc;1ðtÞ; . . . ;Vc;nðtÞÞ where Vc;lðtÞ is a
½0 . . . sþ r � 1�-valued rv denoting the number of
(reconstructed) fragments of D whose upload from the
central authority to new peers that are in phase l has
been completed at time t (one fragment per peer).

Given the above definitions, we necessarily have
Yc;lðtÞ 6 Xc;lðtÞ for l 2 ½1 . . . n� at any time t. The number of
fragments of D that are available for download at time t

is given by Sð~XcðtÞÞ (recall the definition of the function S
in Section 3). Given that s fragments of D need to be down-
loaded to the central authority during the download phase
of the recovery process, we will have (during this phase)

Sð~YcðtÞÞ þ Sð~ZcðtÞÞ ¼ s, such that Sð~YcðtÞÞ; Sð~ZcðtÞÞ 2 ½1 . . . s
�1�. Once the download phase is completed, the central
authority will reconstruct at once all missing fragments,

that is sþ r � Sð~XcðtÞÞ. Therefore, during the upload phase,

we have Sð~UcðtÞÞ þ Sð~VcðtÞÞ ¼ sþ r � Sð~XcðtÞÞ. Observe that,
once the download phase is completed, the number of

available fragments, Sð~XcðtÞÞ, may well decrease to 0 with
peers all leaving the system. In such a situation, the central
authority will reconstruct sþ r fragments of D. As soon as

the download phase is completed ~YcðtÞ ¼ ~0 and

Sð~ZcðtÞÞ ¼ s. The end of the upload phase is also the end

of the recovery process. We will then have ~YcðtÞ ¼~ZcðtÞ
¼ ~UcðtÞ ¼ ~VcðtÞ ¼ ~0 until the recovery process is again
triggered.

According to the terminology introduced in Section 3, at
time t, data D is available if Sð~XcðtÞÞP s, regardless of the
state of the recovery process. It is unavailable if

Sð~XcðtÞÞ < s but Sð~ZcðtÞÞ—the number of fragments hold

248 A. Dandoush et al. / Computer Networks 64 (2014) 243–260

Author's personal copy

by the central authority—is larger than s� Sð~XcðtÞÞ and at

least s� Sð~XcðtÞÞ fragments out of Sð~ZcðtÞÞ are different

from those Sð~XcðtÞÞ fragments available on peers. Other-
wise, D is considered to be lost. The latter situation will
be modeled by a single state a.

If a recovery process is ongoing, the exact number of
distinct fragments of D that are in the system—counting
both those that are available and those hold by the central
authority—may be unknown due to peers churn. However,
we are able to find a lower bound on it, namely,

bð~XcðtÞ;~YcðtÞ;~ZcðtÞÞ :¼
Xn

l¼1

maxfXc;lðtÞ; Yc;lðtÞ þ Zc;lðtÞg:

In fact, the uncertainty about the number of distinct frag-
ments is a result of peers churn. That said, this bound is
very tight and most often gives the exact number of dis-
tinct fragments since peers churn occurs at a much larger
time-scale than a fragment download. In our modeling,
we consider an unavailable data D to become lost when
the bound b takes a value smaller than s. Observe that, if
the recovery process is not triggered, then bð~XcðtÞ;~0;~0Þ ¼
Sð~XcðtÞÞ gives the exact number of distinct fragments.

The system state at time t can be represented by the
5n-dimensional vector ~WcðtÞ. Thanks to the assumptions
made in Section 3, the multi-dimensional process ~Wc :¼
f~WcðtÞ; t P 0g is an absorbing homogeneous continuous-
time Markov chain (CTMC) with a set of transient states
T c representing the situations when D is either available
or unavailable and a single absorbing state a representing
the situation when D is lost. As writing T c is tedious, we
will simply say that T c is a subset of ½0...sþr�n�½0...s�1�n

�½0...s�n�½0...sþr�1�n �½0...sþr�1�n. The elements of T c

must verify the constraints mentioned above.
Without loss of generality, we assume that Sð~Xcð0ÞÞP s.

The infinitesimal generator has the following canonical
form

where~Rc is a non-zero column vector of size jT cj, and ~Qc is

jT cj-by-jT cj matrix. The elements of ~Rc are the transition
rates between the transient states ~wc 2 T c and the absorb-
ing state a. The diagonal elements of ~Q c are each the total
transition rate out of the corresponding transient state. The
other elements of ~Qc are the transition rates between each
pair of transient states. The non-zero elements of~Rc are, for
Sð~ycÞ 2 ½1 . . . Sð~xcÞ� and Sð~zcÞ ¼ s� Sð~ycÞ,

rcð~xc;~0;~0;~0;~0Þ¼
Xn

l¼1

xc;lll;

for Sð~xcÞ¼ s:rcð~xc;~yc;~zc;~0;~0Þ¼
Xn

l¼1

yc;lll �1fbð~xc;~yc;~zcÞ¼ sg;
for Sð~xcÞ 2 ½1 . . .s�:

Let us proceed to the definition of the non-zero elements
of ~Qc .

The case when a peer leaves the system. There are
seven different situations in this case. In the first situation,

either the recovery process has not been triggered or it has
but no download has been completed yet. In both the sec-
ond and third situations, the download phase of the recov-
ery process is ongoing and at least one download is
completed. However, in the second situation, the departing
peer does not affect the recovery process (either it was not
involved in it or its fragment download is completed),
unlike what happens in the third situation. In the third sit-
uation, a fragment download is interrupted due to the
peer’s departure. The central authority will then immedi-
ately start downloading a fragment from another available
peer that is uniformly selected among all available peers
not currently involved in the recovery process. The fourth
situation arises when a peer leaves the system at the end
of the download phase. The fifth situation occurs when
an available fragment becomes unavailable during the
upload phase. The sixth situation occurs when a peer, to
which the central authority is uploading a fragment, leaves
the system. The last situation arises because of a departure
of a peer to which the central authority has completely
uploaded a reconstructed fragment. Note that the up-
loaded fragment was not yet integrated in the available
fragments. This is caused by the fact that the central
authority updates the database recording fragments loca-
tions as soon as all uploads terminate. To overcom any
departure or failure that occurs in the context of one of
the last three situations, the central authority has then to
upload again the given fragment to a new peer. A new
selected peer would be in phase m with probability RðmÞ
for m 2 ½1 . . . n�. The elements of ~Q c corresponding to these
seven situations are, for l 2 ½1 . . . n� and m 2 ½1 . . . n�,

qcðð~xc;~0;~0;~0;~0Þ; ð~xc �~el
n;
~0;~0;~0;~0ÞÞ ¼ xc;lll;

for Sð~xcÞ 2 ½sþ 1 . . . sþ r�:

qcðð~xc;~yc;~zc;~0;~0Þ; ð~xc �~el
n;~yc;~zc;~0;~0ÞÞ ¼ ½xc;l � yc;l�

þll;

for Sð~xcÞ 2 ½s . . . sþ r � 1�; Sð~ycÞ 2 ½1 . . . s� 1�;

Sð~zcÞ ¼ s� Sð~ycÞ;

or Sð~xcÞ 2 ½2 . . . s� 1�; Sð~ycÞ 2 ½1 . . . Sð~xcÞ � 1�;

Sð~zcÞ ¼ s� Sð~ycÞ:

qcðð~xc;~yc;~zc;~0;~0Þ; ð~xc �~el
n;~yc �~el

n þ~em
n ;~zc;~0;~0ÞÞ

¼
yc;lll½xc;m � yc;m � zc;m�þPn

i¼1½xc;i � yc;i � zc;i�þ
;

for Sð~xcÞ 2 ½s . . . sþ r�1�; Sð~ycÞ 2 ½1 . . . s� 1�;
Sð~zcÞ ¼ s� Sð~ycÞ;

or Sð~xcÞ 2 ½2 . . . s� 1�; Sð~ycÞ 2 ½1 . . . Sð~xcÞ � 1�;
Sð~zcÞ ¼ s� Sð~ycÞ:

qcðð~xc;~0;~zc;~0;~0Þ; ð~xc �~el
n;
~0;~zc;~0;~0ÞÞ ¼ xc;lll;

for Sð~xcÞ 2 ½1 . . . sþ r � 1�; Sð~zcÞ ¼ s:

qcðð~xc;~0;~zc;~uc;~vcÞ; ð~xc �~el
n;
~0;~zc;~uc þ~em

n ;~vcÞÞ ¼ xc;lllRðmÞ;
for Sð~xcÞ 2 ½1 . . . sþ r � 2�; Sð~zcÞ ¼ s;

Sð~ucÞ 2 ½1 . . . sþ r � Sð~xcÞ � 1�;
Sð~vcÞ ¼ sþ r � Sð~xcÞ � Sð~ucÞ:

A. Dandoush et al. / Computer Networks 64 (2014) 243–260 249

Author's personal copy

qcðð~xc;~0;~zc;~uc;~vcÞ; ð~xc;~0;~zc;~uc �~el
n þ~em

n ;~vcÞÞ ¼ uc;lllRðmÞ;
for Sð~xcÞ 2 ½1 . . . sþ r � 2�; Sð~zcÞ ¼ s;

Sð~ucÞ 2 ½1 . . . sþ r � Sð~xcÞ � 1�;
Sð~vcÞ ¼ sþ r � Sð~xcÞ � Sð~ucÞ; l – m:

qcðð~xc;~0;~zc;~uc;~vcÞ; ð~xc;~0;~zc;~uc þ~em
n ;~vc �~el

nÞÞ ¼ vc;lllRðmÞ;
for Sð~xcÞ 2 ½1 . . . sþ r � 2�; Sð~zcÞ ¼ s;

Sð~ucÞ 2 ½1 . . . sþ r � Sð~xcÞ � 1�;
Sð~vcÞ ¼ sþ r � Sð~xcÞ � Sð~ucÞ:

The case when a peer rejoins the system. Recall that
the system keeps trace of only the latest known location
of each fragment. As such, once a fragment is reconstructed,
any other copy of it that ‘‘reappears’’ in the system due to a
peer reconnection is simply ignored, as only one location
(the newest) of the fragment is recorded in the system. Sim-
ilarly, if a fragment is unavailable, the system knows of only
one disconnected peer that stores the unavailable frag-
ment. In the following, only relevant reconnections are con-
sidered. For instance, when the recovery process is in its
upload phase, any peer that rejoins the system does not
affect the system state since all fragments have been recon-
structed and are being uploaded to their new locations.

There are three situations where reconnections may be
relevant. In the first, either the recovery process has not
been triggered or it has but no download has been com-
pleted yet. In both the second and third situations, the
download phase of the recovery process is ongoing and
at least one download is completed. However, in the third
situation, there is only one missing fragment, so when the
peer storing the missing fragments rejoins the system, the
recovery process aborts.

The elements of ~Qc corresponding to these three situa-
tions are, for l 2 ½1 . . . n� and Sð~zcÞ ¼ s� Sð~ycÞ

qcðð~xc;~0;~0;~0;~0Þ; ð~xc þ~el
n;
~0;~0;~0;~0ÞÞ ¼ plðsþ r � Sð~xcÞÞpk;

for Sð~xcÞ 2 ½s . . . sþ r � 1�:

qcðð~xc;~yc;~zc;~0;~0Þ; ð~xc þ~el
n;~yc;~zc;~0;~0ÞÞ ¼ plðsþ r � Sð~xcÞÞpk;

for Sð~xcÞ 2 ½s . . . sþ r � 2�; Sð~ycÞ 2 ½1 . . . s� 1�;
or Sð~xcÞ 2 ½1 . . . s� 1�; Sð~ycÞ 2 ½1 . . . Sð~xcÞ�:

qcðð~xc;~yc;~zc;~0;~0Þ; ð~xc þ~el
n;
~0;~0;~0;~0ÞÞ ¼ pl pk;

for Sð~xcÞ ¼ sþ r � 1; Sð~ycÞ 2 ½1 . . . s� 1�:

The case when one download is completed during
the recovery process. When a recovery process is initiated,
the system state verifies Sð~xcÞ 2 ½s . . . sþ r � k� and~yc ¼~zc ¼
~uc ¼ ~vc ¼~0. The central authority selects s peers out of the
Sð~xcÞ peers that are connected to the system and initiates a
fragment download from each. Among the s peers that are
selected, il out of s would be in phase l, for l 2 ½1 . . . n�. Let
~i ¼ ði1; . . . ; inÞ. We naturally have 0 6 il 6 xc;l, for l2 ½1 . . .n�,
and Sð~iÞ¼ s. This selection occurs with probability

gð~i;~xcÞ :¼

Qn
l¼1

xc;l

il

� �
Sð~xcÞ

s

� � :

The probability that the first download to be completed
out of s was from a peer in phase l is equal to flð~iÞ ¼ il=s (re-
call the definition of f in Section 3). Similarly, when the
number of ongoing downloads is ~yc , the probability that
the first download to be completed out of Sð~ycÞ was from
a peer in phase l is equal to flð~ycÞ ¼ yc;l=Sð~ycÞ.

The two possible transition rates in such situations are,
for l 2 ½1 . . . n�;m 2 ½1 . . . n� and Sð~zcÞ ¼ s� Sð~ycÞ,

qcðð~xc;~0;~0;~0;~0Þ; ð~xc;~i�~el
n;~e

l
n;
~0;~0ÞÞ ¼ sa gð~i;~xcÞ f lð~iÞ;

for Sð~xcÞ 2 ½s . . . sþ r � k�; im 2 ½0 . . . xc;m�; Sð~iÞ ¼ s:

qcðð~xc;~yc;~zc;~0;~0Þ; ð~xc;~yc �~el
n;~zc þ~el

n;
~0;~0ÞÞ ¼ Sð~ycÞa f lð~ycÞ;

for Sð~xcÞ 2 ½s . . . sþ r � 1�; Sð~ycÞ 2 ½1 . . . s� 1�;
or Sð~xcÞ 2 ½1 . . . s� 1�; Sð~ycÞ 2 ½1 . . . Sð~xcÞ�:

The case when one upload is completed during the
recovery process. When the download phase is completed,

the system state verifies Sð~zcÞ ¼ s and~yc ¼ ~uc ¼ ~vc ¼~0. The
central authority selects sþ r � Sð~xcÞ new peers that are
connected to the system and initiates a (reconstructed)
fragment upload to each. Among the peers that are
selected, il out of sþ r � Sð~xcÞ would be in phase l, for

l 2 ½1 . . . n�. Let~i ¼ ði1; . . . ; inÞ. We naturally have 0 6 il 6 s

þr � Sð~xcÞ, for l 2 ½1 . . . n�, and Sð~iÞ ¼ sþ r �Sð~xcÞ. This
selection occurs with probability

hð~i;~xcÞ :¼
sþ r � Sð~xcÞ
i1; i2; . . . ; in

� �Yn

l¼1

RðlÞil

where the multinomial coefficient has been used. For
l 2 ½1 . . . n� and Sð~zcÞ ¼ s, we can write

qcðð~xc;~0;~zc;~0;~0Þ; ð~xc;~0;~zc;~i�~el
n;~e

l
nÞÞ ¼ Sð~iÞb hð~i;~xcÞ f lð~iÞ;

for Sð~xcÞ 2 ½0 . . . sþ r � 2�; ~i 2 ½0 . . . sþ r � Sð~xcÞ�n;

Sð~iÞ ¼ sþ r � Sð~xcÞ:

qcðð~xc;~0;~zc;~uc;~vcÞ;ð~xc;~0;~zc;~uc�~el
n;~vcþ~el

nÞÞ¼ Sð~ucÞb f lð~ucÞ;
for Sð~xcÞ 2 ½0 . . .sþ r�2�; Sð~ucÞ 2 ½2 . . .sþ r�Sð~xcÞ�1�;

Sð~vcÞ¼ sþ r�Sð~xcÞ�Sð~ucÞ:

qcðð~xc;~0;~zc;~el
n;~vcÞ; ð~xc þ~vc þ~el

n;
~0;~0;~0;~0ÞÞ ¼ b;

for Sð~xcÞ 2 ½0 . . . sþ r � 2�; Sð~vcÞ ¼ sþ r � Sð~xcÞ � 1:

qcðð~xc;~0;~zc;~0;~0Þ; ð~xc þ~el
n;
~0;~0;~0;~0ÞÞ ¼ RðlÞb;

for Sð~xcÞ ¼ sþ r � 1:

Note that ~Q c is not an infinitesimal generator since
elements in some rows do not sum up to 0. Those rows
correspond to the system states where only s distinct
fragments are present in the system. The diagonal
elements of ~Q c are

qcð~wc; ~wcÞ ¼ �rcð~wcÞ �
X

~w0c2T c�f~wcg
qcð~wc; ~w0cÞ; for ~wc 2 T c:

For illustration purposes, we depict in Fig. 1 some of the
transitions of the absorbing CTMC when n ¼ 2;
s ¼ 3; r ¼ 1, and k ¼ 1.

250 A. Dandoush et al. / Computer Networks 64 (2014) 243–260

Author's personal copy

5.1. Data lifetime

This section is devoted to the analysis of the lifetime of
D. It will be convenient to introduce sets

EI :¼ fð~xc;~0;~0;~0;~0Þ :~xc 2 ½0 . . . sþ r�n; Sð~xcÞ ¼ Ig
for I 2 ½s . . . sþ r�:

The set EI consists of all states of the process ~Wc in which
the number of fragments of D currently available is equal
to I and the recovery process either has not been triggered
(for I 2 ½sþ r � kþ 1 . . . sþ r�) or it has but no download
has been completed yet (for I 2 ½s . . . sþ r � k�). For any I,
the cardinal of EI is Iþn�1

n�1

� �
(think of the possible selections

of n� 1 boxes in a row of I þ n� 1 boxes, so as to delimit n
groups of boxes summing up to I).

Introduce TcðEIÞ :¼ infft > 0 : ~WcðtÞ ¼ aj~Wcð0Þ 2 EIg,
the time until absorption in state a—or equivalently the
time until D is lost—given that the initial number of
fragments of D available in the system is equal to I. In
the following, TcðEIÞ will be referred to as the conditional
block lifetime. We are interested in the conditional
probability distribution function, PðTcðEIÞ 6 tÞ, and the

conditional expectation, E½TcðEIÞ�, given that ~Wcð0Þ 2 EI

for I 2 ½s . . . sþ r�.
From the theory of absorbing Markov chains, we can

compute PðTcðf~wcgÞ 6 tÞ where Th
c ðf~wcgÞ is the time until

absorption in state a given that the system initiates in state
~wc 2 T c . We know that (e.g. [30, Lemma 2.2])

PðTcðf~wcgÞ 6 tÞ

¼ 1�~eindð~wcÞ
jT c j � exp t~Q c

� �
�~1jT c j; t > 0; ~wc 2 T c ð2Þ

where indð~wcÞ refers to the index of state ~wc in the matrix
~Q c. Definitions of vectors~ei

j and~1j were given at the end of

Section 3. Observe that the term~eindð~wcÞ
jT c j � exp t~Q c

� �
�~1jT c j in

the right-hand side of (2) is nothing but the summation of

all jT cj elements in row indð~wcÞ of matrix exp t~Qc

� �
.

Let p~xc denote the probability that the system starts in

state ~wc ¼ ð~xc;~0;~0;~0;~0Þ 2 EI at time 0 given that
~Wcð0Þ 2 EI . We can write

p~xc :¼P ~Wcð0Þ ¼ ~wc 2 EIj~Wcð0Þ 2 EI

� �
¼

I

xc;1; . . . ; xc;n

� �Yn

l¼1

RðlÞxc;l : ð3Þ

Clearly
P

~wc2EI
p~xc ¼ 1 for I 2 ½s . . . sþ r�. Using (2) and (3)

and the total probability theorem yields, for
I 2 ½s . . . sþ r�,

PðTcðEIÞ 6 tÞ ¼
X
~wc2EI

p~xc P Tcðf~wcgÞ 6 tð Þ

¼ 1�
X
~wc2EI

p~xc
~eindð~wcÞ
jT c j � expðt~Q cÞ �~1jT c j; t > 0:

ð4Þ

We know from [30, p. 46] that the expected time until
absorption given that the ~Wcð0Þ ¼ ~wc 2 T c can be written
as

E½Tcðf~wcÞg� ¼ �~eindð~wcÞ
jT c j � ð~Q cÞ

�1
�~1jT c j; ~wc 2 T c;

where the existence of ð~QcÞ
�1

is a consequence of the fact
that all states in T c are transient [30, p. 45]. The
conditional expectation of TcðEIÞ is then (recall that the

elements of EI are of the form ð~xc;~0;~0;~0;~0Þ)
E½TcðEIÞ� ¼

X
~wc2EI

p~xc E½Tcðf~wcgÞ�

¼ �
X
~wc2EI

p~xc
~eindð~wcÞ
jT c j � ð~QcÞ

�1
�~1jT c j; for I2½s . . . sþ r�:

ð5Þ

Fig. 1. Some transitions of the Markov chain ~Wc when n ¼ 2; s ¼ 3; r ¼ 1, and k ¼ 1.

A. Dandoush et al. / Computer Networks 64 (2014) 243–260 251

Author's personal copy

5.2. Data availability

In this section we introduce different metrics to quan-
tify the availability of D. But first, we will study the time
during which J fragments of D are available in the system
given that there were initially I fragments. To formalize
this measure, we introduce the following subsets of T c ,
for J 2 ½0 . . . sþ r�,

F J :¼ fð~xc;~yc;~zc;~uc;~vcÞ 2 T c : Sð~xcÞ ¼ Jg

The set F J consists of all states of process ~Wc in which the
number of fragments of D currently available is equal to J,
regardless of the state of the recovery process. The subsets
F J form a partition of T c . We may define now

TcðEI;F JÞ :¼
Z TcðEIÞ

0
1f~WcðtÞ 2 F J j~Wcð0Þ 2 EIgdt:

TcðEI;F JÞ is the total time spent by the CTMC in the set F J

before being absorbed in state a, given that ~Wcð0Þ 2 EI .
Similarly, Tcðf~wcg; f~w0cgÞ is the total time spent by the
CTMC in state ~w0c before being absorbed in state a, given
that ~Wcð0Þ ¼ ~wc . We know from [31, p. 419] that

E½Tcðf~wcg; f~w0cgÞ� ¼ �~e
indð~wcÞ
jT c j � ~Q c

� ��1
�t~eindð~w0cÞ
jT c j ; ~wc; ~w0c 2 T c

ð6Þ

where t~y denotes the transpose of a given vector~y. In other
words, the expectation E Tcðf~wcg; f~w0cgÞ

� 	
is the entry of

matrix ð�~QcÞ
�1

at row indð~wcÞ and column indð~w0cÞ. Using
(3) and (6), we derive for I 2 ½s . . . sþ r� and J 2 ½0 . . . sþ r�

E½TcðEI;F JÞ� ¼
X
~w0c2F J

E TcðEI; f~w0cgÞ
� 	

¼
X
~wc2EI

X
~w0c2F J

p~xc E Tcðf~wcg; f~w0cgÞ
� 	

¼ �
X
~wc2EI

X
~w0c2F J

p~xc
~eindð~wcÞ
jT c j � ~Q c

� ��1
� t~eindð~w0cÞ
jT c j : ð7Þ

We are now in position of introducing two availability
metrics. The first metric, defined as

Mc;1ðEIÞ :¼ E
Xsþr

J¼0

J
TcðEI;F JÞ

TcðEIÞ

" #
; where I 2 ½s . . . sþ r�;

can be interpreted as the expected number of fragments of
D that are available for download—as long as D is not lost—
given that I fragments are initially available. A second met-
ric is

Mc;2ðEI;mÞ :¼ E
Xsþr

J¼m

TcðEI;F JÞ
TcðEIÞ

" #
; where I 2 ½s . . . sþ r�;

that we can interpret as the fraction of the lifetime of D
when at least m fragments are available for download, gi-
ven that I fragments are initially available. For instance,
Mc;2ðEsþr; sÞ is the proportion of time when data D is avail-
able for users, given that sþ r fragments of D are initially
available for download.

The expectations involved in the computation of the
availability metrics are difficult to find in closed-form.
Therefore, we resort to using the following approximation

E
TcðEI;F JÞ

TcðEIÞ

 �
� E½TcðEI;F JÞ�

E½TcðEIÞ�
; ð8Þ

where the terms in the right-hand side have been derived
in (7) and (5). The validation of this approximation is intro-
duced in technical report [32]. With this approximation in
mind, the two availability metrics become

Mc;1ðEIÞ ¼
Xsþr

J¼0

J
E½TcðEI;F JÞ�

E½TcðEIÞ�
; where I 2 ½s . . . sþ r�; ð9Þ

Mc;2ðEI;mÞ ¼
Xsþr

J¼m

E½TcðEI;F JÞ�
E½TcðEIÞ�

; where I 2 ½s . . . sþ r�: ð10Þ

6. Distributed repair systems

In this section, we model P2P storage systems that
implement a distributed recovery mechanism, as described
in Section 3. Unlike the centralized case, the distributed
recovery process consists of only a download phase at
the end of which the secure agent running on the new peer
reconstructs a single fragment and stores it on the peer’s
disk.

To model the system, we introduce n-dimensional vec-

tors ~XdðtÞ;~YdðtÞ;~ZdðtÞ and a 3n-dimensional vector
~WdðtÞ ¼ ð~XdðtÞ;~YdðtÞ;~ZdðtÞÞ. Vectors~YdðtÞ and~ZdðtÞ describe
the recovery process. The formal definition of these vectors
is as follows:

� ~XdðtÞ :¼ ðXd;1ðtÞ; . . . ;Xd;nðtÞÞ where Xd;lðtÞ is a ½0 . . . sþ r�-
valued rv denoting the number of fragments of D stored
on peers that are in phase l at time t. ~XdðtÞ must verify
Sð~XdðtÞÞ 2 ½s� 1 . . . sþ r�.
� ~YdðtÞ :¼ ðYd;1ðtÞ; . . . ;Yd;nðtÞÞ where Yd;lðtÞ is a ½0 . . . s� 1�-

valued rv denoting the number of fragments of D being
downloaded at time t to the secure agent from peers in
phase l (one fragment per peer).
� ~ZdðtÞ :¼ ðZd;1ðtÞ; . . . ; Zd;nðtÞÞ where Zd;lðtÞ is a ½0 . . . s� 1�-

valued rv denoting the number of fragments of D hold
at time t by the secure agent and whose download
was done from peers in phase l (one fragment per peer).
Observe that these peers may have left the system by
time t.

As in the centralized case, Yd;lðtÞ 6 Xd;lðtÞ for l 2 ½1 . . . n�
at any time t. The number of fragments of D that are avail-
able for download at time t is given by Sð~XdðtÞÞ. During the
recovery process, Sð~YdðtÞÞ þ Sð~ZdðtÞÞ ¼ s, such that Sð~YdðtÞÞ;
Sð~ZdðtÞÞ 2 ½1 . . . s� 1�. Because the distributed scheme re-
pairs fragments only one at a time, we have

Sð~XdðtÞÞ 2 ½s� 1 . . . sþ r�. The end of the download phase
is also the end of the recovery process. We will then have
~YdðtÞ ¼ ~ZdðtÞ ¼ ~0 until the recovery process is again
triggered.

D is available when Sð~XdðtÞÞP s, unavailable when
Sð~XdðtÞÞ ¼ s� 1 and bð~XdðtÞ;~YdðtÞ;~ZdðtÞÞP s (recall the
lower bound on the number of distinct fragments in the
system introduced in Section 5) and lost otherwise
(situation modeled by a single absorbing state a).

252 A. Dandoush et al. / Computer Networks 64 (2014) 243–260

Author's personal copy

According to the description and assumptions listed
in Section 3, the state of data D at time t can be repre-
sented by ~WdðtÞ and the multi-dimensional process
~Wd :¼ f~WdðtÞ; t P 0g is an absorbing homogeneous
CTMC with a single absorbing state a. The set of
transient states T d is the set of elements of
½0 . . . sþ r�n �½0 . . . s� 1�n � ½0 . . . s� 1�n that verify the
constraints mentioned above.

The analysis of the absorbing Markov chain ~Wd that
takes values in T d [fag is very similar to the analysis of
~Wc in Section 5, we will then only sketch it. In particular,
~Rd and ~Qd have similar definitions as ~Rc and ~Qc after
replacing the subscript ‘‘c’’ with the subscript ‘‘d’’ when-

ever needed. The non-zero elements of ~Rd are, for
Sð~ydÞ 2 ½1 . . .s�1� and Sð~zdÞ¼ s�Sð~ydÞ,

rdð~xd;~0;~0Þ ¼
Xn

l¼1

xd;lll; for Sð~xdÞ ¼ s:

rdð~xd;~yd;~zdÞ ¼
Xn

l¼1

xd;lll; for Sð~xdÞ ¼ s� 1:

rdð~xd;~yd;~zdÞ ¼
Xn

l¼1

yd;lll � 1fbð~xd;~yd;~zdÞ ¼ sg; for Sð~xdÞ ¼ s:

We next write the non-zero elements of ~Q d.

6.1. The case when a peer leaves the system

The elements of ~Qd corresponding to the three possible
situations are, for l2 ½1 . . .n�;m2 ½1 . . .n�, Sð~ydÞ 2 ½1 . . .s�1�
and Sð~zdÞ¼ s�Sð~ydÞ,

qdðð~xd;~0;~0Þ; ð~xd �~el
n;
~0;~0ÞÞ ¼ xd;lll;

for Sð~xdÞ 2 ½sþ 1 . . . sþ r�:

qdðð~xd;~yd;~zdÞ; ð~xd �~el
n;~yd;~zdÞÞ ¼ ½xd;l � yd;l�

þll;

for Sð~xdÞ 2 ½s . . . sþ r � 1�:

qdðð~xd;~yd;~zdÞ; ð~xd �~el
n;~yd �~el

n þ~em
n ;~zdÞÞ

¼
yd;lll½xd;m � yd;m � zd;m�þPn

i¼1½xd;i � yd;i � zd;i�þ
; for Sð~xdÞ 2 ½s . . . sþ r � 1�:

6.2. The case when a peer rejoins the system

There are three situations in this case exactly like in
Section 5. The elements of ~Qd corresponding to these three
situations are, for l 2 ½1 . . . n�, Sð~ydÞ 2 ½1 . . . s� 1� and
Sð~zdÞ ¼ s� Sð~ydÞ,

qdðð~xd;~0;~0Þ; ð~xd þ~el
n;
~0;~0ÞÞ ¼ plðsþ r � Sð~xdÞÞpk;

for Sð~xdÞ 2 ½s . . . sþ r � 1�:

qdðð~xd;~yd;~zdÞ; ð~xd þ~el
n;~yd;~zdÞÞ ¼ plðsþ r � Sð~xdÞÞpk;

for Sð~xdÞ 2 ½s� 1 . . . sþ r � 2�:

qdðð~xd;~yd;~zdÞ; ð~xd þ~el
n;
~0;~0ÞÞ ¼ pl pk;

for Sð~xdÞ ¼ sþ r � 1:

6.3. The case when one download is completed during the
recovery process

There are three situations in this case, following which
download has been completed. If it is the first or any of the
s� 2 subsequent ones, then we obtain the two situations
described in Section 5. The third situation occurs when
the last download is completed, which is essentially the
end of the recovery phase. The elements of ~Q d correspond-
ing to these three situations are, for l 2 ½1 . . . n� and
m 2 ½1 . . . n�,

qdðð~xd;~0;~0Þ; ð~xd;
~i�~el

n;~e
l
nÞÞ ¼ sa gð~i;~xdÞ f lð~iÞ;

for Sð~xdÞ 2 ½s . . . sþ r � k�; il 2 ½0 . . . xd;l�;

Sð~iÞ ¼ s:qdðð~xd;~yd;~zdÞ; ð~xd;~yd �~el
n;~zd þ~el

nÞÞ ¼ Sð~ydÞa f lð~ydÞ;
for Sð~xdÞ 2 ½s� 1 . . . sþ r � 1�; Sð~ydÞ 2 ½2 . . . s� 1�;
Sð~zdÞ ¼ s� Sð~ydÞ:

Fig. 2. Some transition rates of the Markov chain ~Wd when n ¼ 2; s ¼ 4; r ¼ 2, and k ¼ 1.

A. Dandoush et al. / Computer Networks 64 (2014) 243–260 253

Author's personal copy

qdðð~xd;~em
n ;~zdÞ; ð~xd þ~el

n;
~0;~0ÞÞ ¼ RðlÞa;

for Sð~xdÞ 2 ½s� 1 . . . sþ r � 1�; Sð~zdÞ ¼ s� 1:

And last:

qdð~wd; ~wdÞ ¼ �rdð~wdÞ �
X

~w0
d
2T d�f~wdg

qdð~wd; ~w0dÞ; for ~wd 2 T d:

For illustration purposes, we depict in Fig. 2 some of the
transitions of the absorbing CTMC when n ¼ 2; s ¼ 4,
r ¼ 2, and k ¼ 1.

We can now derive closed-form expressions for the
distribution of the conditional block lifetime, its expecta-
tion, and the two availability metrics, as was done in
Section 5. PðTdðEIÞ 6 tÞ; E½TdðEIÞ�; E½TdðEI;F JÞ�; Md;1ðEIÞ
and Md;2ðEI;mÞ are given in (4), (5), (7), (9) and (10) respec-
tively, after replacing the subscript ‘‘c’’ with the subscript
‘‘d.’’ Alike for the centralized case, we will perform
numerical computations as it is not tractable to explicitly

invert ~Qd.

7. Discussion: deploy and tune the P2P backup and
storage protocol

In this section, we discuss some practical issues related
to how can we use our theoretical framework to tune the
key system parameters for fulfilling predefined data life-
time and/or availability requirements.

We saw in the previous sections that the performance
metrics depend on the transition matrix ~Q which depends
in turn on the peers or network parameters (p; k, and
fpi;ligi¼1;...;n), the recovery process parameters (a and b)
and the protocol parameters (s; r and k).

Concerning the peers or network parameters, they can
be set according to some measurements on the storage
environment’s peers that report the peers on-times, off-
times durations or the disk failure rate such as the work
of Nurmi, Brevik and Wolski [2]. The distribution of the
recovery process and the values of its parameters (a, and
b) depend on the block/fragment sizes and the upload/
download capacities of peers, the work-load in the overlay
network, and the inter-network connections capacities. To
fit the distribution of the recovery process into an appro-
priate distribution and to estimate its parameter’s values,
one may do some simulations using for example our pack-
et-level simulator presented in [33] or build on the flow-le-
vel simulation model introduced in [34] to simulate a large
network. Another solution is to estimate the fragment/
block download times using the log files of some P2P appli-
cations or FTP clients run on some peers involved in the
P2P storage solution.

The protocol parameter s depends on the choice of the
size of data blocks and fragments. Nowadays, block sizes
in P2P storage systems are usually set to either 4 MB,
8 MB or 9 MB and fragment sizes are set somewhere be-
tween 256 KB and 1 MB. A helpful factor to choose from
these values can be the average size of the stored files in
the system, so that the fragmentation overhead associated
with the transmission of data is still negligible with respect
to the files sizes. Concerning the two key parameters r and
k, we compute numerically some contour lines (curves

along which the function has constant values) of each of
the performance metric functions studied in this paper as
a function of r and k at desired values, and we report them
in a figure.

After that, we select the operating point of the P2PSS
that ensures the desired data lifetime, and availability for
a reasonable storage overhead r=s and acceptable recovery
threshold k. Intuitively, smaller threshold values enable
smaller amounts of redundant data at the cost of higher
bandwidth utilization. The trade-off here is between effi-
cient storage use (small r) and efficient bandwidth use
(large k).

8. Numerical results

We have solved numerically the closed-form expres-
sions (4), (5), (7), (9) and (10) using MATLAB with realistic
values. The models presented in Sections 5 and 6 can be
seen as a generalization of those presented in [24]. In par-
ticular, in [24] the number of phases of the hyper-expo-
nential distribution of on-times is n ¼ 1. This reduces the
state-space of the Markov chain, and then solving the basic
models is much less time consuming than solving the gen-
eral models presented in this paper. As a matter of curios-
ity, we will compare in this section the results obtained
with all these models when considering an environment
that is known to violate the exponential assumption on
peers on-times made in [24]. This allows us to see whether
the models in [24] are robust against a violation of this
assumption and can justify or not the importance of the
general models.

Once this question addressed, we evaluate the lifetime
and availability of data stored on P2PSS running in differ-
ent contexts. Throughout the numerical computations,
we consider both centralized- and distributed-recovery
implementations and both erasure-code and regenerating
code based systems. Last, we illustrate how our models
can be used to engineer storage systems and we discuss
the impact of the blocks/fragments sizes on the
performance.

8.1. Parameter values

Our mathematical models have been solved numeri-
cally using a set of parameters values.

Network parameters k; fpi;ligi¼1;...;n and p. We con-
sider three sets of values that represent three different
environments. These correspond to three data sets that
have been studied in the literature. The sets CSIL and Con-
dor have been collected by Nurmi, Brevik and Wolski [2].
The CSIL set reports uptime of machines in the Computer
Science Instructional Laboratory (CSIL) at the University
of California, Santa Barbara. As for the Condor set, it reports
CPU idle times of peers in a Condor pool [35] at the Univer-
sity of Wisconsin, in other words, it reports the availability
of peers to perform an external job (the Condor pool offers
processing time to the whole Internet). This can be seen as
the time during which a peer may participate in a storage
system. The All-pairs-ping set has been obtained by Stri-
bling [36] after the processing of ping requests between

254 A. Dandoush et al. / Computer Networks 64 (2014) 243–260

Author's personal copy

each pair of PlanetLab [37] nodes. Each node pings every
other node roughly 4 times an hour. A 10-probes ping is
considered successful only if at least one probe response
was received.

The sets CSIL and Condor are best fit by a hyper-expo-
nential distribution according to the analysis in [2], even
though they report different flavors of peer ‘‘availability’’.
An exponential distribution is found to ‘‘reasonably’’ fit
the All-pairs-ping data set in [16]. The basic characteristics
of the three data sets considered here and the correspond-
ing values of the peers parameters are reported in Table 2.
Out of the three mentioned scenarios, Condor experiences
the highest dynamics environment. This behavior has been
reported elsewhere concerning peers on the Internet. For
instance, it has been observed in [38,5] that on average
peers join/leave the Internet 6.4 times per day and that
sessions times are typically on the order of hundreds of
minutes on average. In this paper, the Condor system will
mirror the Internet context and CSIL and PlanetLab envi-
ronments will mirror a stable environment such as local
area or research laboratory networks where machines are
usually highly available.

As an exponential distribution is found to ‘‘reasonably’’
fit the peers availability in the All-pairs-ping data-set,
PlanetLab-like systems can be studied using the models
presented in [24] while the CSIL and Condor contexts need
the more general models developed in this paper. Justify-
ing this last point is the objective of the next section.

The value of k, or equivalently the mean off-time, has
been set to have the same peers availability across all envi-
ronments. This measure, given in row 16 of Table 2, is the
probability of finding a peer connected or equivalently the
percentage of on-times in a peer life cycle. We have set
p ¼ 0:8 in the Condor scenario as peers churn rate is very
high and p ¼ 0:3 otherwise, namely in the CSIL and All-
pairs-ping scenarios. This is to reflect that disconnections
in stable environments are likely due to software or hard-
ware problems.

Protocol parameters s; r and k. Motivated by the dis-
cussion in 7, and for CSIL- and Condor-like systems, we will
consider block sizes of 4 MB and fragment sizes of 1 MB

and then s ¼ 4. For PlanetLab context, we considered block
sizes of 8 MB and fragment sizes of 1 MB and then s ¼ 8. In
the CSIL scenario where peers churn is low, we vary the
redundancy r from 1 to 1:5s ¼ 6. In the high dynamic sce-
nario (Condor), we vary the redundancy r from 1 to 3s ¼ 12
(resp. to 1:5s ¼ 6) when the recovery is distributed (resp.
centralized). In all the considered scenarios, we vary the
threshold k from 1 to r.

Recovery process parameters a and b. Fragments
download/upload times depend on the upload/download
capacities of the peers and the central authority when
needed. The measurement study [25] of P2P file sharing
systems, namely Napster and Gnutella, shows that 78%

of the users have downstream bottleneck of at least
100 Kbps. Furthermore, 50% of the users in Napster and
60% of the users in Gnutella use broadband connections
(Cable, DSL, T1 or T3) having rate between 1 Mbps and
3.5 Mbps. Moreover, a recent experimental study [26] on
P2P VoIP and file sharing systems shows that more than
90% of users have upstream capacity between 30 Kbps
and 384 Kbps, where the downstream is of the order of
some Mbps (like Cable/ADSL). Based on the two mentioned
studies, we assume the peers’ upload capacity that is ded-
icated to a single connection to be either 384 Kbps or
150 Kbps and the total upload capacity of the central
authority to be 1.5 Mbps. Hence, considering fragments
of size 1 MB, we obtain 1=a ¼ 22 or 56 s and 1=b ¼ 6 s.

Depending on this discussion and on our simulation re-
sult as presented in [1], we consider that 1=a ¼ 56 second
for SCIL context and 88 s for Condor and erasure codes (EC)
based systems and 23 s for Condor and regenerating code
(RC) based systems. When RC is enforced, the recovery pro-
cess is faster due to the fact that the size of the down-
loaded fragments is smaller. Recall that in EC a new peer
downloads s fragments of size 1 MB, where in RC it down-
loads s pieces of size P s

s2�sþ1 � SB=s ¼ 0:308 MB in order to
download a fragment of size P s � 0:308 ¼ 1:232 MB. We
considered fragments of size of 1.35 MB for the regenerat-
ing codes.

8.2. Discussion and comparison with the models of [24]

As mentioned previously, the models presented in [24]
are a special case of the models developed here, namely
when the number of phases of the hyper-exponential dis-
tribution of on-times is n ¼ 1. To avoid any ambiguity,
the models presented in [24] will be referred to as ‘‘basic’’
models whereas the ones developed in Section 5 and 6 will
be referred to as ‘‘general’’ models. Because of the reduced
state-space, solving the basic models is much less time
consuming than solving the general models. The basic
models describe well PlanetLab-like environments. How-
ever, one question remains: do they model any
environment?

To answer this question, we deliberately select a sce-
nario in which peers have been identified to have a non-
exponential on-times distribution, namely the Condor sce-
nario, and evaluate the lifetime of a block of data D using
both models and compare the results. In [2], a 2-stage hy-
per-exponential distribution is found to best fit the Condor

Table 2
Data sets characteristics and corresponding peers parameters values.

Data set CSIL Condor All-pairs-ping

Context LAN Internet PlanetLab
Covered period 8 weeks 6 weeks 21 months
Number of peers 83 210 200–550
On-times distribution H3 [2] H2 [2] Exp. [16]

(Best fit) (Best fit) (Reasonable)

On-times parameters
p1 0.464 0.592 1
p2 0.197 0.408 —
p3 0.339 — —
1=l1 (h) 250.3 0.094 181
1=l2 (h) 1.425 3.704 —
1=l3 (h) 33.39 — —
Mean on-time (h) 127.7 1.567 181

Mean off-time (h) 48 0.522 61
Percentage of on-times 0.727 0.75 0.750

Persistence probability p 0.3 0.8 0.3

A. Dandoush et al. / Computer Networks 64 (2014) 243–260 255

Author's personal copy

data set, but the authors identify as well the parameter of
the exponential distribution that best fits the same data.

Table 3 reports the expected data lifetime obtained
with the distributed-recovery implementation for s ¼ 4,
1=k ¼ 0:522 h, 1=a ¼ 22 s, p ¼ 0:8 and different amounts
of redundancy r and recovery thresholds k. Results pro-
vided by the general model with 1=l1 ¼ 0:094 h, 1=l2

¼ 3:704 h, p1 ¼ 0:592 and p2 ¼ 1� p1 are in column 3;
those given by the basic model with 1=l ¼ 1:543 h (best
exponential fit found in [2]) and 1=l ¼ 1:567 (first mo-
ment of the H2 distribution) can be found in columns 4
and 6 respectively. The relative error between E½TdðEsþrÞ�
(general model; column 3) and E½Tdðsþ rÞ� (basic model
[24]; columns 4 and 6) are reported in columns 5 and 7.

Table 3 reveals that the basic model returns substan-
tially different results than those of the general model.
Since the distribution of peers on-times is hyper-exponen-
tial in the Condor scenario, the results obtained through the
general model are the correct ones.

We conclude that the basic model presented in [24]
does not capture the essence of the system performance
when peers on-times are not exponentially distributed.
Henceforth, we will use the basic model in scenarios with
the All-pairs-ping characteristics, and the general model in
scenarios with the characteristics of either CSIL, or Condor.

8.3. Performance analysis

We have solved numerically (4), (5), (7), (9) and (10) gi-
ven that all sþ r fragments of D are initially available, con-
sidering either Condor or CSIL context, and either the
centralized or distributed recovery scheme. Results are re-
ported partially in Tables 4,5. Results in PlanetLab (All-
pairs-ping) context (when n ¼ 1) while an erasure code in
enforced can be found in Table 6.

It appears that, whichever the scenario or the recovery
mechanism considered, the expected data lifetime in-
creases roughly exponentially with r and decreases with
an increasing k. Regardless of the context considered, the
distributed scheme, while an erasure code in enforced,
yields a significantly smaller expected data lifetime than
the centralized scheme for the same redundancy mecha-
nism, especially when peers churn rate is high; cf. columns
3–4 in Table 4. Observe how the use of regenerating codes
improves very well the performance of the system even in
dynamic context; cf. columns 4–5 and 3–5. This is due to
the fact that each new peer in the RC downloads the size
of one fragment unlike the case of EC where each peer

downloads the size of the whole block of data in order to
recover one fragment. However, in a stable context like
SCIL, EC with the distributed repair scheme provides a
good performance as shown in Table 5.

We conclude that when peers churn rate is high, only the
centralized repair scheme can be efficient if erasure code is
used as redundancy mechanism, as long as the storage over-
head is kept reasonable small (that is r=s 6 2). As the distrib-
uted repair scheme is more scalable than the centralized
one, it will be a good implementation choice in large net-
works where hosts have a good availability. Regenerating
codes scheme is very promising for the storage objective
in dynamic context even with the distributed repair
scheme.

8.3.1. Setting the system’s key parameters
We illustrate now how our models can be used to set

the system parameters r and k such that predefined
requirements on data lifetime and availability are fulfilled.
We assume the recovery mechanism is distributed and the
context is similar to CSIL. We have picked two contour
lines of each of the performance metrics studied in this pa-
per and report them in Fig. 3 that is done using the general
model and Fig. 4 that is done using the basic model.

Consider now point A in Fig. 4 which corresponds to
r ¼ 6; k ¼ 1 and s ¼ 8. Selecting this point as the operating
point of the P2P2P storage system ensures (roughly) the
following: given that each data is initiated with sþ r avail-
able fragments, then (i) the expected data lifetime is
18 months; (ii) only 11% of the stored data would be lost

Table 3
Expected data lifetime (expressed in hours) in a Condor scenario using a distributed-recovery scheme. Comparison between E½TdðEsþrÞ� (general model) and
E½Tdðsþ rÞ� (basic model [24]).

s ¼ 4 H2 fit [2] Exponential fit [2] Equating 1st moments

E½TdðEsþrÞ� (h) E½Tdðsþ rÞ� Error ð%Þ E½Tdðsþ rÞ� Error ð%Þ

k ¼ 1 r ¼ 2 1.283 0.78 �39.2 1.017 �20.73
r ¼ 4 4.2 3.453 �17.79 4.09 �2.62
r ¼ 6 12.62 14.04 11.25 14.44 14.42

k ¼ 2 r ¼ 2 0.46 0.492 6.96 0.633 37.61
r ¼ 4 2.31 2.34 1.3 2.74 18.61
r ¼ 6 4.488 10.464 133.16 10.732 139.13

Table 4
Expected lifetime in Condor context for centralized or distributed repair
scheme and EC or RC are enforced.

Condor context E½TðEsþrÞ� (days)

Recovery Cent. Dist. Dist.
Redundancy EC EC RC
1=a (s) 88 88 23
1=b (s) 6.3 — —

k ¼ 1 r ¼ 2 0.365 5.34e�02 1.607
r ¼ 4 20.769 0.175 34.7
r ¼ 5 129.551 0.305 144.15
r ¼ 6 730.132 0.526 533.22
r ¼ 10 — 3.933 —
r ¼ 12 — 9.558 —

k ¼ 2 r ¼ 2 0.123 1.92e-02 0.43
r ¼ 4 6.955 9.62e-02 8.21
r ¼ 5 45.901 0.187 37.81

k ¼ 4 r ¼ 4 0.222 1.86e-02 0.33

256 A. Dandoush et al. / Computer Networks 64 (2014) 243–260

Author's personal copy

after 3 months; (iii) as long as D is not lost, 13 fragments of
D are expected to be in the system; (iv) during 99:7% of its
lifetime, D is available for download; and (v) during 80% of
the lifetime of D, at least sþ r � k ¼ 13 fragments of D are
available for download in the system. Observe that the
storage overhead, r=s, is equal to 0.75.

Consider point A (resp. B) in Fig. 3 which corresponds to
r ¼ 5 and k ¼ 3 (resp. k ¼ 2). Recall that s ¼ 4 (for both
points). Selecting point A (resp. B) as the operating point
of the P2PSS ensures the following: given that each data
is initiated with sþ r ¼ 9 available fragments, then (i) the
expected data lifetime is 22.25 (resp. 188.91) months; (ii)
23:7% (resp. 3:13%) of the stored data would be lost after
six months; (iii) as long as D is not lost, 6.486 (resp.
7.871) fragments of D are expected to be available in the
system; (iv) during 99:9992% (resp. 99:9999%) of its life-
time, D is available for download; and (v) during 99:79%

(resp. 99:7%) of the lifetime of D, at least sþ r � k ¼ 6
(resp. sþ r � k ¼ 7) of its fragments are available. Observe
that the storage overhead, r=s, is 1.25 for both operating
points and it is the lazy policy that is enforced (k > 1). Ob-
serve how the performance metrics improve when k is de-
creased, even by one. However, this incurs more
bandwidth use because the recovery will be more fre-
quently triggered.

8.3.2. Impact of the size of blocks/fragments, the parameter s
and a

Given the size of data D, a larger size of fragments trans-
lates into a smaller s and a larger expected fragment
download time 1=a. We have computed all pairs ðr; kÞ with
s ¼ 8 and s ¼ 16 that ensure PðTcðEsþrÞ > 3 monthsÞ ¼ 0:89
in the PlanetLab context, i.e., only 11% of the total data

would be lost after 3 months. In particular, operating
points r ¼ 6 and k ¼ 1 with s ¼ 8, and r ¼ 12 and k ¼ 7
with s ¼ 16 satisfy the above requirement, and addition-
ally yield the same storage overhead (namely, 0.75). But,
and this is important, the former point invokes the recov-
ery process much more often (and potentially unnecessar-
ily) than the latter point, suggesting that large fragments
size reduces the efficiency of the recovery mechanism. This
observation should be moderated by the fact that frag-
ments size when s ¼ 8 is twice their size when s ¼ 16,
yielding a different bandwidth usage per recovery.
Although the performance of the system seems to be better
when the number of fragments increases, due to decrease
their sizes, each fragment adds some coordination and
control overhead.

In the same direction, we observe from Table 5 that
when the expected fragment download time 1=a becomes
smaller (roughly the half, from 56 to 22 s.), the expected
data lifetime increases roughly exponentially. Most P2PSS
and other P2P application, e.g. P2P video streaming and file
sharing, use small fragment size. So, few IP packets are sent
for each fragment. This can minimize the packetization
delay.

8.3.3. Numerical computations complexity
It is evident that he cost of computing the solution of

the absorbing CTMC numerically depends in particular on
the values of n; s and r that will determine the finite num-
ber of the MC states. The closed-form expressions of the
performance metrics were solved using multi-threaded
structured programming using MATLAB. Some of them
runs on one single machine with the following principal
characteristics: multi-threaded processor Intel (R) Core

Table 5
Expected lifetime and first availability metric in CSIL context for distributed repair scheme and EC.

CSIL context E½TðEsþrÞ� (months) M1ðEsþrÞ
Distributed repair Distributed repair

s ¼ 4 1=a ¼ 22 (s) 1=a ¼ 56 (s) 1=a ¼ 22 (s) 1=a ¼ 56 (s)

k ¼ 1 r ¼ 2 3.102 1.022 5.972 5.945
r ¼ 4 209.67 24.29 7.929 7.853

k ¼ 2 r ¼ 2 0.248 0.134 5.026 5.023
r ¼ 4 27.34 5.29 6.973 6.93

k ¼ 4 r ¼ 4 0.219 0.117 5.09 5.119

Table 6
PlanetLab context: expected lifetime and first availability metric while an erasure code in enforced.

PlanetLab context Expected data lifetime Expected number of fragments
E½Tðsþ r;0Þ� (months) M1ðsþ r;0Þ

s ¼ 8 Cent. repair Dist. repair Cent. repair Dist. repair

k ¼ 1 r ¼ 2 0.32 0.11 7.81 8.04
r ¼ 4 2.15 1.05 11.01 8.68
r ¼ 6 17.12 7.61 13.18 9.80
r ¼ 8 262.16 46.24 15.11 12.12

k ¼ 2 r ¼ 4 0.81 0.37 10.34 8.19
r ¼ 6 6.95 3.20 12.76 9.25
r ¼ 8 110.03 23.34 14.72 11.37

k ¼ 4 r ¼ 8 13.33 4.34 13.77 9.81

A. Dandoush et al. / Computer Networks 64 (2014) 243–260 257

Author's personal copy

(TM)2 Duo of 2.66 GHz, 4 GB RAM + 4 GB swap running
Fedora Core 5. The execution times varies between
some hours and some days. From the analysis in Section
[5,6]. We found that the set of transient states T c is a sub-
set of ½0 . . . sþ r�n � ½0 . . . s� 1�n �½0 . . . s�n � ½0 . . . sþ r � 1�n

�½0 . . . sþ r � 1�n, and T d is the set of elements of
½0 . . . sþ r�n � ½0 . . . s� 1�n � ½0 . . . s� 1�n that verify the con-
straints mentioned in the Sections. Therefor, the state-
space size, and hence the computational cost, of the
absorbing CTMC is polynomial in the values of s and r
and an exponential in the number of n. Fortunately, the
value of s in most practical system is less than 10 and r
takes usually from (0.5–3) times of s (we provided enough
details about the parameter values in the new submission
in Section [7]). By analyzing real traces of different net-
work topologies and settings, as explained in [2], we found

that values of n vary between 1 and 3. Thus, the computa-
tional complexity is still reasonable.

Fortunately, the benefits of the P2P paradigm is not lim-
ited to storage application. Thanks to the open source P2P
cloud computing project [39,40] that is developed at INRIA,
we could reduce the computation time needed for some
experiments from two weeks when run them on one ma-
chine to less than two day using ProActive (usually re-
sources of about 5 machines in the cloud were allocated
for the experiments).

9. Conclusion

We have proposed general analytical models for evalu-
ating the performance of two approaches for recovering

Fig. 3. Contour lines of performance metrics (CSIL context, distributed repair).

Fig. 4. Contour lines of performance metrics (PlanetLab context, centralized repair, basic model n ¼ 1).

258 A. Dandoush et al. / Computer Networks 64 (2014) 243–260

Author's personal copy

lost data in distributed storage systems and three redun-
dancy schemes. Numerical computations have been per-
formed to illustrate several issues of the performance.
We conclude that, using our theoretical framework, it is
possible to tune and optimize the system parameters for
fulfilling predefined requirements. We find that, in stable
environments such as local area or research laboratory net-
works where machines are usually highly available, the
distributed-repair scheme offers a reliable, scalable and
cheap storage/backup solution regardless the redundancy
scheme. This is in contrast with the case of highly dynamic
environments, where the distributed-repair scheme is
inefficient with erasure codes as long as the storage over-
head is kept reasonable. P2PSS with centralized-repair
scheme are efficient in any environment but have the dis-
advantage of relying on a centralized authority. Regenerat-
ing codes scheme is very promising for P2PSS applications.
However, the analysis of the overhead cost (e.g. computa-
tion, bandwidth and complexity cost) resulting from the
different redundancy schemes with respect to their advan-
tages (e.g. simplicity), is left for future work.

References

[1] A. Dandoush, S. Alouf, P. Nain, Simulation analysis of download and
recovery processes in P2P storage systems, in: Proc. of 21st
International Teletraffic Congress (ITC), Paris, France, 2009.

[2] D. Nurmi, J. Brevik, R. Wolski, Modeling machine availability in
enterprise and wide-area distributed computing environments, in:
Proc. of Euro-Par 2005, LNCS, vol. 3648, Lisbon, Portugal, 2005, pp.
432–441.

[3] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R.
Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, B. Zhao,
Oceanstore: an architecture for global-scale persistent storage, in:
Proc. of ACM ASPLOS, Boston, Massachusetts, 2000, pp. 190–201.

[4] F. Dabek, F. Kaashoek, D. Karger, R. Morris, I. Stoica, Wide-area
cooperative storage with CFS, in: Proc. of ACM SOSP ’01, Banff,
Canada, 2001, pp. 202–215.

[5] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, G. Voelker, Total Recall:
system support for automated availability management, in: Proc. of
ACM/USENIX NSDI ’04, San Francisco, California, 2004, pp. 337–350.

[6] Wuala, The Wuala Project, http://www.wuala.com.
[7] UbiStorage, http://http://www.ubistorage.com.
[8] I. Stoica, R. Morris, D. Karger, F. Kaashoek, H. Balakrishnan, Chord: a

scalable peer-to-peer lookup service for internet applications, in:
Proc. of ACM SIGCOMM, San Diego, California, 2001, pp. 149–160.

[9] A. Dimakis, V. Prabhakaran, K. Ramchandran, Decentralized erasure
codes for distributed networked storage, IEEE Trans. Inform. Theory
(2006) 52.

[10] I. Reed, G. Solomon, Polynomial codes over certain finite fields, J.
SIAM 8 (2) (1960) 300–304.

[11] A. Rowstron, P. Druschel, Storage management and caching in PAST,
a large-scale, persistent peer-to-peer storage utility, in: Proc. of ACM
SOSP ’01, Banff, Canada, 2001, pp. 188–201.

[12] H. Weatherspoon, J. Kubiatowicz, Erasure coding vs. replication: a
quantitative comparison, in: Proc. of IPTPS ’02, Cambridge,
Massachusetts, Lecture Notes in Computer Science, vol. 2429,
2002, pp. 328–337.

[13] R. Bhagwan, D. Moore, S. Savage, G. Voelker, Replication strategies
for highly available peer-to-peer storage, in: Future Directions in
Distributed Computing, Lecture Notes in Computer Science, vol.
2584, Springer, 2003, pp. 153–158.

[14] A.G. Dimakis, P.B. Godfrey, Y. Wu, M. Wainwright, K. Ramchandran,
Network coding for distributed storage systems, in: Proc. of 26th
IEEE Conference on Computer Communications (INFOCOM),
Anchorage, Alaska, USA, 2007.

[15] A. Dimakis, K. Ramchandran, Y. Wu, C. Suh, A survey on network
codes for distributed storage, in: Proc. IEEE 99, IEEE Computer
Society, 2011, pp. 476–489.

[16] S. Ramabhadran, J. Pasquale, Analysis of long-running replicated
systems, in: Proc. of IEEE Infocom, Barcelona, Spain, 2006.

[17] S. Alouf, A. Dandoush, P. Nain, Performance analysis of peer-to-peer
storage systems, in: Proc. of 20th International Teletraffic Congress
(ITC), LNCS, vol. 4516, Ottawa, Canada, 2007, pp. 642–653.

[18] O. Dalle, F. Giroire, J. Monteiro, S. Pérennes, Analysis of failure
correlation impact on peer-to-peer storage systems, in: The
Proceeding of P2P 2009, the Ninth IEEE International Conference
on Peer-to-Peer Computing, Seattle, Washington, USA, 2009.

[19] L. Taoyu, C. Minghua, C. Dah-Ming, C. Maoke, Queuing models for
peer-to-peer systems, in: Proceedings of the 8th International
Conference on Peer-to-peer Systems, IPTPS’09, USENIX Association,
Berkeley, CA, USA, 2009, pp. 4–4. URL http://dl.acm.org/
citation.cfm?id=1855663.1855667.

[20] Z. Yang, Y. Dai, Z. Xiao, Exploring the costavailability tradeoff in p2p
storage systems, in: ICPP’09: Proceedings of the 2009 International
Conference on Parallel Processing, IEEE Computer Society, 2009, pp.
429–436.

[21] A. Kermarrec, E.L. Merrer, G. Straub, A.V. Kempen, Availability-based
methods for distributed storage systems, in: 31st IEEE International
Symposium on Reliable Distributed Systems, IEEE Computer Society,
2012, pp. 151–160.

[22] D. Kondo, B. Javadi, A. Iosup, D. Epema, The failure trace archive:
enabling comparative analysis of failures in diverse distributed
systems, in: Proc. of the IEEE International Symposium on Cluster
Computing and the Grid, 2010.

[23] M. Martalo, M. Amoretti, M. Picone, G. Ferrari, Sporadic
decentralized resource maintenance for p2p distributed storage
networks, Parallel Distribut. Comput. (2014) 74.

[24] A. Dandoush, S. Alouf, P. Nain, Performance analysis of centralized
versus distributed recovery schemes in P2P storage systems, in:
Proc. of IFIP/TC6 Networking 2009, LNCS, vol. 5550, Aachen,
Germany, 2009, pp. 676–689.

[25] S. Saroiu, P. Gummadi, S. Gribble, A measurement study of peer-to-
peer file sharing systems, in: Proc. of Multimedia Computing and
Networking (MMCN), San Jose, Cailfornia, 2002, (Best Paper Award).

[26] A. Guha, N. Daswani, R. Jain, An experimental study of the skype
peer-to-peer VoIP system, in: Proc. of 5th IPTPS, Santa Barbara,
California, 2006.

[27] P. Harrison, S. Zertal, Queueing models of RAID systems with
maxima of waiting times, Perform. Evaluat. J. 64 (7-8) (2007) 664–
689.

[28] F. Baskett, K. Chandy, R. Muntz, F. Palacios, Open, closed, and mixed
networks of queues with different classes of customers, J. ACM 22
(2) (1975) 248–260.

[29] H. Kobayashi, B.L. Mark, On queuing networks and loss networks, in:
Proc. 1994 Annual Conference on Information Sciences and Systems,
Princeton, NJ, 1994.

[30] M. Neuts, Matrix Geometric Solutions in Stochastic Models, in: An
Algorithmic Approach, John Hopkins University Press, Baltimore,
1981.

[31] C. Grinstead, J. Laurie Snell, Introduction to Probability, American
Mathematical Society, 1997.

[32] A. Dandoush, S. Alouf, P. Nain, Lifetime and Availability of Data
Stored on a P2P System: Evaluation of Recovery Schemes, Tech. Rep.
RR-7170, INRIA Sophia Antipolis, January 2010.

[33] A. Dandoush, S. Alouf, P. Nain, A realistic simulation model for peer-
to-peer storage systems, in: Proc. of 2nd International ICST
Workshop on Network Simulation Tools (NSTOOLS09), in
Conjunction with the 4th International Conference
(VALUETOOLS’09), Pisa, Italy, 2009.

[34] A. Dandoush, A. Jean-Marie, Flow-level modeling of parallel
download in distributed systems, in: Third International
Conference on Communication Theory, Reliability, and Quality of
Service (CTRQ), 2010, pp. 92–97, (Best Paper Award).

[35] Condor: High Throughput Computing, <http://www.cs.wisc.edu/
condor/>, 2007.

[36] J. Stribling, PlanetLab – All Pairs Pings, http://pdos.csail.mit.edu/
strib/pl_app, 2005.

[37] PlanetLab, An open platform for developing, deploying, and
accessing planetary-scale services, http://www.planet-lab.org/,
2007.

[38] R. Bhagwan, S. Savage, G. Voelker, Understanding availability, in:
Proc. of 2nd IPTPS, Berkeley, California, 2003.

[39] D. Caromel, Keynote lecture proactive parallel suite: multi-cores to
clouds to autonomicity, in: IEEE 5th International Conference on
Intelligent Computer Communication and Processing, 2009. ICCP
2009, 2009.

[40] INRIA, Proactive Parallel Suite, http://proactive.activeeon.com/
index.php.

A. Dandoush et al. / Computer Networks 64 (2014) 243–260 259

Author's personal copy

Abdulhalim Dandoush has obtained his
Electrical and Electronics engineering degree
in 2001 from the University of Tishreen, Syria.
He received a Professional Master in Com-
puter Sciences in 2003 from the same uni-
versity. In 2005 he received the Maîtrise in
Information technology From INSA de Rouen
in France. He came latter to the University
Nice-Sophia Antipolis and INRIA from 2005
until 2010 where he has obtained a Master
and PH.D Research Fellowship from the
Research and High Education Ministry in

France. He received Master 2 research in 2006 and a Ph.D in Networking
and Distributed Systems in March 2010. He worked mainly with Sara
Alouf and Philippe Nain within the project-team MAESTRO. He worked
during the academic year 2009–2010 at INRIA as ATER (associate research
and teaching position) before to fill the position of assistant professor at
the Tishreen University, in Syria from June 2010 until February 2013. He
moved later to the Arab Academy for Science and Technology in Egypt for
one year. In March 2014, he joined the MAESTRO Team-Project in INRIA,
France as a post-doctoral researcher.

Sara Alouf has obtained her Electrical and
Electronics engineering degree in 1998 from
the Lebanese University at Roumieh, Lebanon.
Later on, she came to France where she
obtained a Master degree in Computer
Networking and Distributed Systems, in 1999,
and a Ph.D. degree in Computer Science, in
2002, both from the University of Nice
Sophia Antipolis. She has spent the three
years of my doctorate at INRIA, within the
project-team Mistral, under the supervision of
Philippe Nain. From February 2003 until

February 2004, she was a post-doctoral researcher at the Free University
at Amsterdam, within the Optimization of Business Processes team of the
Department of Mathematics. In March 2004, she joined INRIA as an
Associate Researcher within the project-team Maestro.

Philippe Nain received the Maîtrise Es-Sci-
ences (B.S. degree) in Mathematics in 1978,
the Diplôme d’Etudes Approfondies (M.S.
degree) in Statistics in 1979, and the Doctorat
de 3éme cycle in Modeling of Computer Sys-
tems in 1981, all from the University of Paris
XI, Orsay, France. In 1987 he received the
Doctorat d’Etat in Applied Mathematics from
the University Pierre and Marie Curie (Paris
6), Paris, France. Since December 1981 he has
been with INRIA where he is currently direc-
tor of research and head of the project-team

MAESTRO devoted to the modeling of computer systems and telecom-
munications networks. He is Editor-in-Chief of Performance Evaluation
and past Associate Editor of IEEE/ACM Transactions on Networking, IEEE
Transactions on Automatic Control, Performance Evaluation, Operations
Research Letters and Journal of Applied Mathematics. He was a copro-
gram chair of the ACM Sigmetrics 2000 conference and the general chair
of the IFIP Performance 2005 conference.

260 A. Dandoush et al. / Computer Networks 64 (2014) 243–260

