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Abstract— A number of mobility models have been proposed
for the purpose of either analyzing or simulating the movement
of users in a mobile wireless network. Two of the more popular
are the random waypoint and the random direction models.
The random waypoint model is physically appealing but difficult
to understand. Although the random direction model is less
appealing physically, it is much easier to understand. User speeds
are easily calculated, unlike for the waypoint model, and, as
we will observe, user positions and directions are uniformly
distributed. The contribution of this paper is to establish this last
property for a rich class of random direction models that allow
future movements to depend on past movements. To this end, we
consider finite one- and two-dimensional spaces. We consider two
variations, the random direction model with wrap around and
with reflection. We establish a simple relationship between these
two models and, for both, show that positions and directions are
uniformly distributed for a class of Markov movement models
regardless of initial position. In addition, we establish a sample
path property for both models, namely that any piecewise linear
movement applied to a user preserves the uniform distribution of
position and direction provided that users were initially uniformly
throughout the space with equal likelihood of being pointed in
any direction.

I. INTRODUCTION

Researchers have proposed a number of different mobility
models. Two of the more popular are the random waypoint
model, [6], and the random direction model, [3]. Both usually
operate in a finite two dimensional plane, typically a square.
Under both models, users traverse piecewise linear segments
where speeds vary from segment to segment but are in general
maintained constant on a segment. The two models differ
in one critical manner, namely how users choose the next
segment to traverse. Under the random waypoint model a
user chooses a point within the space with equal probability
and a speed from some given distribution. On the other hand,
under the random direction model a user chooses a direction
to travel in, a speed at which to travel, and a time duration
for this travel. The first model is appealing due to its physical
interpretation. However, it introduced significant issues, [12],
regarding its stationary behavior, i.e., distribution of nodes in
the space and distribution of speeds, that were only recently
resolved in [8], [9]. A different problem arises with the
random direction model, namely what to do when a mobile
hits a boundary. Several variations exist including random
direction with wrap around, [5], and with reflection, [2]. For
some problems, these are less physically appealing. However,

these models exhibit some nice properties, especially useful
in theoretical studies, [2], namely that users are uniformly
distributed within the space and that the distributions of speeds
are easily calculated and understood with respect to the model
inputs.

The focus of our paper is to derive the above mentioned
properties of the random direction model with either wrap
around or reflection. More specifically, we establish the fol-
lowing for the movement of a fixed population of users either
on the interval [0, 1) or the two-dimensional square [0, 1)2:

• given that at time t = 0 the position and orientation of
users are independent and uniform, they remain uniformly
distributed for all times t > 0 provided the users move
independently of each other;

• given that the movements of users are described by
statistically independent aperiodic and recurrent Marko-
vian mobility models, then over time they will be come
uniformly distributed over their movement space (either
[0, 1) or [0, 1)2);

• we establish a simple relationship between the wrap
around and reflection models that allows one to map
results for one into results for the other.

The remainder of the paper is organized as follows. Section
II introduces the random direction mobility model with its two
variants, wrap around and reflection for the one dimensional
space. It includes some preliminary results, namely statements
and proofs of the result that initial uniform placement of
mobiles is preserved over time and the relationship between
the wrap around and reflection models. For the case of a
one dimensional space, Section III addresses the problem of
when an arbitrary initial configuration converges to a uniform
spatial distribution. Section IV extends the previous results to
a two dimensional square. Section VI describes what ought to
be straightforward extension of our results to other mobility
models. Last, the paper is summarized in Section VII.

A word on the notation in use: throughout {Z(t)}t and
{aj}j stand for {Z(t), t ≥ 0} and {aj , j = 1, 2, . . .},
respectively. For any topological set X, β(X) denotes the
smallest σ-field generated by all subsets of X. Last, �x� is
the largest integer smaller than or equal to x.



II. MOBILITY MODELS ON [0, 1)

We are interested in properties regarding a population of N
mobiles moving on [0, 1). However, as we will soon observe, it
suffices to focus on a single mobile. Consider a mobile moving
on [0, 1) according to the following mobility pattern. At some
random times 0 ≤ T1 < T2 < · · · a new speed and a new
direction (also called orientation) are selected. The selection
of the speed and direction at time Tj (j ≥ 1) initializes the j-
th movement of the mobile. Let τj = Tj+1−Tj , j ≥ 0, be the
duration of the j-th movement (with T0 = 0 by convention).

During the interval [Tj , Tj+1) the mobile travels at constant
speed sj ∈ S, where S is any topological subset of (0,∞).
Typically, S = (σ1, σ2) with 0 < σ1 < σ2 or S =
{σ1, . . . , σk} with σi > 0 for i = 1, . . . , k.

Let θj ∈ {−1,+1} be the new direction selected at time
Tj , j ≥ 1, with θj = +1 (resp. θj = −1) if the mobile is
oriented to the right (resp. left) at time Tj . We denote by θ0

the orientation of the mobile at time t = 0. Define θ(t) as the
direction of the mobile at time t ≥ 0. We assume that θ(t) is
right-continuous, so that θ(Tj) = θj for j ≥ 0. The selection
of the new direction at time Tj , j ≥ 1, is done as follows. Let
γ1, γ2, . . . be {−1,+1}-valued rvs; then

θj = θ(T−
j )γj , j = 1, 2 . . . . (1)

The rv γj is called the relative direction of the mobile at time
Tj , j ≥ 1. The relative direction will remain constant between
two consecutive movements (see Remark 3.1).

We consider two models, the wrap around model and the
reflection model that we describe next.

A. The wrap around model

In the wrap around model, when the mobile hits the
boundary 0 or 1 it reappears instantaneously at the other
boundary. As a result, the direction in which the mobile is
moving remains unchanged between two consecutive move-
ments, namely,

θ(t) =
∑
j≥0

θj 1(Tj ≤ t < Tj+1) (2)

with (see (1))

θj = θj−1γj , j = 1, 2 . . . . (3)

The location X(t) of the mobile at time t satisfies

X(t) = X(Tj)+θjsj(t−Tj)−�X(Tj) + θjsj(t − Tj)� (4)

for Tj ≤ t ≤ Tj+1, j ≥ 0. Note that 0 ≤ X(t) < 1 if
0 ≤ X(0) < 1.

In particular,

xj+1 = xj + θjsjτj − �xj + θjsjτj�, j ≥ 0, (5)

with xj := X(Tj) the location of the mobile at time Tj .
We see from (3) and (4) that, given X(0), θ(0) and

the initial speed s0, the process {(X(t), θ(t)}t is entirely
determined by the movement pattern {(Tj , sj , γj)}j .

B. The model with reflections

The model is identical to the wrap around model, the only
difference being that the direction of the mobile is reversed
after hitting a boundary. If the mobile hits a boundary at time
t, then θr(t), its direction at time t, is such that θr(t) =
−θr(t−).

Similar to the wrap around model, we assume that the
behavior of the mobile is governed by the movement pattern
{(Tj , sj , γj)}j . We represent the state of the mobile in the
model with reflections by the vector (Xr(t), θr(t)), with
Xr(t) being the location of the mobile at time t ≥ 0.

However, unlike the wrap around model, there does not exist
a simple expression like (2) for θr(t). The approach we will
follow to compute the stationary distribution of (Xr(t), θr(t))
will consist, first, in establishing a relationship between the
wrap around model and the model with reflections (see Lemma
2.1), and then will use the results obtained for the former
model (see Section III-B) to develop results for the latter model
(see Section III-C).

C. Link between wrap around and reflection models

The result below establishes a simple pathwise relationship
between the wrap around and reflection models.

Lemma 2.1 (Link between wrap around & reflection):
Consider a reflection model {(Xr(t), θr(t))}t with the move-
ment pattern {(T r

j , sr
j , γ

r
j )}j and the initial speed sr

0.
We construct a wrap around model {(Xw(t), θw(t))}t with

the movement pattern {(Tw
j , sw

j , γw
j )}j and the initial speed

sw
0 such that pathwise τw

j = τ r
j , sw

j = sr
j/2, γw

j = γr
j for all

j ≥ 1 and sw
0 = sr

0/2. In other words, the movement patterns
{(Tw

j , sw
j , γw

j )}j and {(T r
j , sr

j , γ
r
j )}j are pathwise identical

except that the speed of the mobile in the reflection model
is always twice the speed of the mobile in the wrap around
model.

If the relations

Xr(t) =
{

2Xw(t), 0 ≤ Xw(t) < 1/2
2(1 − Xw(t)), 1/2 ≤ Xw(t) < 1 (6)

θr(t) =
{

θw(t), 0 ≤ Xw(t) < 1/2
−θw(t), 1/2 ≤ Xw(t) < 1 (7)

hold at t = 0 then they hold for all t > 0.
�

Proof of Lemma 2.1: Equations (6) and (7) trivially hold
for all t > 0 if they hold at t = 0 from the definition of
each model and from the assumption that the mobile in the
reflection model always moves twice as fast as the mobile in
the wrap around model.

D. A sample path property

We focus on the following question: under what conditions
in either the wrap around or reflection model is the mobile
equally likely to be at any position in [0, 1)? The following
lemma states that if the mobile is equally likely to be anywhere
in [0, 1) at t = 0, then any movement pattern {Tj , sj , γj}j

preserves this at t > 0.



Lemma 2.2 (Preservation of uniform distribution):
Assume that the initial speed s0 of the mobile is fixed and

the movement pattern {Tj , sj , γj}j is deterministic.
If P (X(0) < x, θ(0) = θ) = x/2 for all x ∈ (0, 1] and

θ ∈ {−1, 1}, then

P (X(t) < x, θ(t) = θ) =
x

2

for all x ∈ (0, 1], θ ∈ {−1, 1} and t > 0.
�

The proof of Lemma 2.2 relies on the following technical
lemma, that we will use several times in the following. Its
proof is given in the Appendix.

Lemma 2.3 (Property of the floor function):
For all x ∈ [0, 1] and a ∈ (−∞,∞),∫ 1

0

1{u + a − �u + a� < x} du = x. (8)

�
Proof of Lemma 2.2: We prove it for the wrap around model.

The proof for the reflection model then follows through an
application of Lemma 2.1. By conditioning on the position
X(0) and orientation θ(0) of the mobile at time t = 0, and by
using the assumption that (X(0), θ(0)) is uniformly distributed
over [0, 1)×{−1,+1}, we find from (4) and Lemma 2.3 that

P (X(t) < x, θ(t) = θ) =
1
2

∫ 1

0

1{u + θs0t − �u + θs0t� < x} du =
x

2
(9)

for 0 ≤ t < T1 Consider now the distribution of
(X(T1), θ(T1)). Since θ(T1) = θ(0)γ1 by definition of
the wrap around model, we see from (4) that X(T1) =
X(0)+ θ(0)γ1s1T1 −�X(0) + θ(0)γ1s1T1�. Conditioning on
(X(0), θ(0)), and using again the assumption that this pair of
rvs is uniformly distributed over [0, 1) × {−1,+1}, we find,
similar to the derivation of (9), that P (X(T1) < x, θ(T1) =
θ) = x/2.

This shows that (X(t), θ(t)) is uniformly distributed over
[0, 1) × {−1,+1} for all 0 ≤ t ≤ T1. The proof is concluded
through the following induction argument: assume that the
uniform distribution holds for 0 ≤ t ≤ Ti and let us show
that it still holds for 0 ≤ t ≤ Ti+1. Since (X(Ti), θ(Ti)) is
uniformly distributed over [0, 1) × {−1,+1} from the induc-
tion hypothesis and since θ(Ti+1) = θ(Ti)γi+1 by definition
of the wrap around model, we can reproduce the analysis in
(9) to show that (X(t), θ(t)) is uniformly distributed over
[0, 1)×{−1,+1} for all t ∈ [Ti, Ti+1]. Therefore, the uniform
distribution holds for all t ∈ [0, Ti+1], which completes the
proof.

We have the following corollary:

Corollary 2.1: If N mobiles are uniformly distributed on
the unit interval [0, 1) with equally likely orientations at t = 0,
and if they move independently of each other, then they are
uniformly distributed on the unit interval with equally likely
orientations for all t > 0. �

In the next section we provide conditions under which the
joint distribution of position and direction of a mobile is
uniform over [0, 1) and {−1,+1}.

III. THE STATIONARY DISTRIBUTION OF LOCATION AND

DIRECTION

Now we address the case where the initial placement of the
mobile is not uniform in [0, 1) and determine the conditions
under which the distribution of the mobile position converges
to the uniform distribution. We will show this for the case that
the mobile’s movement is Markovian.

By convention we will assume until throughout this section
that θ1 = γ1.

A. Assumptions and examples

Before introducing this Markovian setting, we introduce the
rvs {ξj}j that take values in the finite set M := {1, 2, . . . ,M}.
These rvs will allow us to represent the state of some un-
derlying Markovian environment (as illustrated in Examples
3.1-3.2), so as to further enrich the model.

We now present the set of probabilistic assumptions placed
on the movement vector {yj := (τj , sj , γj , ξj)}j , yj ∈ Y :=
[0,∞)× S× {−1,+1} ×M. We recall that τj = Tj+1 − Tj ,
j ≥ 0, is the duration of the j-th movement (with T0 by
convention).

Set of assumptions A1:
The movement vector {yj}j is an aperiodic, φ-irreducible

[10, Prop. 4.2.1, p. 87] and Harris recurrent [10, Prop. 4.2.1,
p. 87] discrete-time Markov chain on the state space Y, with
probability transition kernel

Q(y;C) = P (yj+1 ∈ C | yj = y) (10)

for all y = (τ, s, γ,m) ∈ Y, C = B × S × {γ′} × {m′} with
(B,S) ∈ β([0,∞)×S), γ′ ∈ {−1,+1}, m′ ∈ M. We further
assume that {yj}j has a unique invariant probability measure1

q, namely q is the unique solution of the equations

q(C) =
∫
Y

q(dy)Q(y;C), C ∈ β(Y),
∫
Y

q(dy) = 1.

(11)
�

Below, we determine Q(y, C) for Markov Modulated Travel
Times (MMTTs).

Example 3.1 (MMTTs):
Consider a movement vector {yj}j where the consecutive

travel times τ1, τ2 . . . form a Markov modulated sequence:
when ξj = m ∈ M the j-th travel time τj is taken from an
iid sequence {τj(m)}j with probability distribution Gm(·),
namely τj =

∑M
m=1 τj(m)1(ξj = m). We assume that

{τj(m)}j , j = 1, . . . ,M , are mutually independent sequences,
independent of the rvs {sj , γj , ξj}j .

1Under the assumptions placed on {yj}j we already know that it has
a unique invariant measure (up to a multiplicative constant). A sufficient
condition for this measure to be finite – and therefore for an invariant
probability measure to exist – is that there exists a petite set [10, p. 121]
such that the expected return to this petite set is uniformly bounded [10,
Theorem 10.0.1, p. 230].



We further assume that the sequences {ξj}j and {sj , γj}j

are mutually independent. The latter assumption, together with
assumptions A1, implies that {ξj}j and {sj , γj}j are both
Markov chains. Let R(m;m′) = P (ξj+1 = m′ | ξj = m),
m,m′ ∈ M be the one-step probability transition of the
Markov chain {ξj}j and K(s, γ;S × {γ′}) = P (sj+1 ∈
S, γj+1 = γ′ | sj = s, γj = γ), S ∈ β(S), s ∈ S,
γ, γ′ ∈ {−1,+1}, the probability transition kernel of the
Markov chain {sj , γj}j .

Then, the probability transition kernel Q(y, C) of the
Markov chain {yj}j writes (see (10))

Q(y;C) = Gm′(B)K(s, γ;S × {γ′})R(m;m′) (12)

for all y = (τ, s, γ,m) ∈ Y, C = B × S × {γ′} × {m′} with
(B,S) ∈ β([0,∞) × S), γ′ ∈ {−1,+1}.

In the particular case when M = 1 the travel times {τj}j

are iid rvs.
�

Still in the context of MMTTs, we now introduce two
models where assumptions A1 are satisfied.

Example 3.2 (MMTTs – Continued):
Consider the model in Example 3.1. Let us place additional

conditions on the transition kernel Q in (12) so that assump-
tions in A1 are met.

(i) Consider first the situation where the set of available
speeds is countable. Assume that the sequences of speeds
{sj}j and relative directions {γj}j are mutually independent
Markov chains, with probability transition kernels Ksp(s; s′)
and Krd(γ; γ′), respectively. Therefore

Q(y;C) = Gm′(B)Ksp(s; s′)Krd(γ; γ′)R(m;m′)

for y = (τ, s, γ,m) ∈ Y and C = B ×{s′}× {γ′}× {m′} ∈
β(Y).

Assume further that travel times have a density and finite
expectation (i.e.

∫∞
0

(1 − Gm(t)) dt < ∞ for every m ∈
M), and that the (mutually independent) finite-state space
Markov chains {sj}j , {γj}j and {ξj}j are all irreducible and
aperiodic. Therefore, each of them admits a unique invariant
distribution, denoted by πs, πr and πe, respectively.

Under these assumptions, the Markov chain {yj}j is ape-
riodic, φ-irreducible and Harris recurrent, with the unique
invariant probability measure q given by

q(B × {σ} × {γ} × {m}) = Gm(B)πs(σ)πr(γ)πe(m)

for all B ∈ β([0,∞)), s ∈ S, γ ∈ {−1,+1}, m ∈ M.
(ii) Consider now the situation where the set of speeds S is

non-countable. Assume that {sj}j is an iid sequence of rvs,
with common probability distribution H and finite expectation
in case the set S is infinite. We place the same assumptions on
the travel time, relative direction and environment sequences
as in (i) above.

Then, the Markov chain {yj}j is aperiodic, φ-irreducible
and Harris recurrent, and has a unique invariant probability
measure q given by

q(B × S × {γ} × {m}) = G(B)H(S)πr(γ)πe(m)

for all B ∈ β([0,∞)), s ∈ β(S), γ ∈ {−1,+1}, m ∈ M.
More general scenarios can easily be constructed.

�
We now proceed with the wrap around model and end the

section with extensions to the reflection model.

B. Wrap around model

We introduce some more notation. Let
• R(t) :=

∑
j≥0(Tj+1 − t)1(Tj ≤ t < Tj+1)

• S(t) :=
∑

j≥0 sj1(Tj ≤ t < Tj+1)
• γ(t) :=

∑
j≥0 γj1(Tj ≤ t < Tj+1)

• ξ(t) :=
∑

j≥0 ξj1(Tj ≤ t < Tj+1)
be the remaining travel time, the mobile’s speed, the relative
direction and the state of the environment, respectively, at time
t, where by convention γ0 = 1 and ξ0 = 1.

The state of the system at time t is represented by the vector

Z(t) := (X(t), θ(t), Y (t))

taking values in the set Z := [0, 1) × {−1,+1} × Y, where
Y (t) := (R(t), S(t), γ(t), ξ(t)). Recall that X(t) is the
position of the mobile at time t (given in (4)) and θ(t) is
the orientation of the mobile at time t (see (2)). Observe that
{Z(t)}t is a Markov process.

Define zj := Z(Tj) the state of the system at time Tj ,
namely, zj = (xj , θj , yj). The next result shows that the
process {zj}j inherits the Markovian structure of {yj}j .

Lemma 3.1 (Probability transition kernel of {zj}j):
Under assumptions A1 {zj}j is Markov chain on Z, with

probability transition kernel P (z;A), z ∈ Z, A ∈ β(Z), given
by

P (z;A) = (13)

1 {x + θsτ − �x + θsτ� ∈ U, θ′ = θγ′}Q(y;C)

for all z = (x, θ, y) ∈ Z with y = (τ, s, γ,m), A = U×{θ′}×
B×S×{γ′}×{m′} with (U,B, S) ∈ β([0, 1)× [0,∞)×S),
γ′ ∈ {−1,+1}, m′ ∈ M, and C = B × S × {γ′} × {m′}.

�
The proof of Lemma 3.1 is given in the Appendix.

The rest of this section is devoted to the computation of the
limiting distribution of {Z(t)}t. Below is the main result of
this section:

Proposition 3.1 (Limiting distribution of {Z(t)}t):
Assume that (i) assumptions A1 hold, (ii) the Markov chain
{zj}j is aperiodic and φ-irreducible, and (iii) the expected
travel time

τ :=
∫ ∞

0

(1 − q([0, t) × S × {−1,+1} × M)) dt (14)

is finite.
Then, the limiting distribution of the process {Z(t)}t exists,

is independent of the initial state, and is given by

lim
t→∞P (Z(t) ∈ A) (15)

=
u

2 τ

∫ τ ′

0

(1 − q([0, t) × S × {γ′} × {m′})) dt



for all A = [0, u) × {θ′} × [0, τ ′) × S × {γ′} × {m′}, with
θ′, γ′ ∈ {−1,+1}, m′ ∈ M, u ∈ (0, 1], τ ′ > 0, S ∈ β(S).

�
The proof of Proposition 3.1 can be found after the proof

of Proposition 3.3.
A direct consequence of Proposition 3.1 is that in steady-

state the mobile is equally likely to be anywhere in [0, 1), with
equally likely orientations. More precisely:

Proposition 3.2 (Unif. distr. of location & direction):
Assume that (i) assumptions A1 hold, (ii) the Markov chain
{zj}j is aperiodic and φ-irreducible, and (iii) the expected
travel time τ (given in (14)) is finite.

Then,

lim
t→∞P (X(t) < u, θ(t) = θ) =

u

2
(16)

for all u ∈ (0, 1] and θ ∈ {−1,+1}, for any initial position
and direction.

�
Proof of Proposition 3.2: For all u ∈ (0, 1], θ ∈ {−1,+1},

we have from (15)

lim
t→∞P (X(t) < u, θ(t) = θ) =

u

2τ

∑
γ∈{−1,+1}

m∈M∫ ∞

0

(1 − q([0, t) × S × {γ} × {m})) dt

=
u

2 τ

∫ ∞

0

(1 − q([0, t) × S × {−1,+1} × M)) dt

=
u

2
.

Propositions 3.1 and 3.2 hold under a number of assump-
tions. We have already given two examples where assumptions
A1 hold (see Example 3.2). The Markov chain {zj}j will be
aperiodic and φ-irreducible if travel times or speeds have a
density (which implies that τjsj , the distance to travel during
the interval [Tj , Tj+1), can take a continuum of values), which
covers most cases of practical interest. These assumptions will
also hold if Q(y, C) > 0 for all y ∈ Y and C ∈ β(Y).

The next result addresses the invariant distribution of the
Markov chain {zj}j . It will be used to prove Proposition 3.1

Proposition 3.3 (Invariant distribution of {zj}j):
Assume that assumptions A1 hold and that the Markov

chain {zj}j is φ-irreducible. Then, {zj}j admits a unique
invariant probability measure p, given by

p(A) =
u

2
q(C) (17)

for all A = [0, u)×{θ′}×B×S×{γ′}×{m′}, with (B,S) ∈
β([0,∞) × S), θ′, γ′ ∈ {−1,+1}, m′ ∈ M, u ∈ (0, 1).

�
Proof of Proposition 3.3: We first show that p is an invariant

probability measure. Take A = [0, u)×{θ′}×B×S×{γ′}×

{m′}. With (13) we find∫
Z

p(dz)P (z;A)

=
1
2

∑
θ∈{−1,+1}

1{θ′ = θγ′}
∫

y∈Y

Q(y, C)

×
(∫ 1

0

1{x + θsτ − �x + θsτ� < u} dx

)
q(dy)

=
u

2

∫
Y

q(dy)Q(y;C) =
u

2
q(C) = p(A), (18)

where the last three equalities follow from Lemma 2.3, (11)
and (17), respectively. Moreover∫

Z

p(dz) =
∑

θ∈{−1,+1}

∫ 1

0

dx

2

∫
Y

q(dy) = 1

from (11), which shows with (18) that p is an invariant
probability measure.

The uniqueness of the invariant probability measure is a
consequence of the assumption that the Markov chain {zj}
is φ-irreducible and of the fact that its admits an invariant
probability measure. This implies (by definition, see [10, p.
230]) that it is positive, and therefore Harris recurrent [10,
Theorem 10.1.1, p. 231]. The uniqueness result now follows
from the fact that a Harris recurrent Markov chain admits
a unique invariant measure (up to a multiplicative constant)
[10, Theorem 10.0.1, p. 230]. This shows that p in (17) is
necessarily the unique invariant probability measure of the
Markov chain {zj}j .

We are now in position to prove Proposition 3.1.

Proof of Proposition 3.1: Consider the stationary version of
the Markov chain {yj}j (which exists under assumptions A1).
In particular, the sequence of travel times {τj}j is stationary
and ergodic, the latter property being a consequence of the
assumption that the expected travel time τ is finite.

We may therefore apply the Palm formula to the (Markov)
process {Z(t)}t [1, Formula 4.3.2], which yields

lim
t→∞P (Z(t) ∈ A) =

1
E0[T2]

E0

[∫ T2

0

1{Z(t) ∈ A} dt

]
(19)

for all A ∈ β(Z), independent of the initial condition Z(0). In
(19), the symbol E0 denotes the expectation operator under the
Palm measure w.r.t. the sequence {Tj}j (i.e. the expectation
operator conditioned on the event {T1 = 0}). Hence E0[T2]
is equal to the stationarty expected travel times, i.e.

E0[T2] = τ . (20)

As already discussed in the proof of Proposition 3.3 we
know that the Markov chain {zj}j is Harris recurrent, in
addition (by assumption) to being aperiodic and φ-irreducible.
We have also shown in Proposition 3.3 that {zj}j admits
a unique invariant probability measure on Z. We may then
conclude from the aperiodic ergodic theorem [10, Theorem



13.0.1-(ii), p. 309] that the stationary distribution of {zj}j

coincides with its invariant probability measure, i.e.

lim
j→∞

P (zj ∈ A | z1 = z) = p(A), A ∈ β(Z), (21)

for every initial condition z ∈ Z (see e.g. [10, Theorem 13.0.1,
p. 309]).

Take A ∈ β(Z) as in the statement of the proposition. By
conditioning in the r.h.s. of (19) on the state of the stationary
version of the Markov chain {zj}j and by using (21) and (17),
we find that

E0

[∫ T2

0

1{Z(t) ∈ A} dt

]
(22)

=
u

2

∫ τ ′

0

(1 − q([0, t) × S × {γ′} × {m′})) dt.

The proof of (22) is given in the Appendix. The proof of
Proposition 3.1 is completed by combining (19), (20) and (22).

C. Reflection model

Consider a reflection model with the movement vector
{yr

j = (τ r
j , sr

j , γ
r
j , ξr

j )}j with state space Yr := [0,∞)× S×
{−1,+1} × M. We assume that {yr

j}j satisfies assumptions
A1. Let Zr(t) = (Xr(t), θr(t), Rr(T ), Sr(t), γr(t), ξr(t)) ∈
[0, 1) × {−1,+1} × Yr be the state of the mobile at time t,
where the definition of Zr(t) is similar to that of Z(t) in the
wrap around model.

Following Lemma 2.1, we construct another movement
vector {yw

j = (τw
j , sw

j , γw
j , ξw

j )}j with state space Yw :=
[0,∞) × S/2 × {−1,+1} × M which satisfies assumptions
A1 and such that pathwise τw

j = τ r
j , sw

j = sr
j/2, γw

j = γr
j

and ξw
j = ξr

j for all j ≥ 1 (such a construction is always
possible). Let qw be the the invariant probability measure of
the Markov chain {yw

j }j . Let

τw =
∫ ∞

0

(1−qw([0, t)× (1/2)S×{−1,+1}×M))dt (23)

be the expected travel time associated with the movement
vector {yw

j }j . With the movement vector {yw
j }j we construct

a wrap around model {Zw(t)}t ∈ [0, 1)×{−1,+1}×Yw as
in Section III-B. Let zw

j be the state of the mobile at time Tj

in this wrap around model.
The following result holds:

Proposition 3.4 (Stationary mobile’s behavior): Assume
that the Markov chain {zw

j }j is aperiodic and φ-irreducible,
and the expected travel time τw in (23) is finite.

Then,

lim
t→∞P (Zr(t) ∈ A) =

u

2 τw
(24)

×
∫ τ

0

(1 − qw([0, t) × (1/2)S × {γ} × {m})) dt

for all A = [0, u)×{θ}×[0, τ)×S×{γ}×{m} with u ∈ (0, 1],
θ, γ ∈ {−1,+1}, τ > 0, S ∈ β(S) and m ∈ M.

In particular,

lim
t→∞P (Xr(t) < u, θr(t) = θ) =

u

2
(25)

for all u ∈ (0, 1] and θ ∈ {−1,+1}.
�

Proof of Proposition 3.4: Take the set A as in the statement
of the proposition. With (6)-(7) we find

P (Zr(t) ∈ A) = P (Zr(t) ∈ A, 0 < Xw(t) < 1/2)
+P (Zr(t) ∈ A, 1/2 ≤ Xw(t) < 1)

= P (Xw(t) < u/2, θw(t) = θ′, Rw(t) < τ,

Sw(t) ∈ (1/2)S, γw(t) = γ, ξw(t) = m′)
+P (Xw(t) > 1 − u/2, θw(t) = −θ,Rw(t) < τ,

Sw(t) ∈ (1/2)S, γw(t) = γ, ξw(t) = m).

By letting t → ∞ in the above equation and then using (15)
(with Z(t) = Zw(t), q = qw, τ = τw) we find (24).

To derive (25) sum up the r.h.s. of (15) over all values of
m′ ∈ M and θ′ ∈ {−1,+1}, set S = S, let τ ′ → ∞ and use
the definition of τw.

In particular, Proposition 3.4 shows that (see (25)), like the
wrap around model, the location and the orientation of the
mobile in the reflection model are uniformly distributed in
steady-state on [0, 1) and {−1,+1}, respectively.

Remark 3.1: All the results in Sections II and III also hold
if the relative direction is additive, namely, if θj = (θj−1 +
γj) mod 2 with γj ∈ {0, 1}, where γj = 0 (resp. γj = 1) if
the direction at time Tj is not modified (resp. is reversed). �

IV. MOBILITY MODELS ON [0, 1)2

In this section we extend the analysis of Sections II and III
to dimension 2 (2D). More precisely, we will assume that the
mobile evolves in the square [0, 1)2. We begin with the wrap
around model.

A. The wrap around model in 2D

The movement vector {yj = (τj , sj , γj , ξj)}j in [0, 1)2 is
similar to the movement vector for the mobility models on
[0,1) (referred to as 1D) except for the fact that the relative
direction γj is additive (see (26)) and takes values in [0, 2π).
Hence, the state space of yj is now the set Y� := [0,∞) ×
S×[0, 2π)×M (we use the subscript 	 to distinguish between
some sets in 1D and in 2D; other than that we use the same
notation as in the 1D case – for the movement vector, state of
the system, etc.– as no confusion is possible between 1D and
2D models).

At the beginning of the j-th movement (i.e. at time Tj),
the state of the system is represented by the vector zj =
(xj , θj , yj) taking values in the set Z� := [0, 1)2 × [0, 2π) ×
Y�. During the time-interval [Tj , Tj+1) the mobile travels at
constant speed sj and in direction

θj = θj−1 + γj − 2π�(θj−1 + γj)/(2π)�. (26)



The direction θ(t) ∈ [0, 2π) of the mobile at time t is given
by (with T0 = 0 by convention)

θ(t) =
∑
j≥0

θj 1{Tj ≤ t < Tj+1}. (27)

When the mobile hits a boundary in some dimension,
it wraps around and reappears instantaneously at the other
boundary in that dimension (see Fig. 1: the mobile starts in
position A and moves in the direction θ until it reaches the
boundary at point B; then, it wraps around to instantaneously
reappear in C, and keeps moving in the direction θ until it
reaches D. A new movement begins in direction φ, that leads
the mobile to E, where it wraps around again and reappears
in F with the same orientation φ. This movement ends in G).

B

F

E

φ

φ

C

θ

θ

D

A

G

Fig. 1. Wrap around model in 2D

Let X(t) = (X1(t),X2(t)) ∈ [0, 1)2 be the location of the
mobile at time t. We have

X(t) = X(Tj) + sj(t − Tj)(cos θj , sin θj) (28)

−�X(Tj) + sj(t − Tj)(cos θj , sin θj)�
for Tj ≤ t < Tj+1, j ≥ 0. Here �x� = (�x1�, �x2�). In
particular,

xj+1 = xj + sjτj(cos θj , sin θj)
−�xj + sjτj(cos θj , sin θj)�, j ≥ 0, (29)

where xj := X(Tj).
We start the analysis with the analog of Lemma 2.2 in 2D.

The lemma shows that, like in 1D, if the position and direction
of the mobile are uniformly distributed on [0, 1)2 × [0, 2π) at
time t = 0, then this property is preserved at any time.

Lemma 4.1 (Preservation of uniform distr. in 2D):
Assume that s0, the initial speed of the mobile, is fixed and
assume that the movement pattern {Tj , sj , γj}j is determinis-
tic.

If P (X1(0) < u1,X2(0) < u2, θ(0) < θ) = u1u2θ/2π for
all u1, u2 ∈ (0, 1] and θ ∈ (0, 2π], then

P (X1(t) < u1,X2(t) < u2, θ(t) < θ) =
u1u2θ

2π
(30)

for all u1, u2 ∈ (0, 1], θ ∈ (0, 2π] and t > 0.
�

Proof of Lemma 4.1: By conditioning on the position X(0)
and direction θ(0) of the mobile at time t = 0, and by using
the assumption that (X(0), θ(0)) is uniformly distributed on
[0, 1)2 × [0, 2π), we find from (29) that for 0 ≤ t < T1

P (X1(t) < u1,X2(t) < u2, θ(t) < θ)

=
1
2π

∫ θ

φ=0

2∏
i=1

(∫ 1

xi=0

1{xi + s0t cos(φ) −

�xi + s0t cos(φ)� < ui}dxi

)
dφ

=
u1u2θ

2π

where the latter equality follows from Lemma 2.3.
When t = T1, we have

P (X1(T1) < u1,X2(T1) < u2, θ(T1) < θ)

=
1
2π

∫ 2π

φ=0

2∏
i=1

(∫ 1

xi=0

1{xi + s0t cos(θ(φ)) −

�xi + s0t cos(θ(φ))� < ui}dxi

)
1{θ(φ) < θ}dφ

= u1u2
1
2π

∫ 2π

0

1{θ(φ) < θ}dφ (31)

from Lemma 2.3, where θ(φ) := φ+γ1−2π�(φ + γ1)/(2π)�
is the direction at time T1 given that θ(0) = φ.

Letting t = φ/2π in the integral in the r.h.s. of (31) gives

1
2π

∫ 2π

0

1{θ(φ) < θ}dφ

=
∫ 1

0

1
{

γ1/2π + t − �γ1/2π + t� <
θ

2π

}
dt

=
θ

2π
(32)

by using again Lemma 2.3. Hence, we have shown that (30)
holds for all t ∈ (0, T1] if it holds at t = 0. The proof is
concluded by using the same induction argument as in the
proof of Lemma 2.2.

We have the following corollary:

Corollary 4.1: If N mobiles are uniformly distributed on
[0, 1)2 with equally likely orientations at t = 0, and if they
move independently of each other, then they are uniformly
distributed on [0, 1)2 with equally likely orientations for all
t > 0. �

Set of assumptions A2:
The movement vector {yj}j is an aperiodic, φ-irreducible

and Harris recurrent Markov chain on Y�, with probability



transition kernel Q(y;C), for all y = (τ, s, γ,m) ∈ Y�, C =
B × S × Γ× {m′} with (B,S,Γ) ∈ β([0,∞)× S× [0, 2π)),
m′ ∈ M. We further assume that {yj}j has a unique invariant
probability measure q.

�
Observe that the set of assumptions A2 is identical to the

set of assumptions A1, except that the relative directions now
take values in [0, 2π).

Lemma 4.2 (Probability transition {zj}j):
Under assumptions A2 {zj}j is a Markov chain on Z�, with

probability transition kernel P (z;A), z ∈ Z�, A ∈ β(Z�),
given by

P (z;A) = 1{x + sτ(cos θ, sin θ)
−�x + sτ(cos θ, sin θ)� ∈ U}
×
∫

Γ

1 {γ + θ − 2π�(γ + θ)/(2π)� ∈ V }
×Q(y;B × S × dγ × {m′}) (33)

for all z = (x, θ, y) ∈ Z� with y = (τ, s, γ,m), A = U ×V ×
B × S × Γ × {m′}, with (U, V,B, S) ∈ β([0, 1)2 × [0, 2π) ×
[0,∞) × S) and m′ ∈ {1, 2, . . . ,M}.

�
The proof is identical to the proof of Lemma 3.1 and is
therefore omitted.

Similar to the 1D case we represent the state
of the system at time tby the vector Z(t) =
(X(t), θ(t), R(t), S(t), γ(t), ξ(t)) ∈ Z�, where components
R(t), S(t), γ(t) and ξ(t) are defined like in 1D (see beginning
of Section III-B). Below is the main result of this section.

Proposition 4.1 (Uniform distributions in 2D):
Assume that (i) assumptions A2 hold, (ii) the Markov chain

{zj}j is aperiodic and φ-irreducible, and (iii) the expected
travel time

τ� :=
∫ ∞

0

(1 − q([0, t) × S × [0, 2π) × M)) dt (34)

is finite.
Then,

lim
t→∞P (Z(t) ∈ A) =

u1u2v

2π τ�
(35)

×
∫ τ ′

0

(1 − q([0, t) × S × Γ × {m′})) dt

for all A = [0, u1)×[0, u2)×[0, v)×[0, τ ′)×S×Γ×{m′} with
u1, u2 ∈ (0, 1], v ∈ (0, 2π], τ ′ > 0, (S,Γ) ∈ β(S × [0, 2π)),
and m′ ∈ M.

In particular,

lim
t→∞P (X1(t) < u1,X2(t) < u2, θ(t) < v) =

u1u2v

2π
(36)

for all u1, u2 ∈ (0, 1], v ∈ (0, 2π], and for any initial position
and direction.

�
The proof of Proposition 4.1 (similar to the proof of

Proposition 3.1 in 1D) is sketched in the Appendix.

B. Reflection model in 2D

The model is identical to the wrap around model in 2D, the
only difference being that the mobile is reflected when it hits
a boundary. If the mobile hits a boundary at time t, then its
direction θr(t) at time t is such that θr(t) = θr(t−)+π/2 mod
2π (i.e. the incidence angle is equal to the reflection angle –
see Fig. 2).

θ

π/2+θ

Same angles

Fig. 2. Reflections in 2D

Similar to the 1D case, there exist simple relations between
wrap around and reflection models, as shown in the lemma
below.

Lemma 4.3 (Wrap around vs. reflection in 2D):
Consider a reflection model {(Xr(t), θr(t))}t, with

Xr(t) = (Xr
1 (t),Xr

2 (t)), in 2D with movement vector {yr
j =

(τ r
j , sr

j , γ
r
j , ξr

j )}j .
We construct a wrap around model {(Xw(t), θw(t))}t,

Xw(t) = (Xw
1 (t),Xw

2 (t)), with movement vector {yw
j =

(τw
j , sw

j , sw
j , ξw

j )}j such that pathwise τw
j = τ r

j , sw
j = sr

j/2,
γw

j = γr
j and ξw

j = ξr
j for all j ≥ 1. In other words, yw

j and
yr

j are pathwise identical except that the speed of the mobile
in the reflection model is always twice the speed of the mobile
in the wrap around model.

If the relations (i = 1, 2)

Xr
i (t) =

{
2Xw

i (t), 0 ≤ Xw
i (t) < 1/2;

2(1 − Xw
i (t)), 1/2 ≤ Xw

i (t) < 1,

θr(t) =




θw(t),
Xw(t) ∈ [0, 1/2)2;

2π − θw(t),
Xw(t) ∈ [0, 1/2) × [1/2, 1);

3π − θw(t) − 2π�3/2 − θw(t)/2π�,
Xw(t) ∈ [1/2, 1) × [0, 1/2);

π + θw(t) − 2π�1/2 + θw(t)/2π�,
Xw(t) ∈ [1/2, 1)2,

hold at t = 0, then they hold for all t > 0.
�

The proof of Lemma 4.3 (omitted) follows from the definition
of the wrap around and reflection models.

Consider a reflection model {(Xr(t), θr(t))}t in 2D with
movement vector {yj}j , yj ∈ Y� := [0,∞) × S × [0, 2π) ×



M, such that assumptions A2 hold. Following Lemma 4.3,
we construct a wrap around model {(Xw(t), θw(t))}t with
movement vector {yw

j }j , yw
j ∈ Yw

� := [0,∞)×S/2×[0, 2π)×
M, such that assumptions A2 hold (such a construction is
always possible). Let Qw and qw be the probability transition
kernel and invariant distribution measure, respectively, of the
Markov chain {yw

j }j and let

τw
� :=

∫ ∞

0

(1 − qw([0, t) × (1/2)S × [0, 2π) × M)) dt (37)

be the expected travel time associated with the movement vec-
tor {yw

j }j . Last, we denote by zw
j := (Xw(Tj), θw(Tj), yw

j )
the state of the wrap around model at time Tj .

The next result shows (in particular) that the model with
reflection yields a uniform distribution of the position and of
direction of the mobile in steady-state.

Proposition 4.2 (Stationary mobile’s behavior):
Assume that the Markov chain {zw

j }j defined above is
aperiodic and φ-irreducible and τw

� < ∞.
Then,

lim
t→∞P (Zr(t) ∈ A) =

u1u2v

2π τw
�

×
∫ τ

0

(1 − qw([0, t) × (1/2)S × Γ × {m})) dt

for all A = [0, u1)×[0, u2)×[0, v)×[0, τ)×S×Γ×{m} with
u1, u2 ∈ (0, 1], v ∈ (0, 2π], τ > 0, (S,Γ) ∈ β(S × [0, 2π)),
and m ∈ M.

In particular,

lim
t→∞P (Xr

1 (t) < u1,X
r
1 (t) < u2, θr(t) < v) =

u1u2v

2π

for all u1, u2 ∈ (0, 1], v ∈ (0, 2π], and for any initial position
and direction.

�
The proof is analogous to the proof of Proposition 3.4 [Hint:

condition on the values of Xw(t) and use Proposition 4.1] and
is omitted.

We conclude this section by briefly discussing the assump-
tions under which Propositions 4.1 and 4.2 hold. Assump-
tions A2 will hold (in particular) in the models described
in Example 3.2 if we replace the assumptions made on the
relative directions {γj}j with values in {−1,+1} by the
assumptions that {γj}j is an aperiodic, φ-irreducible, Harris
recurrent Markov chain on [0, 2π), with probability transition
kernel Krd(γ; Γ) and invariant probability distribution πrd

(the latter assumptions will hold if (in particular) {γj}j is a
renewal sequence, with a common probability distribution that
has a density w.r.t. the Lebesgue measure). The assumptions
related to the aperiodicity and φ-irreducibility of the Markov
chain {zj}j in Proposition 4.1 (resp. {zw

j }j in Proposition
3.4) will hold, for instance, if we travel times or speeds have a
density, or if the transition kernel Q (resp. Qw) of the Markov
chain {yj}j (resp. {yw

j }j) is such that Q(y, C) > 0 (resp.
Qw(y, C) > 0) for all y and C.

V. APPLICATION TO SIMULATION

In the spirit of [9], we describe how to start the random
direction model with wrap around in the stationary regime
under the assumptions that {τj}j are modulated by a finite
state Markov process, the speeds {sj}j and relative directions
{γj}j are independent iid sequences independent of {τj}j .
Let R = [R(i; j)] denote the transition probability matrix
associated with the modulating process with stationary dis-
tribution πe. Let Gm(x) = P (τj < x | ξj = m) denote the
conditional distribution function of τj given the modulating
process is in state m ∈ M. Let H(x) = P (sj < x) and
D(x) = P (γj < x), 0 ≤ x < 2π. In the case of N users,
each one is initialized independently of the other. Apply the
following procedure to each user where {ui}7

i=1 is a set of
independent uniformly distributed random variables each in
[0, 1):
Position and direction at t = 0: (X1(0),X2(0), θ(0)) =
(u1, u2, 2πu3).
Speed and relative direction at t = 0: (S(0), γ(0)) =
(H−1(u4),D−1(u5)). Here H−1(·) and D−1(·) are the in-
verses of H(·) and D(·), respectively.

State of modulating process and remaining time until move-
ment change: Label states of modulating process 1, 2, . . . ,M .
Then ξ(0) is given by

ξ(0) = arg min{l : u6 <

∑l
i=1 πe(l)τ̄ l)∑
n πe(n)τ̄n)

, l = 1, . . . , M}

where τ̄ (m) = E[τj | ξj = m] for m = 1, . . . , M . The
remaining time R(0) is given as R(0) = F−1

ξ(0)(u7) where
F−1

m (·) is the inverse of Fm(x) = 1
τ̄m

∫ x

0
(1 − Gm(y))dy.

An ns-2 module implementing this is available from the
authors.

VI. EXTENSION OF THE RESULTS

The results presented in Sections II - IV extend in a number
of different directions.

• users can have non-identical mobility models,
• pause times are easily accounted for,
• the space can be [0, d1) × [0, d2),
• the results apply to other spaces including d-dimensional

hypercubes, the most interesting of which is a 3-
dimensional cube, d-dimensional hyperspheres, the sur-
face of a d-hypersphere, including the surface of a sphere.

VII. SUMMARY

In this paper we derived properties of the random direction
mobility model, which is commonly used in studies con-
cerning mobile ad hoc networks. In particular, we derived a
simple relationship between the wrap around and reflection
variants of the random direction models. We then showed that
if users are uniformly distributed in their movement space,
they remain so for arbitrary movement patterns. Furthermore,
we showed, for a class of Markovian movement patterns that
users converge to a uniform spatial distribution and are equally



likely to be pointed in any direction regardless of their initial
positions. These results were established for the one and two-
dimensional spaces [0, 1) and [0, 1)2.

APPENDIX

Proof of Lemma 2.3: With the the change of variable t =
x + a in the l.h.s. of (8) we find∫ 1

0

1{x + a − �x + a� < u}dx =
∫ 1+a

a

1{t − �t� < u}dt.

Assume first that a = n is an integer. Then �t� = n for
t ∈ [a, 1+a) and

∫ 1+a

a
1{t−�t� < u}dt = u =

∫ 1+n

n
1{t <

u + n}dt = u.
Assume now that a is not an integer. Therefore, there exists

an integer n = �a� and 0 < ε < 1 such that a = n + ε.
Since �t� = n for t ∈ [n + ε, n + 1) and �t� = n + 1 for
t ∈ [n + 1, n + 1 + ε), we have∫ 1+a

a

1{t − �t� < u} dt

=
∫ n+1

n+ε

1{t < u + n} dt

+
∫ n+1+ε

n+1

1{t < u + n + 1} dt

= (u − ε)1{u ≥ ε} + min(u, ε) = u.

Proof of Lemma of 3.1: For z = (x, θ, y) and A as defined
in the statement of the lemma, we have by using (3) and (5)

P (z;A) = P (x + θsτ − �x + θsτ� ∈ U,

θj+1 = θγ′, yj+1 ∈ C |xj = x, θj = θ, yj = y)
= 1 {x + θsτ − �x + θsτ� ∈ U, θ′ = θγ′}

×P (yj+1 ∈ C |xj = x, θj = θ, yj = y). (38)

Also note that the event {θj = θ, γj = γ} in the r.h.s. of (38)
can be replaced by the event {θj−1 = θ/γ, γj = γ} since
θj = θj−1γj . This gives

P (z;A) = 1 {x + θsτ − �x + θsτ� ∈ U, θ′ = θγ′}
×P (yj+1 ∈ C|xj = x, θj−1 =

θ

γ
, yj = y). (39)

The assumption that {yj}j is a Markov chain, added to the fact
that xj and θj−1 are both measurable w.r.t. {yk}j−1

k=1, implies
that we can remove the conditioning on (xj , θj−1) in the r.h.s.
of (39). Hence, from (10),

P (z;A) =
1 {x + θsτ − �x + θsτ� ∈ U, θ′ = θγ′}Q(y;C).

Proof of (22):

E0

[∫ T2

0

1{Z(t) ∈ A} dt

]
=

1
2

∫ 1

x=0

∫ ∞

τ=0

∫
s∈S

∫ τ

t=0

1{x + θ′st − �x + θ′st� < u}1{R(t) < τ ′}
×dt q(dτ × ds × {γ′} × {m′}).

Since
∫ 1

0
1{x+θ′st−�x + θ′st� < u}dx = u by Lemma 2.3,

we find

E0

[∫ T2

0

1{Z(t) ∈ A} dt

]
=

u

2

∫ ∞

τ=0

∫
s∈S

∫ τ

t=0

1{R(t) < τ ′}dt q(dτ × ds × {γ′} × {m′})
=

u

2

∫ ∞

t=0

∫ ∞

τ=0

1{t < τ < t + τ ′}
×q(dτ × S × {γ′} × {m′}) dt

=
u

2

∫ τ ′

0

(1 − q([0, t) × S × {γ′} × {m′})) dt,

which completes the proof.

Proof of Proposition 4.1: We only sketch the proof of (35)
as it is similar to the proof of the corresponding result in 1D
(see Proposition 3.1).

The first step is to show that p(A) := u1u2v
2π q(C), A =

[0, u1) × [0, u2) × [0, v) × C, C ∈ β(Y�), is an invariant
measure of the Markov chain {zj}j . By using Lemma 4.2 we
find∫

Z�

p(dz)P (z;A) =
1
2π

∫
y=(τ,s,γ,m)∈Y�

q(dy)

×
(∫

φ∈Γ

Q∗(y,B × S × dφ × {m′})

×
∫ 2π

θ=0

[
1{θ + φ − 2π�(θ + φ)/2π < v�}

×
2∏

i=1

∫ 1

xi=0

1{xisτ cos θ − �xisτ cos θ� < ui}dxi

×dθ

])
(40)

for A = [0, u1) × [0, u2) × [0, v) × B × S × Γ × {m′} ∈
β(Z�). By Lemma 2.3 the product

∏2
i=1 . . . is equal to u1u2;

therefore, the integral
∫ 1

θ=0
. . . is equal to v/2π [Hint: same

argument as the one used to derive (32)] and from this it is
easily seen that the remaining terms are equal to q(C) [Hint:
by A2

∫
Y�

q∗(dy)Q(y, C) = q∗(C), for all C ∈ β(Y�)].
This shows that, as announced, the l.h.s. of (40) is equal to
p(A) = u1u2v

2π q(C).
The second step is to use (similarly to the derivation of

(21)) the aperiodic ergodic theorem to conclude that, under
the assumptions of the proposition, the limiting distribution of
{zj}j coincides with its (unique) invariant measure p, that is

lim
j→∞

P (zj ∈ A | z1 = z) =
u1u2v

2π
q(C) (41)

for all z ∈ Z�, A = [0, u1) × [0, u2) × [0, v) × C, with C ∈
β(Y�).

The third step is to apply the Palm formula to the process
{Z(t)}t, which gives

lim
t→∞P (Z(t) ∈ A) =

1
E0[T2]

E0

[∫ T2

0

1{Z(t) ∈ A}dt

]
.

(42)



The use of the Palm formula is justified under the assumptions
of the proposition (see the proof of Proposition 3.1 where the
same argument has been used).

The fourth step of the proof of (35) consists in conditioning
on the stationary distribution of {zj}j (given in (41)) in the
r.h.s. of (42), in direct analogy with the proof of (22). Easy
algebra then yield (35).

The proof of (36) is routinely obtained from (35) (see the
proof of Proposition 3.2).
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