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Abstract

In this paper, we show how the analyses of Markov Modulated Rate Processes can be used
to address the problem of computing the distribution of W, the stationary workload in the
MMPP/GI/1 queue. Using the results of papers by Anick, Mitra and Sondhi (1982), Mitra
(1988), and Elwalid, Mitra and Stern (1991), we present decomposition properties of the Laplace
transform of W and efficient computational algorithms for computing its distribution. The
techniques are also applied to compute bounds on the distribution of W developed in Liu, Nain
and Towsley (1997). Numerical results illustrating the usefulness of the methods are given for
the case of a superposition of independent, non-identical sources.
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bound.



1 Introduction

The problem of switch design and admission control in high speed networks (in particular ATM)
has spawned a large amount of research on stochastic models that are numerically tractable and, at
the same time, capable of a realistic representation of highly variable traffic sources.

To this end, many authors have studied queueing systems with Markov modulated input pro-
cesses. The standard renewal processes are judged as inadequate for representing the complexity of
the behavior of sources originating in multimedia (including video and voice) applications.

When modeling packet level behavior, the network is represented by classical queueing systems
in which the customers represent the data packets. A commonly used source model is the Markov
Modulated Poisson Process (MMPP) in which customers arrive according to a Poisson process whose
instantaneous rate is a function of { X (¢),t > 0}, a finite-state, continuous-time Markov chain. Other
families of modulated arrival processes have been studied, such as Markov Arrival Processes (MAP)
and the “batch” variant (BMAP) (see e.g. [14]). The modeling power of these families is larger, but
their analysis techniques are quite similar.

The popularity of these families of processes is motivated by the facts that

e they can represent, or approach by density, very wide classes of stationary processes;

e they are closed under superposition, that is: the superposition of several independent Markov
modulated Poisson processes (or MAP, or BMAP) still belongs to the same family;

e they contain “on/off” processes, which are simple yet realistic models for several classes of
traffic (voice, data, etc.).

A Markov modulated Poisson source is represented by a couple (Q, A), the first matrix being
the generator of the Markov chain {X(¢), t > 0}, and the second being the diagonal matrix of the
arrival intensities associated with each state.

The results of many years of research on the MMPP/GI/1 queue have been collected in the
“MMPP Cookbook” [9]. Regarding the distribution of the workload in the queue, there exist gen-
eral formulas and algorithms that enable its numerical computation. Unfortunately, a number
of technical difficulties limit their applications to systems containing a small number of sources.
These difficulties relate to the solution of matrix functional equations and the inversion of Laplace
transforms.

There exists a strong similarity between the MMPP /GI/1 queue and a class of fluid data models
that have been studied in detail in the literature. In the latter systems, the source is modeled by a
Markov Modulated Rate Process (MMRP, an acronym appearing in [17]), in which the value of the
instantaneous arrival rate of information is a function of {X(¢),¢ > 0}, a finite-state, continuous-
time Markov chain.

The analysis of MMRP models centers around matrices of the form

A(h) = Q — hA.

For this reason, the literature on MMRP includes a detailed analysis of the spectrum and eigen-
vectors of such matrices. In [2], the case of a superposition of identical and independent two-state
sources (referred to as binary sources throughout this paper) is solved. In [17], this analysis is



generalized to the superposition of independent sources. This is made possible through the use of
Kronecker algebra [4, 10] and related spectral theory.

The algebraic similarity exhibited by queueing systems fed either by MMPP sources or by MMRP
sources has been observed and exploited in several papers authored by Elwalid, Mitra and Stern.
In [5, 6, 7], the authors consider that the source is a superposition of identical independent MMPP
sources and exponential service times. In [5], the authors address the case of the superposition
of heterogeneous sources and Markov modulated exponential servers. In all of these studies the
distribution of interest is that of the number of customers in the system. In complement to the
Kronecker product representations, the authors propose an aggregation procedure applicable to
homogeneous superpositions of arbitrary MMPP sources.

The principal objective of this paper is to take advantage of the analysis techniques developed for
MMRP queues to improve the computation algorithms for the workload distribution in the MMPP
single server queue with general service times. Our analysis starts from the results of [9], which are
briefly summarized in Section 2. It then proceeds along the lines of [17] of Stern and Elwalid. The
aggregation techniques of [5, 6] are not exploited here: this is a topic left for future research.

The paper is organized as follows. In Section 2 we describe the model and collect and derive
some basic results related to the structure of MMPP/GI/1 queues. In Section 3 we consider the
exact computation of the workload distribution for reversible sources. Both the single source and
the superposition of such sources are analyzed. In Section 4 we address the exact computation of the
workload distribution when the input process is the superposition of homogeneous/heterogeneous
two-state (binary) MMPP sources. In Section 5, we revisit and extend computational aspects of the
exponential bounds for the waiting distribution reported in [13]. Throughout these three sections (3,
4 and 5), we will discuss both the computation algorithms and the analysis of their computational
complexity. In Section 6 we present numerical results obtained with these algorithms. Finally, we
conclude in Section 7 with remarks on future research directions.

2 Preliminaries and Summary of the Results

2.1 Basic Model and Known Results

We consider a single-server MMPP/GI/1 queueing system equipped with an infinite buffer. Cus-
tomers arrive according to an MMPP process and require independent and identically distributed
(ii.d.) service times. Let H(x) denote the probability distribution of the service times and let H*(s)
be its Laplace transform. Let 7 be the average service time and m(® its second moment. An MMPP
is a continuous-time irreducible Markov chain {X(¢),¢ > 0} with finite state space {0,1,2,... ,N}.
When the Markov chain is in state ¢, 0 < ¢ < N, customers arrive to the queue according to a
Poisson process with parameter \;. The arrival process is represented by a couple (Q, A), the first
matrix being the infinitesimal generator of the Markov chain {X(¢), ¢ > 0}, the second being the
diagonal matrix of the arrival intensities associated with each state (usually referred to as the rate
matrix). Let  denote the row vector of the stationary distribution of the matrix Q. Also, let 1
denote the column vector constituted of ones. The average arrival rate of the process is:

A=mA1l.

The load factor of the system is then p = \/.



A special case, and also one of the most studied cases, is the MMPP with a two-state Markov
chain (N = 1). Such a source will be referred to as a binary source.

The study of the MMPP /GI/1 queue has recently been revived, due to its important applications
in the analysis of high speed communication networks. The paper of Fischer and Meier-Hellstern
[9] surveys the current knowledge on this system.

It appears that matrices of the form Q4+ aA + bl, I being the identity matrix, play a pivotal role
in the theory of the MMPP/GI/1 queue. For instance, if F; j(z) = P(Xy = j, 7 < x| X1 = 1) is
the probability transition of the state of the Markov chain {X(¢),¢ > 0} at arrival instants, joint
with inter-arrival times, then [9, eq. (5)]:

Fa) == (F(@); = (I-eQ@M)@a-@7a. (1)

Here matrix P := (A — Q)" !A is the transition matrix of the Markov chain embedded at arrival
epochs. We will denote by p its invariant measure.
Likewise, the Laplace transform of the joint distribution of the first n inter-arrival times is given

by (see [9, eq. (14)]):

n

F*(s1,...,8,) = H (s, I—Q+A)'A) . (2)
k=1
In particular,
F() = (Pl = [ ¢ 7 dR(0) = (T-Q+4) A 3)

Finally, it is known that the Laplace transform of the joint distribution of the state of the chain
{X(t), t > 0} and the workload in the queue, W*(s), satisfies the equation (see [9, eq. (48)] and

[16]):
Wi(s) = s(1—p) g [sT+Q— (1—H*(s)A]™", (4)

for R(s) > 0, with W*(0) = «. Here, g is a probability vector that is the solution of g = gG, where
G is the matrix of the transition probabilities of the chain {X(¢), ¢ > 0} between the beginning
and the end of busy periods. G is in turn the solution of the matrix functional equation:

G = /oo exp ((Q — A + AG)z) dH () . 5)
0

According to (1), (2) or (4), it is clear that computing the inverse or the exponential of matrices
of the form Q + aA + I is a central issue. Also, when computing the workload distribution with
(4), the vector g has to be determined. This is normally carried out by first computing the matrix
G (using an iterative procedure based on (5)), then by solving for g.

The exact computation of the distribution further requires the inversion of the Laplace transform.
This can be performed using the EULER algorithm devised by Abate and Whitt [1]. However, this



approach requires numerous computations of W*(s) and, therefore, numerous matrix inversions.
The size of the sources that can be handled by this method is quite limited, unless structural
information can be used to improve the computation of W*(s) or otherwise simplify the inversion.
For this reason, the use of easily computable bounds on the distribution of W is of interest. Liu,
Nain and Towsley have proposed in [13] a methodology for computing such bounds which involve
the determination of the principal eigenvalue of a matrix H*(s)(sI+ A —Q)~'A, and the associated
left-eigenvector. It turns out that the approach developed below applies to the computation of such
bounds as well.

2.2 Markov modulated Sources and Diagonalization

In this section, we collect the principal algebraic and analytical properties that are commonly used
in the spectral analysis of Markov Modulated sources.

The first result relates the diagonalization of a Kronecker sum of matrices, in terms of the
diagonalization of each components. The importance of this property comes from the fact that
Kronecker sum @ and Kronecker product ® [4, 10] are related to the superposition of independent
Markov chains.

The second details the diagonalization of a certain class of matrices. These matrices are related
to the aggregation of the (compound) Markov chain resulting from the superposition of identical
two-state chains. Most of the results presented here appear in one form or in another in various
papers of the recent literature on fluid sources (MMRP) [2, 15, 17]. Note that in these references,
the focus is mostly on one-sided spectral decomposition. This is due to the fact that all problems at
hand are “vectorial” in nature, and can be solved by considering one-sided spectral problems (such
as (74) below). Note also that Anick, Mitra and Sondhi exhibit in [2] a system of right eigenvectors,
without however completing the diagonalization of the matrix.

A complete diagonalization proves useful in cases of “matrix” nature: for instance for transition
probabilities, and more generally when the transient behavior is involved. For this reason and for the
sake of completeness, we state these results in full detail, in the form of a complete diagonalization
result (Lemma 2.3). These results will be proved in the Appendix A, together with some remarks
on the analyticity of the decomposition, and on singular cases.

Superpositions The following results provide a way of computing the spectral elements (eigen-
values, left and right eigenvectors) of a matrix based on its structure.

Lemma 2.1 Assume that
A=AWg ... g AK)

and that for all k, A s diagonalizable with
AR = REIDHEIGH)

where RFISK) = 1) gnd DE) = dz'ag(wgk)). Then:

<= (@) (@) (@)



Corollary 2.2 With the assumptions of Lemma 2.1, we have:

K K (k) K
A _ <®R<k>) (eeak_lD x) (®S<k>> _
k=1 k=1

Also, if no diagonal element of @leD(k) is zero, that is, if

K
ST W £0, (i, ik) € {0.N1} x ... x {0..Nk}, (6)
k=1

then A is invertible, and:

- (B ) (8)

k=1 k=1 k=1

Proof  (of Lemma 2.1.) The proof is based on the known property that (v; ® ... ® vi)(41 &
. ®Ag) = (1nA1)®...®(vkAk). This allows us to construct the eigenvalues and (left and right)
eigenvectors of the Kronecker sum in function of those of the components: eigenvalues are sums of
the eigenvalues of the components, and eigenvectors are Kronecker products of the corresponding
eigenvectors. [ |

Homogeneous superpositions of binary sources A very useful particular case is where matrix
A corresponds to sources that are the superposition of several independent and homogeneous binary
sources. The generator and rate matrix have a special structure.

Assume that A = M(N; A, ) + aI(N) + bJ(N), where a and b are complex numbers, I(N) is
the (N + 1) x (N + 1) identity matrix,

J(N) = diag(0,1,... ,N) , (7)
and
—N\ N
B —(rH(N=1N) (N= DA
M(N; )\ p) = . (8
(N=Dp —(N—=Dp+2r) A
Nu —Nu
Define, for k£ € {0,... ,N}:
W :a+(%—k)\/(b+)\—u)2+4)\u—%(—b+)\+,u). (9)



Define further:

(b+X=p) £/ (b+A—p)?+ 4
2\ ‘

012 =

These are the roots of the equation
M2 — (b+A—p)o — p = 0. (11)

Let ¢, = (¢x(0),... ,¢r(N)) be the row vector with coordinates given by the coefficient of z* in

the polynomial function (z — o1)F(x — o9)V *:
ok(i) = '@ —o1)* (& — o)V, (12)

Finally, define the (N +1) x (N 4 1) matrices out of the row vectors ¢; and the column vectors
T;bj:

® = ((¢:())ij (13)
o= (%@ = (i) 037 (14)
We then have the following result:
Lemma 2.3 Assume that the matriz A has the form:
A = M(N; A\ p) +al(N)+bJ(N) , (15)
where a and b are arbitrary complex numbers. Then, A is diagonalizable if and only if
b # —(VAxiyp)?. (16)
In that case,
A = (o9 —0a)™V TQP (17)
where Q@ = diag(wg, - .. ,wn).

The proof is provided in Appendix A.
As a consequence,

Corollary 2.4 A right eigenvector of A corresponding to the eigenvalue wy is the vector ¥, such

that Yy (1) = Vi

Also, as a consequence of (9) and (17):



Corollary 2.5 The characteristic polynomial of A is given by:

N
det(A —2I) = H(a—z—%(—b—k)\-l—u)-l-(%—k)\/(b+)\—u)2+4)\u) . (18)
k=0

When wy # 0 for all k, A is invertible, and
Ai1 = (0’2 - 0'1)7N \Ilﬂilq) . (19)

In Appendix A, some technical remarks are made regarding analyticity and degenerate cases of
the result of Lemma 2.3.

Remark 2.1 (Jordan forms) When condition (16) fails to hold, the matrix A is not diagonalizable.
Its standard Jordan form is then of the form

0 w
with w = a + (N/2)(b — XA — p). The construction of the change of basis will be omitted here.

Remark 2.2 The following identity holds:

N
¢l = Y o) (@-0)"* = 1-0a)f(L-a)V " (20)
1=0

It is useful for computing the (unconditional) workload distribution (see Section 4.3). It can be
used in conjunction with

(1—01)(1 — 03) = —b/A,

which is easily derived from (11).

Remark 2.3 Being the generator of the aggregated chain obtained by superposing independent
and identical two-state chains, the matrix M(N; A, ) coupled with the results of Lemma 2.1 and
the spectral analysis of the two-state problem, can be used to derive again the results above. See
[8] for details.

2.3 Summary of the Main Results

In this paper, we use the results known for MMRP systems to provide a new perspective on the
computation of the distribution of W. The principle of the analysis goes in parallel with that of the
paper by Stern and Elwalid [17]. In particular, our results

e provide an alternative and more efficient way to compute g;



e allow one to compute formally [sT + Q — (1 — H*(s))A]™!, and provide an approach to the
formal inversion of the Laplace transform W*(s);

e allow one to compute more efficiently the distribution of W, and bounds on this distribution,
in the case of superposed heterogeneous sources.

The results obtained depend naturally on the degree of generality of the source considered. We
shall consider two classes of sources:

e sources whose underlying Markov chain is reversible, and with an arbitrary rate matrix A.
We shall refer to these sources as reversible sources;

e sources that are the superposition of several independent, identical two-state (binary) sources.
These sources are reversible, but their generator and rate matrices have a special structure.
These sources are referred to as superposition of homogeneous binary sources.

We shall also consider the superposition of several independent but heterogeneous reversible sources.

Sources with two states arise naturally as simple models of voice or Web traffic. Other types
of traffic, such as images and video, are not always adequately modeled by such simple processes.
Reversible sources provide a class wide enough to approximate arbitrarily complex traffic. Note
that birth-and-death processes are reversible.

We begin with general results on sources with a reversible generator (Section 3). In Section 4,
we specialize the results to the case of superposition of homogeneous binary sources. In Section 5,
we use the same analysis to compute the bounds.

3 The Workload Distribution for Reversible Sources

3.1 Single MMPP Source Case

Assume that Q is the generator of a reversible ergodic Markov chain with N + 1 states. It is known

that Q can be symmetrized. More precisely, if E = diag(ﬂi/ 2), then ET'QE is a symmetric, negative
and semidefinite matrix ([12], see also [15, 17]). It is therefore diagonalizable. Its eigenvalues, which

are the same as those of Q, are real and negative. Consequently, the matrix

A(s) = Q + sI — (1—H*(s))A (21)

is also diagonalizable when s is real, and its eigenvalues are then real. Let wi(s), 0 < k < N, denote
these eigenvalues, sorted in decreasing order, and let Q(s) = diag(wk(s), K =0,1,... ,N). For any
real s, there exist invertible matrices R(s) and S(s), such that R(s)S(s) =1 and

A(s) = R(s) Q(s) S(s). (22)

These matrices are respectively composed of right and left eigenvectors associated with the wy’s, say
Ry (s) and Sk(s). Introducing this decomposition in (4) yields the spectral ezpansion

N
W(s) = s(1=p) & - s Rus) Si(s) (23)
k=0



We shall now perform a singularity analysis of (23). As the Laplace transform of a positive
random variable, W*(s) is analytic in the right-hand half-plane, the right-hand side of (23) must
have the same property.

It is well known that the wi(s), being eigenvalues of a parametric and continuous matrix A(s),
are continuous functions of the parameter s, as are the vectors R(s) and Si(s). For s = 0, these are
the eigenvalues of Q, so that wp(0) = 0 and wg(0) < 0,k > 1. When s is large enough, the matrix
A(s) is strictly diagonally dominant, so that all wi(s)’s are strictly positive [11, p. 349]. Therefore,
for each k£ > 0, there is a strictly positive real number s; such that wg(sx) = 0. Necessarily, we have
gR(sk)Sk(sk) = 0. The vector Si(sk) is not null, because R(si)S(sx) = I. Therefore,

VE > 1, g Rk(Sk) = 0.

The reasoning above does not apply to the eigenvalue wy(s). Fortunately, the a priori condition that
g is a probability vector, that is gl = 1, may be adjoined to the N other conditions. Finally, the N+1
conditions may be put in matrix form by defining the (square) matrix = = (1,R4(s1),... ,Rn(sn))-
The unknown vector g is then solution of

g= = (1,0, ... ,0) . (24)

Remark 3.1 The condition g1 = 1 is also a direct consequence of the requirement that W*(0) = .
Indeed, letting s — 0 in (23), we have:

7 = (1-p) g Ro(0) So(0) lim wo(s) A=p)glm lim wo(s)”

Using the fact that Q(s) = S(s)A(s)R(s) and that Ry(0) = 1,S¢(0) = =, one obtains

limwo—(s) = wy(0) = 7I-mA)1 = 1—p.

s—0 S

The condition gl = 1 follows.

Remark 3.2 There is no known guarantee that the system (24) has a unique solution. This also
happens to be the case for MMRP processes, although it has never been reported that it causes any
practical problems. Here, however, if the matrix = should happen to be singular, then the standard
computation of g could still be performed (see [9]).

3.2 Heterogeneous Superpositions

Consider now the case where the input process of the queue is a superposition of sources such as
described in Section 3. There are K sources, characterized by generators Q(k) and rate matrices

A% of dimensions Ni + 1. Then, as in the case of Markov Modulated Rate Processes [17, 8], the
generator and the rate matrix of the superposed process admits the representation:

Q=QY @ ... » QI
A=AY g ..o AK), (25)

10



Consequently, the matrix A(s) = Q + sI — (1 — H*(s))A admits a similar representation:
A(s) = sI + (B(l) @ ... ® B(k)) ,
where
B® = Q® — (1 — H*(s))A®.

® L u®

Denote by wy the eigenvalues of the matrix B®*) and qb(k) ,qbg\’,cz the corresponding

left eigenvectors. Accordlng to Lemma 2.1, the eigenvalues of A are of the form:

K
W= Wit ig)=s + Yol e {0,..., N}, 1<k<K, (26)
k=1
with the associated eigenvector:
¢ = Plit,-..,ixg) =) @ ... @ ¢%). (27)

Likewise, the right eigenvectors of A are obtained as Kronecker products of the right eigenvectors

1,[:(’“) of the matrices B*).
Assume now that each source k is the superposition of N homogeneous binary sources. In this
case,

Zla 7ZK)

ﬁ (k) (k) —Np, 8(]_ _p) g Z ¢ “7 77: ) d)(lla a’LK) ] (28)

(1150 4iK)

3.3 Computational Algorithms

In this paragraph, we recapitulate the algorithmic steps needed for computing the distribution of
W. The algorithmic complexity is evaluated as a function of IV, with IV 4 1 being the size of the
matrices involved.

Single reversible sources. The general algorithm is the following:

1. Find, for all £ > 1, the positive root s of the equation s + wg(s) = 0. Construct the matrix
=. This can be done using an iterative procedure of the Newton-type, taking advantage of the
fact that an expression for dwi(s)/ds is known. The reader is referred to [8, 17| for details.

FEach step n in the approximation requires the spectral analysis of a matrix A (sgcn)>;

2. Solve for g by inverting (24);

3. Compute the inverse of W*(s) using for instance the EULER algorithm of Abate and Whitt
[1]. This requires the computation of W*(s) for a certain number M of values of s.

11



Complexity of the algorithm:

1. It is reported that due to the fast convergence of Newton’s algorithms, the number of steps
to perform seldom exceeds 4 or 5. The construction of the matrix = of (24) takes therefore

O(N*) operations;
2. This step takes O(N?) operations;

3. Each computation with (4) involves the inversion of the matrix A(s) (or the solution of a
system A(s)x = g). The complexity of this step is therefore O(MN?3).

The main part of the computation time may be spent on step 1 or on step 3, depending on the
value of M that is actually needed. It is likely that M will be larger than N most of the time in
practice.

This algorithm appears to be an improvement on the method advocated in [9] (at least measured
in computation time) in that it avoids the computation of G by iterative means.

Superposition of reversible sources. The use of the structure of the matrices allows us to
improve the general algorithm. If the size of the component generators are Ny +1,... , Ng + 1,
then, according to Section 3.2, the size of the superposed generator is N+1 = [[,(Ng+1). Note that
as far as the time complexity analysis is concerned, O(Ny + 1) = O(Ny) and O(N) = O(] [, Nk),
so that Nj, will be used instead of Ny + 1.

1. When finding the quantities s;,1 < j < N, by an iterative procedure, one takes advantage
of property (26). At each step n in the Newton algorithm, the eigenvalues w(*) (s7) of the

matrices A(k)(s;?) are computed and added.

This takes O(}", N2) operations, resulting in a total complexity of O(N 3", N2);
2. Solving for g still requires O(N?) operations;

3. For computing a particular value of W*(s), one may use Corollary 2.2 to construct the inverse
of A(s).
The construction of the matrices R(*) requires O() ", N,i’), Once they are computed, the
matrix @, R® is constructed in O(K N?) operations.

The cost of multiplication gA ! is of O(N?). Thus, the total computation cost of this step is
O(M Y, N2) +O(MKN?).

The advantage of structuring the computation appears both in steps 1 and 3. As observed in
[17], in step 1 the value of N'Y_, N3 will be much smaller than the original value of N* = ], N{.
Likewise, the principal part of the computation in step 3 will be to fill the (large) matrix @R,
an improvement on the initial complexity of O(N3). Note that the Kronecker structure may be

used to save storage capacity when performing the product gA~!. However, step 2 still requires
the inversion of a full (N 4 1) x (N + 1) matrix.

12



When some of the sources are superpositions of homogeneous binary sources, additional savings
can be made, as discussed in Section 4.
Compared with the general case, the complexity of the computation of g has decreased from

O(N*) to O(N3), and the computational bottleneck has slipped from the computation of the quan-
tities si to the solution of (24). The ongoing research aims at eliminating this bottleneck by a
proper structuring of the problem. As mentioned above, another direction for research is the use of
the aggregation technique in [5].

4 Superpositions of Binary Sources

4.1 The Workload Distribution for Superpositions of Binary Sources
4.1.1 Superpositions of homogeneous binary sources

Consider now the case where the source is the superposition of homogeneous and independent binary
sources, each described by the matrices:

k —q0 Qo k Ao O
Q()_((h —Q1> and A()_(O )\1>'
Due to the homogeneity of the individual sources, the superposition may be described by the number
of sources in state 0 which behave as a Markov chain. The superposition can therefore be seen as a
MMPP with N+1 states, a generator Q = M(V; qq, ¢1) and a rate matrix A = NAgI+(A\—Xg)J(NV),
where M and J are defined in (7) and (8). This property is well known in the context of MMRPs
[2, 15], where the matrices Q and A have exactly the same form.
The stationary distribution of the Markov chain {X(¢),¢ > 0} is

1 N\ i v
T = W(Q{V;---a(i>%(ﬁv 7"'JQ(J)V) . (29)

The overall arrival rate of the process is

A A
N & 0+ qoM1 -
g +q1

=
We can therefore apply Lemma 2.3 with A = ¢, # = ¢1, a = s — (1 — H*(s))NXg, b =
(1 — H*(s))(Ao — A1). Accordingly,
SI+Q—-(1—H*(s)A = (03 —01) Y Q@
= [SI+Q-(1-H*s)A]™ = (09 —0) " OTQ'® .

Here, the values of 01 2 and wy, are given by

(A =H*s)Mo —A) + 90— a1 £ /(A= H*(5)(Xo — M) + 90 — ¢1)? + 4goqs 20
o2 = 200 (30)

—k)V((1 = H*(s)) (Ao — M) + @1 — q0)2 + 4goqn

wp = 8§ + (%
N «
~ S (A=H()+ M) +ao+a) - (31)

13



The matrices ® and ¥ are computed according to (12), (13) and (14) in Appendix 2.2. The numbers
0i,wk and the matrices ¥ and @ are functions of s, but we shall often omit the explicit “(s)” in the

formulas.
The expansion (23) takes now the form

N

W) = (oa—0a1) Vs(l-p)g Z

k=0

1
wi(s)

P, - Py, - (32)

The singularity analysis of Section 3 applies in this case, Q being the matrix of a birth and
death process (hence reversible), which is ergodic as long as ¢p and ¢; are not zero. Here, we
can take advantage of the precise knowledge of the eigenvalues and of the eigenvectors to provide
greater justification. Indeed, observe that o1, 09, wk, ¢, and 1, are all functions of s. As discussed
in Remark A.3, each of these functions is analytic only in domains where condition (16) holds.
However, it turns out that their product is regular. This may be seen by carefully combining the
terms corresponding to wy and wy_x in (32): square roots either cancel or factor out, according to
whether N is odd or even. This is similar to a cancelation of imaginary parts.

The only non-removable singularities of (32) may lie therefore at points s where, for some £,
s+ wi(s) = 0. These are the numbers s; defined above. In the present case, these are easily
computed as the roots of

0 = s+ (5 VI E@)00 )+ do— 0P + o

—%((1—H*(S))()\0+A1)+QO+(11) . (33)

4.1.2 Superposition of heterogeneous binary sources

The analysis of the superposition of heterogeneous binary sources can be performed by first partition-
ing the sources into classes of homogeneous binary sources and analyzing as above the superposition
of homogeneous sources within each class. Then, one can use the results of Section 3.2 to analyze
the resulting heterogeneous superposition of sources.

4.2 Computational Algorithms

Superposition of homogeneous superpositions. The general algorithm is simplified, taking
advantage of the numerous available closed form solutions.

1. Compute the {s;} and construct E. Computing {si} only requires solving equation (33) for
1 <k < N. The construction of E requires the computation of NV coefficients ¢;; from formula
(12). Various tricks may be used to speed up this computation, which may easily be completed
in O(N?) for each line vector, and O(N3) for the matrix. The total complexity of this step
becomes O(N3);

2. Solving for g stills takes O(N?3);
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3. Computing a particular value of W*(s) using equation (32) necessitates the construction of the
matrix ¥ each time. Using (20), it is not necessary to build matrix @, if only the unconditional

waiting time is needed. Constructing ¥ takes O(N?), as in step 1.

Note however that directly inverting A(s), or rather, solving the system A(s)x = g, is a faster
option, because A(s) is a sparse matrix. The complexity of this step by this method is then
O(N3).

The main improvement of the algorithm, with respect to that of the general case, is therefore
the simplification of step 1. However, one might expect that making use of the structure of the
solution should bring a gain in step 3 as well. Minimally, not inverting matrices may result in a
gain in numerical stability.

Note also that the availability of a closed form (32) for W*(s) gives the possibility of a formal
inversion of the transform, at least in the case where H*(s) is rational. This property is exploited
in Section 4.4 for exponential services. More investigation is needed in this direction.

4.3 The Expected Workload

In this section, we apply the above results to derive expressions for the expected workload in the
MMPP/GI/1 queue. In this section, we shall concentrate on the scalar distribution of the workload,
W, which is denoted W, in [9]. We have: W*(s) = W*(s)1.

According to [9, eq. (52)], the expected workload w = EW is given by:

w = 2(171_/)) (20 -+ Xm® — 2m((1 — p)g + WAY(Q + 1m) A

We shall prove the alternate formulas (34) and (39), respectively for superpositions of homoge-
neous and heterogeneous binary sources.
4.3.1 Superpositions of homogeneous binary sources

Proposition 4.1 When the source is the superposition of homogeneous binary sources, the expected
virtual waiting time in the MMPP/GI/1 is:

m(2) — )2
w = —1 (p—m +Nm27()\0 )\1)

A — A _Xo— M
N _ mle— A
1-p\" 2m (90 + q1)? qOQl) A

A i, (34
(90 + q1)? q + q & (34
where j = (0,1,2,... ,N)T.

Proof  We shall use the notation v = 1+ ¢;/qo. First of all, the following special values are easily
computed from the definitions of the o;(s), ¥4 (s) and ¢y (s):

_a

01(0) = 1, 02(0) = e 02(0) —01(0) = —v
10) = ol (0) = = (hg— AT 2
05(0) — 01(0) qO(O 1)q0+q1



Also, recall that w((0) =1 — p so that

. s 1
lim = .
s—0 (,(}0(3) 1-— 1%

We start from equation (32) and notice that when k # 0, wi(s) # 0. Therefore, we have:

W) = 4 (1 Pox(s) = (o) Violo)gls) )

wo(s)

s=0

N
(1= )02(0) ~ 31 (0) N Y g9 00801 —
k=1

wi(0)
= (-pgtm L ¢ (35)
a Py ds wy(s) s=0
N(05(0) — 7(0) N.N
+ (1—p)(02(0§_01(0;)]v+1( DN Nglwl—
+ (L= )10 Vg ($h(0)80(0) + o (0)85(0) 1 (36)
N
+ A=Y Y g (0)(0)—— 1 (37)
— wi(0)
e a2l 5 L NmOw ) @
= 0T G ey~ R T A T
+ (=v) Vg (¥5(0)(0) + 14 (0)0(0)) 1. (38)

Indeed, the term (37) vanishes. To see this, use formula (17) for A(0) coupled with the fact that
A(0) = Q and wp(0) = 0. One may write:

1
wo)| Y B(0) = (~1)VAO) + (1 wo(0)1o(0)0(0)
wn(0)
= (-=)¥ (Q+1m).
Consequently,
Y 1
;¢k(0)¢k(0)wk(0) = (- ((Q+1m)"' —17),

which is zero when post-multiplied by 1.
In order to evaluate (35), it is necessary to perform a Taylor expansion of wy. After straightfor-
ward calculations, one obtains

m?® Ao — A1)?
wo(s) = s(1—p) + 5 [T + Nl ) o).
2m (g0 +q1)
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In order to evaluate (36), we differentiate the product t,(s)py(s)1, using the fact that ¢y(s)1 =
(1 — 05(s))"Y (Remark 2.2). The result is:

0) = ()N (2= 5 N, 0 A
(1) (0) = (-v) ( o+ a J NmQI(q0+q1)21) :

Replacing all of these values in (38) leads to (34). ]

4.3.2 Superpositions of heterogeneous binary sources

We assume now that the source is the superposition of homogeneous binary sources, and we use the
notation of Section 3.2. The calculation of Section 4.3.1 now yields the following result:

Proposition 4.2 When the source is the superposition of heterogeneous binary sources, the expected
virtual waiting time in the MMPP/GI/1 is:

1 (m® 087 = A ) v
w = ——|po—+m ZN—lq a4
1_p< 2m e SRS Ch
(k) _ (k) K (k) (k)
+m Zqu 7@)) — m.Z Gir,... 1NZZIC (k)+ (k . (39)
11,0 AN

4.4 The Case of Exponential Service Times

In this paragraph, we consider the MMPP/M/1 queue with a source which is the superposition of
binary sources. We show that the Laplace transform W*(s) can be formally inverted, resulting in
formulas (42) and (44) which are readily computed from known functions and quantities. In this
section, we shall only discuss the scalar distribution W.

We first study the case of a homogeneous superposition, then generalize to the case of a hetero-
geneous superposition.

4.4.1 Superposition of homogeneous binary sources

We now have 1 — H*(s) = s/(s + u). Let us call §(s) the determinant of the matrix
A(s) = (s+p) A(s) = s(s+p)l + (s+p) Q — sA.

The degree of §(s) is exactly 2(IV 4 1), because all elements of A(s) are polynomials of s with degree
2 on the diagonal, and at most 1 elsewhere. This conclusion can also be reached using (18).
It is plain from (4) that W*(s) is a rational function, which can be written as

S ~

Wis) = (1=p)gry (s+p) glA(s)]* 1

(s)
= — S (S @
= (1-p)s(s+n) )
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where [A(s)]® is the adjoint matrix of A(s), and v(s) a polynomial. It is already known from the
above analysis that s and the s — s, 1 < k < N, are factors of §(s). The latter ones are also factors
of v(s) and cancel out, according to (24).

The asymptotic analysis of the functions wg(s) in the vicinity of s = —p reveals that

wr(s) = ((N —k) max{Ag,\1} + k min{Ag, A\1}) ﬁ + Cr + o(1), (40)

with Cy # 0. Therefore, when s — —u™, wi(s) — +00, except when N = k and min{\g, A1 }. It was
shown in Section 4.1 that wg(0) < 0, k # 0 and that wp(0) = 0 but w; (0) > 0 under the stability
condition. Then, wg(s) has a root ¢ € (—u,0) for 0 < k < N. If Mg, A1 > 0, then wy(s) has a root
tny in the same interval. Necessarily, the (s — t) are factors of §(s).

We have determined the 2V + 2 factors of §(s) for the case Ag, A1 > 0. If A\¢g =0 or A; = 0, the
missing factor is (s + p). Indeed, it is easily seen that this term is a factor of each element in the
first row of the matrix A(s). We set ¢y = —oo in this case.

At this stage, we have proven that the denominator of W*(s) is the product of the terms (s —ty).
Therefore,

g

N
Wi(s) = 1—p + Zs_tk,
k=0

where ay is the residue of —t/(s — tx) at s = t;. Using now (32), it is readily seen that:

ar = (1= p)oalts) — o1 (te)) N @ g e(t) biti) 1. (41)

Once t; has been determined, all quantities in this formula are known or computable,
We have thus proven the following result.

Proposition 4.3 In the MMPP/M/1 queue, the distribution of the workload is given by
N
PW<z) =1 - ) ap e, x>0, (42)
k=0

where the tx, k < 0 < N are the negative roots of the equations s + w(s) = 0 (with the convention
ty =—00 if Ao =0 or \y =0), and ay is given in (41).

4.4.2 Superposition of heterogeneous binary sources

We assume here that the source is the superposition of homogeneous binary sources, and we use
the notation of Section 3.2. The reasoning of Section 4.4.1 applies with the obvious modifications.

In the case where )\gk), )\gk) > 0 for some k, then every function w(iq,... ,ix) has aroot ¢;, .y

in the interval (—p,0). In the case that there is a )\gk) = 0 for all £ we adapt the convention,

tNy,... N = —O0.
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The residue a;, ... ;, takes the form

N
Fiy,in - = (1 - P) H(o-gk)(til,...,ijv) - U:(Lk)(tily---,iN))_Nk

g "‘ka(til,...,iN) ¢k(ti1,...,iN) 1. (43)

wél,... AN (tih--- ,'iN)

The value of the stationary workload distribution is then given by

PW<z) =1 — Y ai,. e v, >0 (44)
eIV

31

5 Bounds on the Workload Distribution for MMPP/GI/1 Queue

Consider an MMPP/GI/1 queue as described in Section 2 with generator Q and rate matrix A.
Recall that H(x) and H*(s) are the probability distribution and the Laplace transform of the service
times, respectively, that m denotes the mean service time and that p is the invariant measure of
the Markov chain embedded at arrivals epochs (cf. Section 2).

In the following pf(A) will denote the Perron-Frobenius eigenvalue of a matrix A [11].

Recall the definition of the matrix F*(s) in (3). For s € D := {s : H*(—s) F} ;(s) < oo}, let z(s)
be the left-eigenvector of the matrix H*(—s) F*(s) associated with the eigenvalue pf(H*(—s) F*(s)).
We assume that z(s) is normalized so that its components sum up to 1.

Let W be the stationary workload in this MMPP/GI/1 queue.

The following result is shown in [13]:

Proposition 5.1 Assume that the set D is open and the stability condition p < 1 holds. Then,
there exist constants B and C such that

Be *® < P(W>z) < Ce % V>0 (45)
where s* is the unique solution in (0,00) ND of the equation
H*(—=s)pf(F*(s)) = 1. (46)
The constants B and C are given by B = inf,>0 0<i<n gi(z) and C' = sup,¢ o<i<n gi(T) where

p(fy dHu)(I—exp(Q-A)(u—2))(A-Q)'A) e
z(s*) ([° es" (=) [*° dH (y)(I — exp((Q — A)(y — u))) duA) e

g9i(x) = (47)

where e; is the vector whose components are 0 except the i-th one which is equal to 1.

The assumption that the set D is open is satisfied (in particular) for all service times with phase-type
distribution [13].
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The aim of this section is to propose an efficient algorithm for computing the bounds in (45)

in the case that the arrival process is the superposition of K independent MMPP’s (Q(k), A(k)),
k=1,2,...,K. Under this assumption it is well known that the resulting input process is again
an MMPP given by [9]

(@A) = (6£5,Q"), L, A®). (48)

In order to compute the bounds in (45) we first need to evaluate three quantities: the optimal
decay rate s*, the eigenvector z(s*) and the invariant vector p.

We start with some preliminary remarks that connect the present analysis with that in the
previous sections.

Define p;(s) = log pf(F*(—s)) and pa(s) := pf((e* —1) A + Q). It is known that [19, Section
4 and Proposition 14]

pa(s) = —p ' (~9). (49)
Hence,

pf((H*(=s")—1) A+ Q) = pa(log(H"(—s")))
= pa(—p1(=57)) (50)
= s* (51)

where (50) and (51) follow from (46) and (49), respectively.
This result, in conjunction with (48) and the identity pf(A; ® Ag) = pf(A1) + pf(A2) [10],
yields
K
st =Y of ((H*(=s") - DAY + QM) (52)

k=1

We now focus on the computation of the eigenvector z(s*). Let ¢ be the left eigenvector of the
matrix (H*(—s*) —1) A+ Q associated with its Perron-Frobenius eigenvalue. We deduce from (51)
that

¢ (H(=s")—1) A+ Q) = pa(log(H*(=5"))p = s* ¢
= pAH(-5") = ¢ (s’T+A—Q)
— ¢ A H*(—5*) F*(s*) = ¢ A.

From the above and the uniqueness of the normalized eigenvector z(s*) we deduce that

z(s*) = ¢ Af|d Al (53)

where |v| denotes the sum of the composants of any vector v.
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By using now the property that v; ®vy is an eigenvector of A1 @ A, associated with pf(A;DA,)
if v; is an eigenvector of A, associated with pf(A;), i = 1,2 (see [10]) we get from (53), (52), and
(48)

2(s") = o (@151 6V) (@IS, AW) (54)

with ¢yt = |(@K (p™®) (@K, A®)|, where ¢ is the eigenvector of (H*(—s*) — 1) A®) + Q*)
associated with the Perron-Frobenius eigenvalue of this matrix.
A similar analysis yields (set s* =0 in (54))

pP=c <®1§:1 77(k)> (@kK:l A(k)) (55)

where 7(¥) is the invariant measure associated with the generator Q(k) and c; is a normalization
constant.
We now specialize formulas (52)-(55) to the cases when the input process is the superposition

of independent homogeneous (resp. heterogeneous) binary sources.

Superposition of homogeneous binary sources We assume that the input process of the
MMPP/GI/1 queue is the superposition of N independent, homogeneous binary sources (see defi-
nitions and notation in Section 4.1.1).

As already discussed in Section 4.1.1, the MMPP resulting from the superposition of N inde-
pendent homogeneous binary sources may be seen as a MMPP with IV 4 1 states with generator
Q = M(N;qo, ¢1) and rate matrix A = NXg I(N) + (A — o) J(IV), respectively. Therefore,

Q — h A = M(N; 0. 91) — RNXI(N) + (Ao — MR I(N) (56)

with h:=1— H*(—s%).
The Perron-Frobenius eigenvalue of Q — hA is obtained by letting £ = 0 in (9). Together with
(51) this implies that s* is the unique solution in (0,00) N D of the equation

N

§* = 5 <\/(h()\0 — A1) + g0 — q1)* +4q0q1 — h(Ao + A1) — qo — ql) . (57)

On the other hand, the left eigenvector ¢ = (¢(0), #(1),... ,d(N)) of Q — h A associated with the
Perron-Frobenius eigenvalue of this matrix is also obtained by letting k£ = 0 in (12), so that

¢i) = [¢'](z — o)™

- (7)(_02)1\’2 i=0,1,... N (58)

with oy = (()\0 —Mbh+g—q—+/((Mo—M)h+q—q)?+ 4q0q1) /2qo. We may then conclude
from (53), (58) and the definition of A that

z(s*) = cpPA

_ y diag ((J;f) (—oa)N T (N + (A — Ag)i), i = 0,1, ... ,N) (59)
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with cg 1 = 3 0 (V) (o) V=1 (N g + (A — Ao)i).

1

Finally, the invariant vector p is obtained by letting A = 0 in the derivation of z(s*). This gives

i

p— ¢ diag ((N> (41/90)~ (N + (At = Ao)i), i = 0,1, ... ,N) (60)

with ;" =0 (1) (a1/20)V 7 (N0 + (A1 — Xo)i).

Superposition of heterogeneous binary sources Assume now that the MMPP source is the
superposition of K types of independent binary sources and let Vi be the number of sources of type
k=1,2,...,K. The shorthand MMPPM Nk will be used to denote this particular MMPP.

For a source of type k = 1,2,... ,K, let q(()k) (resp. qgk)) be the rate out of state 0 (resp. state

1) and let /\(()k) (resp. )\gk)) be the generation rate in state 0 (resp. state 1).
From (52) and (57) we find that s* is the unique solution in (0,00) N D of the equation

K
N
=Y —Qk (\/(h()\(()k) A7)+ = )2 4l — RO + 2 — ¢ - q%’”) . (61)
k=1

The eigenvector z(s*) and the invariant vector p are computed from (54), (58) and from (55), (58)
(with b = 0), respectively. We find

2(") = e (9f M) (2L, AD) (62)
p = o (o) (efla®) (63)
with
A® = diag (N,CAgm(Agk)_Ag@)i,i:o,l,... ,Nk) (64)
o) = ((]Z’“) (—oy )M i = 0,1, ,Nk> (65)
N, P
k) = (( Zk> (@M /g8 Nt i = 0,1, ,Nk) (66)
and

08 <40+ 6” —of? ~ JOP b+ o o+ 10
e
0

o8 = (67)

for k=1,2,... ,K. The constants ¢y and ¢; in (62)-(63) must be chosen so that |z(s*)| = |p| = 1.
To conclude this section, we briefly discuss the computation of the constants B and C in (45)
when W is the stationary workload of an MMPP™t»-Nk /Erlang(S)/1 queue. It is shown in [13]
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that (with p:=1/m and (0,00) N D = (0, 1))

S+1 K
p—s pI(x,p,S) e
i = , (N, +1)—1:=N
g (37) ( L ) Z(S*) F(l‘,u — S*,S) e 1;[ kTt (68)

where s*, z(s*) and p are given in (61), (62) and (63), respectively, and where I'(x,u,S) =
o0 Yio((wp) /3 (pA) T with

A=-— (@leA“c))_l (69)
where
AR =M (Nk, g§o), gk )) - (p, + NkAg’“)) I(Ny) + (Ag@ . ,\5’“)) I(NV). (70)

In direct analogy with the derivation of (28) we obtain from Lemma 2.1 and Lemma 2.3 that

(k) (k)
oy y L) (GEe)
k=1 1y viKc) Zk 1w (k)

(71)

where w( ) (0 < j < Ng) and A (r =1,2) are given in (9) and in (10), respectively, after setting
k=j, N=Ng, A= q(() ), p = qgk), = —(u—l—Nk)\(k)) and b = )\(()k) - )\gk) fork=1,2,... ,K. In
(71), the vector qz’)(- (gb(k (1), 0 < i < Ng) is given by qb( )( ) = [xi](az—agk))j (w—agk))(Nk*j) and
the vector 4" = (¥{"(i), 0 < i < Ny) is given by 9 (i) = ¢{"(4) (1)) for 0 < j < Ny,
1<k<K.

The complexity of computing B (resp. C) is dominated by the search for the value of x that
yields the infimum (resp. supremum) in the expression for B (resp. C') in Proposition 5.1. It is

easily shown that no more that S — 1 values of « (possibly including z = 0 and = = c0) need to be
checked and that, except for x = 0 and & = oo, they are the positive real roots of the polynomial

d¥(z, pu, S y ”
pi(x) = p(% A e; z(s*) O(x,u—s*,S)
—W(z,p1,S) A e; z(s*) dw(x";_ s ’S)>A ei (72)
T

which can be shown to be a degree 2 (S — 2).
For the case S = 1 (MMPP™ "Nk /M /1 queue), g;(z) does not depend on = and we have

g Ae: _x Ae:
c=(L=2 max u, B=(E=° min P20 (73)
m i=0,1,...,N z(s*) A e; 1 i=0,1,...,N z(s*) A e;
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For the case S = 2, p;(z) is a constant and we have been able to establish that the infimum (resp.
supremum) of g;(x) over z in [0, 00) is always achieved at x = 0 (resp. = o).

For the case S > 2 we conjecture that p;(x) has no positive real roots. We further conjecture
that the infimum (resp. supremum) of g;(z) over x in [0,00) is always reached at z = 0 (resp.
T = 00).

An explicit expression for g;(z) is also given in [13] for the MMPPNt V& /D /1 queue.

Let us now briefly summarize the algorithm for computing the bounds for MMPPNt» Nk /GI/1
queues. The following steps must be followed:

1. Evaluate s* as the unique solution of (61) in (0,00) N D.

2. Compute z(s*) by using (62).

w

. Compute p by using (63).

W

. Compute B and C via (47). More specifically, if the service time distribution is an Erlang
distribution then use (68); if the services are constant, then use (3.14) in [13].

6 Numerical Results

In this section, we present some preliminary results using the previously described algorithms. The
results were obtained with software implementing the algorithms of Section 4.2. This software is
written in C and uses the Meschach library for numerical linear algebra [18]. It will be made publicly
available.

In these experiments, the source consists of a superposition of two types of binary sources having
the following characteristics

oV = 15384, ¢ = 2.8209, AV = 0, AP = 0.064,
2

¢ =125, P =50 AP =0 A\ =032

These numbers are taken from [3]|, and are derived from voice traffic data. The source is the
superposition of twelve type 1 and six type 2 sources (N7 = 12, Ny = 6). The service time
distribution is two phase Erlang with an average adjusted to achieve different loads. Figures 1, 2
and 3 compare the exact value of P(W > x) with the bounds in (45). The Figures differ according
to the average service time which is taken as 0.6, 1.0 and 1.35, resulting in load factors of 0.392,
0.654 and 0.883, respectively.

The main conclusions of the numerical experiments are:

e The algorithms and their implementation turn out to be quite efficient, in the sense that
problems of reasonable size can be solved within a few minutes. For instance, when building
the figures, ten data points for P(W > z) were typically obtained in less than one minute
CPU time on a SUN Ultra 170 workstation. The construction of the g vector is immediate,
and the principal part of the computation time is spent on inversing the Laplace transform
W*(s).

The sources used in the reported experiment are of moderate size (7x13 = 91 states). We have
performed experiments with superpositions of two or three groups of binary sources, leading
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Figure 1: Bounds and exact values for p ~ 0.392
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Figure 2: Bounds and exact values for p ~ 0.654
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Figure 3: Bounds and exact values for p ~ 0.883

to up to 1690 states (a superposition of three groups of 4, 12 and 25 binary sources). For 400
states, computing ten points of P(W > x) takes about 15 minutes in the same conditions.
For 1000 states, computing one value of P(W > z) takes about 10 minutes. For 1600 states,
computing the vector g alone takes about 2,5 minutes.

e In the case of exponential service times (still with binary sources), where the inversion of the
Laplace transform is not necessary, the computation times reduce to a few seconds. This is
also the case when computing expected waiting times with (39).

e Numerical precision problems prevent the exact computations of probabilities less than 107 /108
in the case of low traffic. This problem can be addressed using an increased precision, as for
instance with the MAPLE'software, at the cost of a much increased running time.

e The potential drawback of using the linear system (24) instead of the G matrix is that the =
matrix is not stochastic. It may contain numbers of arbitrary sign and magnitude, and the
solution of (24) is expected to yield numerical instability, especially at high loads. This problem
has indeed been observed, though, quite surprisingly, not before the size of the problem reaches
several hundred states. For instance, computations involving sources with 300 states and with
a load equal to 0.995 have been found to be stable.

7 Concluding Remarks

We have presented a new computation scheme for the analysis of the stationary workload in the
MMPP/GI/1 queue when the MMPP is reversible. The technique parallels that of Stern and Elwalid
[17] for the analysis of MMRP processes. The basic ideas are to diagonalize the matrix A(s) (cf.
(21)) and to develop its spectral expansion which yields a new formula (23) for the Laplace transform

IMAPLE is a trademark of Waterloo Maple Inc.
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of the workload W*(s). The singularity analysis of this formula in turn allows us to establish a
linear system whose solution gives the probability vector g and W*(s).

The diagonalization of the matrix A(s) also simplifies the computation when the input is the
superposition of independent sources. Indeed, owing to the Kronecker algebra, A(s), its inverse and
its exponential are easily obtained by Kronecker sums and Kronecker products of those of composing
elements, see Lemma 2.1 and Corollary 2.2.

These properties have allowed us to devise a new computation algorithm which is particularly
suitable for superposition of sources. It is even more interesting when superpositions of binary
sources are to be analyzed. In this case, closed-form expressions have been obtained for the diago-
nalization of A(s). When the service times are exponentially distributed, the workload distribution
has a closed-form expression as well. We have applied this method to the computation of both exact
results and bounds for the workload distribution.

We are aware that the applicability of any algorithm based on the exact solution of Markov
Modulated models is limited, and that very large problems will still stay out of reach. However, to
the best of our knowledge, results concerning sources with a thousand states have not been reported
in the literature. Limitations originate from algorithmic complexity and numerical inaccuracies.
The first problem is not specific to our approach. The second problem arises typically when the
system is highly loaded. Interestingly enough, this situation corresponds to the case when the
bounding approach is the most efficient (see Figure 3 and [13]).

It will be interesting to further investigate the symbolic inversion of W*(s) when the service
time has a rational Laplace transform. Other future research directions include the extension of
the results to the case of non-reversible Markov chains, and the investigation of appropriate data
structures for Kronecker algebra to obtain additional computation time savings.

A  Proof of and Remarks on Lemma 2.3

Proof  (of Lemma 2.3.)
The fact that 2® = ®A is a direct application of the analysis of [2] and [15]. Indeed, a pair

(w, @) is a solution of
wh = A (74)
if and only if:

¢ (=bJ(N) + (v —a)[(N)) = dM(N; A, 1) .

In [15, eq. (4.31) et seq.], Mitra solves the problem of finding the numbers z and the vectors ¢
solution of:

2¢ (J(N) = VI(N)) = dM(N; A, 1) - (75)

He shows that the values z for which a solution exists are such that:

N N
uz—E(cz+/\+,u)+(5—k)\/(cz—)\+,u)2+4)\,u = 0, (76)
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for some k € {0,... ,N}. The corresponding eigenvectors ¢ are given by:
¢(i) = [a')(@ = mi(z0))* (2 = 722 ))V F,
where 71 5(z) are the roots of the polynomial:
M2 4 (cz=A+p)X —p =0,
Here, we have a problem of type (75) with:
c= —-b, v= —(w—a), and z=1. (77)

Consequently, the pair (w, ¢) is a solution of (74) if and only if the pair (1, ¢) is solution of (75).
Using (76) and (77), we find that w must satisfy:

0 = —(w—a)—%(—b—l—)\—i—u)—l—(%—k)\/(b+)\—u)2+4)\,u,

This gives the values (9). All these values are distinct provided that (16) holds. The form of the
eigenvectors ¢, follows from (12).
In order to establish (17), we prove that:

Y = (o3—0)V 1. (78)
By definition, we have:

N N . . .

D gutn; = D 5@ — 1) (@ — o)V grjoy N

k=0 k=0

. N . . .
= oV Y [z — o) (@ — o)V )y — o)y — o2)V ol
k=0

= ang[yj](y - 02)N (x - Ul)i(x - 02)|x202(y*‘71)/(y"72)

; ; ooy —o1) —o1(y — o2))'oy "y —o1 —y+on)VN !
_ U%fN[yg](y_@)N( 2(y 1) 1(y (;)—)o'z)N(y 1—y+o09)

= o} o2 — o)V ]’
= (09 — 01)N bi=j -

From (78), we can conclude (17) provided that o1 — o9 # 0. According to (10) or (11), this is true
as long as

(=b+A+p)* +4ru#0,

which is equivalent to (16). ]
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Remark A.1 Tt is easily seen from (9) that the eigenvalues wy are placed in a line of the complex
plane, and regularly spread out. The spectrum is symmetrical with respect to the point a + N(b —
A — u). Due to the symmetry between k¥ and N — k, one may choose any determination for the
square root in (9). This symmetry is also the reason why the characteristic polynomial of A is
actually a polynomial of all its variables, despite the square roots of appearing in (18).

Remark A.2 (Degenerate cases) Lemma 2.3 holds true in case A = 0, b # p. In that case, however,
the definitions (10), (12) and (14) “degenerate” into: o1 = —p /(b — u) and:

or(i) = [z —o1)*, (i) = [)(@+o1)".

Remark A.3 (Analyticity) In applications, the matrix A is often considered as a function of its
(complex) parameters. It is therefore useful to state on the analyticity of the decomposition (17)
with respect to a or b.

The functions oy defined in (10) are analytic in each of its parameters A, p,a,b as long as
condition (16) holds. Obviously, the parameter a does not play a role in the analyticity.

For A and p fixed, 0y 2 are analytic in the variable b in domains slit along lines going from the
points by 5 = —(V/X ii\/ﬁ)2 to infinity. See Figure 4. Observe that these points lie in the right-hand
half plane if A < p, in the left-hand half plane if A > u, and on the imaginary axis if A = p.

. Iblzgﬂ' b =-3 41
i by =3+1 by =341
Case A\=1/4, u=1 Case A\=1,u=1/4

Figure 4: Domain of analyticity for b

The point A = 0 is singular for the decomposition (17), although A is normally diagonalizable
there (see Remark A.2). The matrix ¥ defined in (14) may fail to be analytic when oy vanishes.
According to (11), this can happen only when p = 0.

Finally, note that although each of the elements 01,092, ® and ¥ may have a restricted domain
of analyticity, their combinations may be regular on a larger domain. For instance, the product in
(17) is A, which is an entire function of all parameters. Also, A~! is given by (19), but is also a
rational function of its parameters. Therefore, its domain of analyticity is the entire complex plane,
minus the zeroes of det(A). An instance of this phenomenon appears in Section 4.
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