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Abstract

Consider an M/M/1 queueing system with server vacations where the server is turned off as
soon as the queue gets empty. We assume that the vacation durations form a sequence of i.i.d.
random variables with exponential distribution. At the end of a vacation period, the server may
either be turned on if the queue is non empty or take another vacation. The following costs are
incurred: a holding cost of h per unit of time and per customer in the system and a fixed cost of
v each time the server is turned on. We show that there exists a threshold policy that minimizes
the long-run average cost criterion. The approach we use was first proposed in Blanc et al.
(1990) and enables us to determine explicitly the optimal threshold and the optimal long-run
average cost in terms of the model parameters.

Subject classification: Dynamic programming; Markov decision processes; queueing con-
trol models; queues with vacations.

Queueing systems with vacations of the server have already received much attention in the literature
and a comprehensive discussion can be found in the survey papers by Doshi (1986) and Teghem
(1986). These models are commonly used for modeling and tuning various systems ranging from
manufacturing systems to communication and computer systems (cf. Doshi (1986)). Vacation
models can be classified into two categories: models with repeated (multiple) vacations of the server
and models with a removable server. In the former case the length of a vacation period is driven by
an external process (e.g., the vacation lengths are i.i.d. random variables, see Gelenbe and Mitrani
(1980), Gelenbe et Tasnogorodski (1980), Kella (1989, 1990), Levy and Yechiali (1975), while in

the latter case the length of a vacation period is driven by the arrival process (see Heyman and
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Sobel (1984, pp. 336-337), Yadin and Naor (1963)). In both cases, the server may be turned off at
any service completion epoch of a customer and it may be turned on only at an arrival epoch of
a customer in the case of a removable server, and only at the end of a vacation period in the case
of repeated vacations. Of particular interest is the stationary policy that turns the server on only
when the number of customers in the queue is equal to or larger than a given value, and turns the
server off when the queue is empty. This policy will be referred to as the threshold policy.

A natural objective is to seek for an optimal vacation policy that optimizes a given cost function
among certain classes of policies. For the M/G/1 queue with a removable server Heyman and Sobel
(1984) and Talman (1979) have shown that a fairly general average cost criterion is minimized by
a threshold policy among the class of all policies. For the more difficult problem of controlling
the service process in a queue with repeated vacations, only a few optimization results have been
reported so far. Recently, Kella (1989) has computed the best threshold policy for an M/G/1 queue
with repeated vacations, and Lee and Srinivasan (1989) have carried out the same analysis in the

case of batch arrivals. In the case where the decision to take another vacation is based on a random
outcome depending on the number of consecutive vacations already taken, Kella (1990) has shown

that a control policy of a limit type minimizes a long-run average cost criterion.

Our contribution is to establish the optimality of a threshold policy over the class of all policies,
including policies that may depend on the history of the system (i.e., number of customers at any

time and previous decisions made).

More precisely, consider an M/M/1 queue under the exhaustive service discipline and with repeated
vacations, where the lengths of the vacation periods are i.i.d. random variables with an exponential
distribution. Assume that a holding cost h > 0 is incurred per unit of time and per customer and
that a fixed cost v > 0 is incurred when the server is turned on. We show in this paper that there
exists a threshold policy that minimizes the long-run average cost criterion.

The approach we use closely follows that proposed by Blanc et al. (1990) and enables us to ezplicitly

compute both the optimal threshold and the optimal long-run average cost in terms of the model
parameters.

Altman and Nain (1993) and Federgruen and So (1991) have shown independently that the optimal-
ity of a threshold policy actually extends to the M/G/1 queue with arbitrary repeated vacations.
However, the optimal threshold cannot be determined explicitly in this case even by specializing the
model to the model studied in the present paper, and a numerical procedure (see e.g., Kella (1990))
has to be used instead.

A natural way of formulating the problem as a Markov decision process is by considering an embed-
ding at the time epochs at which vacations end. This would result in a semi-Markov decision process.
However, due to the fact that the times between embedded epochs are not i.i.d. random variables
it turns out that for the discounted cost criterion, optimal policies need not be of a threshold type
(for any discount factor), see Altman and Nain (1993). In this paper we therefore prefer to use
a uniformization-type approach, that consists in sampling the process at some i.i.d. exponentially
distributed time instants. This enables us to establish under some conditions the optimality of a



threshold policy not only for the expected average cost criterion (as obtained in Altman and Nain
(1993), and Federgruen and So ( 1991)), but also for the discounted cost (this is done, in our case,

at the price of working with a state space with a larger dimension).

The paper is organized as follows. In Section 1, the problem is formulated as a Markov decision
problem. In Sections 2 and 3 a related discounted cost problem is introduced and solved via dynamic
programming and the technique proposed in Blanc et al. (1990). This finally enables us to derive

the optimal policy for the long-run average cost criterion (Section 4).

1 The Model

We consider an M /M /1 queue where the server serves the customers according to an arbitrary work
conserving service discipline until the queue gets empty, and then takes a vacation of random length.
When returning from a vacation, the server may either be turned off (i.e., take a new vacation) or
turned on (i.e., resume work), provided the queue is non empty, according to a wvacation policy
(a precise definition of a vacation policy is given below). The vacation lengths are i.i.d. random
variables (r.v.’s) with an exponential distribution. We assume that the interarrival, service and
vacation time processes are mutually independent. Let 1/A, 1/u and 1/v be the mean interarrival

time, mean service time and mean vacation time, respectively.

We assume that a holding cost h > 0 is incurred per unit of time and per customer in the queue
and that a restarting cost v > 0 is incurred each time the server is turned on. Our objective is to
find a vacation policy that minimizes the long-run average cost incurred over an infinite horizon.

Let IN be the set of all nonnegative integers and IR be the set of all real numbers.

In order to place our control problem in the Markov Decision Process (MDP) setting (see Bertsekas
(1987), Ross (1970), Schal (1975)), we need to introduce extra observation points. More specifically,
we shall assume that the system (to be made more precise) is observed at every arrival time, service
completion time and jump time of a Poisson process V, independent of the arrival and service time
processes, with intensity v. The process V plays the role of a virtual vacation process in the sense
that, if a jump occurs in V whenever the server is on vacation, then this jump may be taken as
the next vacation completion time. This follows from the memoryless property of the exponential
distribution, the independence of the arrival, service time and V processes, and the fact that the
mean interevent time for the process V is the same as the mean vacation time. At every observation
point that corresponds to a jump in V, a decision will be made on whether or not to turn the server
on (provided the queue is non-empty). This follows from the description of the control problem
at hand and from the definition of the virtual process V. At all other observation points, dummy
actions will be taken that will not affect the system behavior.

With this definition of the observation (decision) points in mind, we shall construct an MDP such
that the state of the process at the n-th decision epoch ¢,, n > 1, is represented by the triple
(X0, Y, Z,) € IN x {0,1}2, where X,, is the queue-length at time ¢}, ¥;, € {0,1} describes the



activity of the server at time ¢, (Y,, = 1 if the server is working and Y,, = 0 if it is on vacation) and
Zn = 1(t, € V), that is Z,, = 1 if t,, is a jump time of the process V and Z,, = 0, otherwise. It is
readily seen from the definition of X,,, ¥, and Z,, n > 1, that states (0,0,0) and (0,1,1) are not
accessible.

The MDP may now be constructed as follows. Let S := IN x {0,1}? — {(0,0,0),(0,1,1)} be the
state space, and let A, , . C {0,1} be the set of all available actions when the system is in state
(z,y,2z) € S. We assume that

A1 = {1}, forz>1;

A _ {1}, for =z > 1;
=10 = {0}, for z=0;
A _ {0,1}, for z > 1;

=0l = {0},  for z = 0;

A,o0 = {0}, forz>1.

where by convention action 1 (resp. 0) is taken if the decision is to turn the server on (resp. off).
Note that the only states when more that one action is available are states (z,0,1) with x > 1, that
is, when a jump occurs in V (z = 1), that the server is on vacation (y = 0) and that the queue is
non-empty (z > 1). This reflects the control problem at hand. In all other cases, the definition of
the single available action is arbitrary, except for state (0,1,0) when necessarily action 0 has to be
taken to follow the definition of the vacation scheme.

Following Schil (1975), a vacation policy U is then defined as a sequence of conditional probabilities
U, : H, — P({0,1}), H; = S, H,4; = H, x {0,1} for all n € IN, such that U,(hy;e), h, =
(81,01, ,8n—1,n_1,Sn), assigns probability one to the set A, (the notation P({0,1}) stands the
set of all probability measures on {0,1}). Asusual, a policy is stationary if U, (h,;e) is concentrated
at the point a(sy) for all h, = (s1,a1,...,8,—1,an-1,5,) € Hy, n > 1, where « is a measurable

mapping from S to {0,1}. Let U be the set of all vacation policies.

Let q(e | s;a) be the probability distribution of the next state visited by the system if the system is
in state (z,y,2) € S and the action a € A, , . is chosen. The transition probabilities are given by
(with B:= A+ pu+v)

¢z —1,1,0|z,1,151) = p/B, forz>1;
¢(z+1,1,0|z,1,1;1) = A/B, forz>1;
q(z,1,1|z,1,1;1) = v/p, forz>1;
¢(r—-1,1,0|z,1,0;1) = p/B, forz>1;
¢(z+1,1,0|z,1,0;1) = A/B, forz>1;
q(z,1,1]2,1,0;1) = v/B, forz>1;



¢(1,0,0(0,1,0;0) = X/ (A+v);
q(z —1,1,0|z,0,1;1 w/B, for z >1;
q(z+1,1,0|z,0,1;1 A/B, forxz>1;
v/pB, for x >1;

¢g(x+1,0,0|x,0,1;0

)
)
q(x,1,1]2,0,1;1)
)
q(x,0,1]2,0,1;0)

q(z +1,0,0|z,0,0;0)
q(z,0,1|x,0,0;0)

A/(A+v), for x € IN;
v/(A+v), for z € IN;

A(A+v), forz>1;
v/(A+v), forx > 1.

Given an initial distribution on S and the transition law ¢, any policy U € U defines a probability
measure on the product space (X x A)>® endowed with the product o-algebra. Let EV be the
expectation operator associated with this probability measure. On this probability space are defined
the random vector (X,,,Y,,, Z,) that describes the state of the system at the n-th decision epoch as
well as the r.v. A, that describes the action taken at the n-th decision epoch, n > 1. The reader can
check from the above construction (in particular, from the definition of the transition law ¢) that

the interpretation of the r.v.’s X,,, Y,, Z, and t,, n > 1, is indeed the one given at the beginning
of this section.

Our objective is to minimize

WY(x,y,2) == limsup T WX (2,4, 2), (1.1)
TToo

over the set U for all (z,y,z) € S, where

Wg(x,y,z) = Ey Z A( Xy Yo, Zns An) | (X1, Y1, 21) = (2,9, 2) | , (1.2)
0<tn<T
with
c(z,y,20) = (h/v)zz + v (1 - y)z1(a = 1), (1.3)

for all (z,y,2) €S,a€ Ay y ..

The first result shows that (1.1) is equal to the long-run average cost incurred in the M/M/1 queue
when the vacation policy U is used.

Proposition 1.1 Fiz U € U. Let X(t) and Y (t) be the queue-length and the state of the server at
time t > 0, respectively, when policy U is used. We assume that the sample paths of the processes
{X(t), t >0} and {Y (t), t > 0} are right-continuous and left-continuous, respectively. Then,

WY (z,y,2) = By [/OT hX(t)dt+~v(1—Y(@)dY (@) | X(0) =2, Y(0) =y, Z1 = 2|,  (1.4)



for all (z,y,z) € S, where X(0) = X1 and Y (0) = Y] under the assumption that t; = 0.

Proof. Define v, to be the n-th jump time of the process V, n > 1. Let N(t) := 32,5, 1(va < 1)
be the number of jumps of the process V in [0,¢], ¢ > 0. It is seen from (1.2), (1.3) that

Wi (z,y,2) = Ey { > (W) Xp+7(1 = Yo) 1(an = 1)) Zn | (X1, Y1, Z1) = (w,y,z)] :
0<tn <T

= Ey /OT(h/V)X(t)dN(t)+7(1—Y(t))dY(t)I(Xl,Yl,Zﬂ=(w7y,z)],
— Ey /OT (h/y)X(t—)dN(t)+7(1—Y(t))dY(t)|(X1,Y1,Zl):(m,y,z)], (1.5)

= Ey /OT hX(t=)dt +v(1-Y(?)dY ()] (X1, Y1,21) = (:v,y,Z)] ) (1.6)

[ T
= Ey /0 hX(t)dt+~(1-Y(t)dY(t)[(X1,Y1,21) = (l“ayaz)] : (1.7)
Equality (1.5) follows from the fact that with probability one both processes {X(¢), ¢ > 0} and

V have no common jumps. Equality (1.6) follows from Brémaud (1981), formula 2.3, p. 24, with
Cp:=X(t-)1(t <T), Ny:=N(t), p:=vand Fy =0(X(s),0<s<t)Vo(N(s),0<s<t). ®

Remark 1.1 Additional costs/rewards could be considered. In particular, the system could receive
a reward for each unit of time the server is on vacation, and a constant cost could be incurred each
time the server is turned off. However, and as observed by Kella (1990, p. 116), these extensions
can easily be captured by our model.

2 A Related Discounted Cost Problem

Minimizing directly WY (z,y, z), cf. (1.1), over the set of policies U turns out to be a difficult task.
To achieve this goal, we shall first (partially) solve a related discounted cost problem. Then, the
use of a Tauberian theorem (see Section 4) will allow us to determine an optimal (stationary) policy
for the long-run average cost problem.

Fix a > 0. Our first objective is to minimize over U the a-discounted cost function

VQU(.I,y,Z) = EU Z e_atn C<XnaYnaZnaun) |(X1aYIaZI) = (m,y,z) ’ (21)
n>1

for all (x,y, z) in S, where the cost ¢ is defined in (1.3).



Let Va(x,y,z) = infUEZ/{ VQU(JJ,y, Z)a ('T7yvz) €8S.
For each function f: S — IR, set

I fl:= sup |f(z,y,2)z", (2.2)
(m,y,;%es

and define B to be the Banach space (with norm given in (2.2)) of all such f for which || f ||< oo.

Unless otherwise mentioned, we will assume from now on that h/v = 1. The following basic result

of Dynamic Programming (DP) holds:

Theorem 2.1 There exists an optimal stationary policy for the a-discounted problem. In addition,
Vo is the unique solution in the Banach B to the DP equation

Os,y,2(u)

UeAm,y,z m

Z Va(wlaylazl) Q(xlaylazl|wayaz;u)} ’

Va(z,y,2) = min {C(w,y,Z;UH
(='y',2")es

(2.3)
for all (z,y,z) € S, where 0, ,(u) is the transition rate out of state (x,y,z) given that action

u € Ay . 15 chosen.
Furthermore, the stationary vacation policy which selects an action minimizing the right-hand side

of (2.8) for all (x,y,z) € S is optimal.

Proof. First note that the costs (1.3) are unbounded. However, one can easily establish that As-
sumptions 2 and 3 in Lippman (1975) are satisfied. Therefore, the proof follows from Theorem 1 in
Lippman (1975). ]

It is easily seen from Theorem 2.1 that

(a+B)Va(z,1,1) = z(a+f)+pValz—1,1,0) + AVa(r+1,1,0)
+ vVu(z,1,1), for z > 1; (2.4)

(a4 B)Vo(z,1,0) = pVe(x—1,1,0) + AVy(x+1,1,0)

+ vVu(z,1,1), for z > 1; (2.5)
(a+A+v)Va(0,1,0) = AVL(1,0,0) + v V,(0,0,1); (2.6)
(a+A+v)V4(0,0,1) = AV,(1,0,0) + v V,(0,0,1); (2.7)
Val(2,0,1) = min{x b V(@ 41,0,004 — L Vi(x,0,1);
at+A+v at+Atv



b A
P vi-11,0 Vi(z +1,1,0
:c—lrv-l-oH_ﬂ (x )+a+ﬂ (x + )
+EEEL@@JWU},brm21; (2.8)
(a+A+v)Vyo(z,0,0) = AVu(zr+1,0,0)+vV,y(x,0,1), for z > 1. (2.9)

The end of this section is devoted to reducing the number of unknown quantities involved in the set
of equations (2.4)-(2.9).

First, combining (2.6) and (2.7) gives us

Va(0,1,0) = V4(0,0,1) =

AAmamm) (2.10)

«

Then, using (2.5) and (2.9) we see that (2.8) can be rewritten as

Va(z,0,1) = z 4+ min {V,(z,0,0);y + Vo(z,1,0)}, for z > 1. (2.11)

Introducing now (2.11) into (2.9) yields for x > 1

(a+A+v)Vo(z,0,0) =ve + AVy(z +1,0,0) + v min {Va(x,0,0); Vo(z,1,0) +v}. (2.12)

On the other hand, we observe from (2.4) and (2.5) that

Va(z,1,1) = 2 + V,(x,1,0), for x> 1. (2.13)

Introducing (2.13) into (2.5) finally yields for z > 1
(a4+ A4+ p) Vo(z,1,0) =ve + AV (x +1,1,0) + pu Vo (z — 1,1,0). (2.14)
Relations (2.10), (2.12), (2.13) and (2.14) contain all the information carried by the DP equation

(2.3). A glance at relation (2.14) indicates that it defines a difference equation. This yields the
following result:

Lemma 2.1

A - A A—
Va(l',]_,(]) = (Va(l,(),()) (Oz——i-)\> +v (%)) 571 + gl‘ +v ( a2lu> ) (215)

for all x € IN, where a1, 0 < o < 1, is the smallest root of the polynomial (in z) A22 — (a+
A+ p)z+ p.



Proof. The general solution of the difference equation (2.14) is
Va(2,1,0) = a 5, +b B2, +ca+d, (2.16)
for z € IN, where B,,1 and (3,2 are the roots of the polynomial (in 2) Az — (@ + A+ ) z + 1, with

0< ﬁa,l <1< /804,2-

By remembering that V,(z,1,0)/z is uniformly bounded in IN*, we see from (2.16) that necessarily
b = 0 since (5,2 > 1. The remaining coefficients a, ¢ and d are easily identified by introducing (2.16)
into (2.14) and by using (2.10). [

In summary, we have shown in this section that all V(z,y, 2), (x,y, 2) € S, only express in terms of
V(1,1,0), V(x,0,1) and V(x,0,0) for x > 1 through equations (2.10), (2.12), (2.13) and (2.15). In
the following, (2.12) and (2.15) will turn out to be the key equations.

3 Properties of the Optimal a-Discounted Policy

The goal of this section is to further characterize the optimal a-discounted policy.

From now on we shall assume that A < u (condition of ergodicity). Let Uy(z,y,2) be the optimal
stationary vacation policy when in state (z,y,z) € S. As already observed, we only need to focus
on states (z,y,z) € S such that x # 0, y = 0 and z = 1. With a slight abuse of notation, define
Uy(z) := Uy(x,0,1) for x # 0, with the interpretation that U,(x) =1 (resp. 0) if the decision is to

turn the server on (resp. to take another vacation) when the system is in state (x,0,1), x # 0.

As mentioned in the introduction, we follow the method proposed by Blanc et al. (1990) for
determining the optimal a-discounted policy. The procedure goes as follows:
(1) Assume that the optimal policy is a threshold policy with threshold L > 1 (call Uy, this policy);

(2) Construct a function that would be a solution of the DP equation if policy Uy, were indeed
optimal;

(3) Show the existence of an integer L such that the function constructed in (2) satisfies the DP
equation.

Steps (1) and (2) in yield the following proposition:

Proposition 3.1 Assume that there exists a finite integer L > 1 and a family of L numbers
{Yr(2)}E_, that satisfy

(a+NYr(z) = ve+AYr(x+1), forx=1,2,...,L —1; (3.1)

Y(L) = C, (YL(l) (O%LA) +v ("‘O;A» L+ gL + Ko, (3.2)




and such that

Y1) > 0 (3.3)
Yi(z) < Zp(z)+7, forx=1,2,...,L—1; (34)
Yi(L) > Zi(L)+7, (3.5)
where
Zi(z) = (YL(1)(aiA)+y(“;A)) §,1+§x+u()\;2u>; (3.6)
Co 1= oz+u+AV(1—ﬁa,1); G0
Ko = (ai]) (g+u(’\o;“)+7>. (3.8)
Then,

Uy(z)=1(z > L), forxz>1,

and further, Y (x) = Vo (2,0,0) for x =1,2,...,L and Zy(x) = Vo(x,1,0) for x > 1.

Proof. Let {Yz(x)}L_, be a family of numbers that satisfy (3.1)-(3.5).

Define (see Remark 3.1) for detailed comments on this definition):

Y (z), forx =1,2,...,L;

by )\
Ca (YL(1)(Q—+/\)Jrz/(/‘a2 )> g,l—i—gx—i—Ka, for x> L+ 1.

Let us show that Y7 (x) > Zp(x) + ~ for > L, where Zp(z) is defined in (3.6).

For > L, we have from (3.6) and (3.9)

Yi(z) — Zp(x) — 7y = (Co — 1)(YL(1) (ﬁ) +v (“T;A))  + Koty (“O;A) — 7. (3.10)

We know from (3.5) and the definition of Y7, (L) that the right-hand side of (3.10) is non negative
for x = L. Since the right-hand side of (3.10) is a nondecreasing function of = (because A\ < u,
Y7r(1) > 0,0 < B <1, and C, < 1), we therefore deduce from (3.10) that

Yi(z) > Zp(x) + 7, forxz> L. (3.11)

Using this result, (2.15), (3.1), (3.6), and (3.9), it is easily seen that V,(z,0,0) = Y.(x) and
Vo(z,1,0) = Zp(x)) satisfy (2.12) and (2.14).
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Consequently, we have found a solution to the DP equation that belongs to B (because Y (z)/x
and Zp(z)/z are uniformly bounded in IN*). Since such a solution is unique from Theorem 2.1, we
deduce that necessarily (cf. also (2.10), (2.13)),

Vo(2,0,0) = Yi(z), forz > 1; (3.12)
Va(0,1,0) = (A/(a+A)YL(1); (3.13)
Volz,1,0) = Zp(z), for z > 1; (3.14)
Volz,1,1) = z+ Zy(x), forxz > 1. (3.15)
Hence, cf. (3.4), (3.12), (3.14),
Vo (2,0,0) < Vo(x,1,0) + 7, (3.16)
forx=1,2,...,L —1, and, cf. (3.11), (3.12), (3.14),
Vo(2,0,0) > Vo(x,1,0) + 7, (3.17)
for all x > L, or equivalently, U,(x) = 1(x > L) for all € IN*, which concludes the proof. [ |

We are now left with proving the existence of the integer L in Proposition 3.1. To do so, let us first
introduce further notation. Let p := A/u, a := A\/v and define z( as the unique zero in [0,00) of
the polynomial (in w) w? + (2a + 1) w — 2a7 (1 — p), that is

2o = —(2a+1)+\/(2a2—i—1)2+8a’y (l—p). (3.18)

Last, let
lp be the smallest integer larger or equal to zy such that [y > 1. (3.19)

The symbol O(a) (resp. O(1)) will denote a function such that limy o O(a) = 0 (resp. = K,
|K| < 00).

The following result holds:

Proposition 3.2 Assume that xy < ly. Then, there ezists ag > 0, such that for all a € (0, ),
there exists a family of lo numbers {Y, 1, (x)}9_, that satisfy (3.1)-(3.5).

Proof. We first proceed with the solution {Y, (z)}L_; of the system of equations (3.1)-(3.2) when
L >1 and o > 0 are both fixed.

From (3.1), we obtain that

Yau(z) = (O“;A)H You(1) = [(O‘J;A)m - 1] +oa, (3.20)

(0%
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forz=2,...,L.
Combining (3.20) for z = L and (3.2) yields Y, 1(1), from which we deduce with (3.20) that
L J—
Av (O‘“) —1 +y<“ ’\> L Co+ Ka
a2 )\ a2 ) a + )\ x
Yor(e) = a+ T ( A )
(557) - stace

. M [1 - (aJM)m] + g:v (3.21)

forx=1,2,...,L.

Finally, using (3.21) and the definition of Z, 1(x) gives

2 (b2 2
2 \Fet e a+AN\" v .
Yoo (i) = Zap(a) = | 2 etv) oty [(OX2) g |42 (1-g2,).

B a+ A\ A a? ol
(%) —skica

(3.22)
forx=1,2,..., L.

The first step is to prove the existence of @; > 0 such that Y, (1) > 0 for a € (0, a1). By expanding
Yo, r(z) in (3.21) in Taylor series at the vicinity of z = 0 we get that (see Altman and Nain (1991)
for details)
A
Yo,r(1) = —+0(1), (3.23)

«

where A := A ((L ;al)L + (a(lp— B + 1) (L+a)+~(1 —p)) /(L + a).

The next step consists in evaluating the difference Y, 1(x) — Za,1(x) when « gets close to 0. After
simple but tedious algebra (see Altman and Nain (1991)), we obtain from (3.22)

L*+2aL —z(L+a)+2a*+2ay(1—p)+a T
Ya - Za = I
(3.24)
forx=1,2,..., L.
On the other hand, it is seen from (3.24) that
Yor(L) — Zap(D)—y = = TE 4 o) (3.25)
a,L a,L 7_2(L+a)(1—p) ’ .
where
P(w) :=w? + (2a + 1) w — 2a v (1 — p). (3.26)

12



Recall the definitions of zg and ly. Since xy < [y by assumption, we see that

P(L)y < 0, for L=1,2,...,lp—1; (3.27)
P(lp) > 0, (3.28)
and so, cf. (3.25),
Yoo.(L) < Zap(L)+7, for L=1,2,...,1p —1; (3.29)
Yoiuo(lo) > Zayy(lo) +, (3.30)

for a € (0, ).
It remains to prove that for o small enough,

Yaio(2) < Zoo(x) +7, forx=1,2,...,0p — 1. (3.31)

To do so, rewrite Yy, (x) — Z, 1(x) as, cf. (3.24),

X

Yo,0(2) = Za,1(2) = Yo,1-1(2) = Za,1-1(2) + (m

) QW) - QL - 1) +0(a). (332
forx=1,2,...,L — 1, where

_w'+2aw+2d*+2av7(1-p)+a
B w+a '

Qw) : (3.33)

Since
2Q(w) _ Pw) = (w+a) <0 for 0 < w < x,
ow (w + a)?

we get that Q(L) — Q(L —1) <0 for L =1,2,...,lyp — 1. Further, it is shown in Appendix A that
Q(lp) — Q(lp — 1) < 0 when zy < ly. Consequently,

QL) - QL —1) <0, forl=1,2,...1l, (3.34)
which implies from (3.32) that for a small enough,
Yor.(z) = Zap(z) < Yo r-1(x) — Zar—1(x), (3.35)
fore=1,2,...,L—-1,L=1,2,...,1.
Combining (3.29) and (3.35), it is easily seen that there exists ag > 0, such that for « € (0, a3),
You0(T) = Zaji(x) <, (3.36)

forx =1,2,...,lp — 1. The proof is concluded by letting ag := min(ay, ag, ag). [ |

Propositions 3.1 and 3.2 yield the following

13



Proposition 3.3 Assume that vg < ly. Then, there exists ag > 0 such that for all « € (0, ),
Us(z) = 1(z > 1) forx > 1.

We draw the reader’s attention on the fact that Proposition (3.3) does not solve the discounted cost
problem since (1) it does not cover the case when [y = x¢ and (2) it does not say how to compute
ag. However, Proposition (3.3) will turn out to be sufficient for solving the long-run average cost

problem, as shown in the next section.

Remark 3.1 According to Step (1) of our “algorithm” at the beginning of Section 3, Yy (z) is
obtained by assuming that the threshold policy Uy is optimal (i.e., Vy(z,0,0) = Yz(z)). This
clearly motivates the definition of Y7,(x) for # = 1,2,..., L (see (2.12) and (3.1)). The expression of
Yy (z) for £ > L+1 is obtained by introducing (2.15) into (2.12) (still assuming that Uy, is optimal),
which gives for x > L,

2 2
(a+ X+ v) Va(z,0,0) = V:c—i—)\Va(x—l—l,O,O)+Vaaﬂ§’1+%w+%()\—u)—l—wy, (3.37)

where a, is the coefficient of 83, in (2.15). Again, we have a difference equation, of which the

general solution is given by

at+A+v

Va(.T,0,0) = KO /82,1 + Kl ( b\

X
) + Kyx+ Ks, forx > L. (3.38)

Since V,(z,0,0)/x must be uniformly bounded in z, we deduce from (3.38) that necessarily K; = 0.
The remaining constants Ky, Ky and Kj are easily identified by pluging (3.38) into (3.37), which
yields

Vi(2,0,0) = a0 Co 82, + gﬂc + Ka, fora>1L, (3.39)

where C, and K, are defined in (3.7) and (3.8), respectively, which now motivates the definition of
Yy (z) for x> L.

Remark 3.2 If

a+1
0<v<—/—,
a(l—p)

then for o small enough U,(xz) = 1. This result follows from (3.25) by noting that the condition
(3.40) is equivalent to P(1) > 0.

(3.40)

4 The Long-Run Average Cost Problem

In this section we shall discuss the long-run average cost problem (1.1) and we shall establish the
optimality of a threshold policy.
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Since V.V (x,y, 2) is well defined for all (z,y,2) € S, U € U (see (2.1)), we know from a Tauberian
theorem (Widder (1941, pp. 181-182)) that

hmsupalO @ VaU(wv Y, Z) < liInsupTToo T_l W’Il“](w7 Y, Z), (4-1)

for all (z,y,z) € S, U € U. Further, if limpoo T 1 WH(2,y,2) exists then lim,jo a V.V (z,y,2)
exists as well, and
WY(z,y,2) = lim o Va (2,9, 2), (4.2)

for all (z,y,2) €S, U € U.

We know from a standard result from Markov chain theory that (4.2) holds whenever (X,,, Y., Z,.)n
is an ergodic Markov chain. On the other hand, (X,,Y,, Z,), is an ergodic Markov chain when a
threshold policy with a finite threshold is used and p < 1. Hence,

(4.2) holds when a threshold policy with a finite threshold is used. (4.3)
Fix £ > 1 and let U € U be an arbitrary policy. Two cases need be distinguished:
Case 1: xy < Ip.

From Proposition 3.3 we have

VaUlo (:E, 07 1) S Vofj(xv 07 1)7 (4-4-)
for all @ € (0,ap). Hence, cf. (4.1),
limsup,, o VaUIO (2,0,1) < WY(x,0,1). (4.5)

Combining now (4.3) and (4.5) yields

WY (x,0,1) < WY(x,0,1). (4.6)

Case 2: xy = lp.

From now on, V.V (z,0,1), WY(z,0,1), o and Iy are considered as functions of the parameter +,

and denoted as V.Y (z,0,1), WY (z,0,1), 2} and [J, respectively.

Let A, p1, v and v = 7o be such that z:J° = J°. Since the mapping v — z] is strictly increasing and
continuous in [0, 00), cf. (3.18), we see that there exists H > 0 such that

-1 <<, (4.7)

for 0 < h < H. Therefore, Proposition 3.3 applies to the parameters A, p, v and 9 — h for
0 < h < H, which implies that for h € (0, H),

Ul"VOa’YO_h U h U
Va 0 (.CIJ',O, 1) S Va e (.%', 07 1) S Va 770(1"07 1)7 (48)
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for « € (0,ap(h)), where the second inequality follows from the fact that the mapping v —
VU7 (2,0,1) is nondecreasing in [0, 00) for a > 0. Using again (4.3) together with (4.8) gives

U~ vo—h
w 130 7 (33,0, ].) S WU”YO(ana 1)5 (49)

for 0 < h < H, which in turn yields

Upo o
0

W (2,0,1) < WY(z,0,1) (4.10)

Ul’YO Y
0

by using the continuity of the mapping v — W (2,0,1).

This shows the optimality of a threshold policy.

Let us now compute the optimal long-run average cost. Assume first that xg9 < ly. Because
lim,|o aVo(z,0,1) does not depend on z, this limit can be obtained (in particular) from (3.23).

Therefore, the optimal long-run average cost W is given by

Wl = ((lo ;al)lo + (a(lp— o + 1) (lo+a)+~v(1- p)) (loi\ka> : (4.11)

Upr, .
By using now the continuity of the mapping v — W 0 7(:10, y,2) (cf. Appendix B) we deduce that

(4.11) also gives the optimal long-run average cost when z¢ = lp.

The results of this paper are collected in the following proposition (we relax the assumption that
hjv =1):

Proposition 4.1 Assume that A < p. Then, there exists a threshold policy that solves the long-run

average cost problem (1.1). The long-run average cost corresponding to the optimal policy is given

by

A(l—p)
lp+a

Wl — (lo (lo—1) p ’ (4.12)

2 + ) <1—p>+“)h”

where the optimal threshold ly is given in (3.19) once v is substituted for yv/h in (3.18).

Remark 4.1 It may be checked from (4.12) that the policy Ujy 4 is also optimal whenever z¢ = ly

(i.e., WY = WVio+1). Note that this property can directly be obtained by considering 4 h instead
of v — h in the proof of Proposition 4.1.

Remark 4.2 From (1.2) and the definition of the cost ¢ (see Section 2) one immediately deduces
from (4.12) that (L+a)/(A(1—p)) is the average return time to an empty queue when the threshold
policy Uy is used, for any L > 1. Similarly, one observes that L (L —1)/(2(L +a)) +p/(1 —p)+a
is the expected queue length under policy Up, for any L > 1.

16



A Appendix

We show that
Qo) — Qlo — 1) <0, (A1)

when x¢ < lp.

From the definition of P(w) and Q(w) (cf. (3.26) and (3.33), respectively), it is easily seen that
(A.1) holds if and only if
P(lp) < 2(lp + a). (A.2)

Let us prove (A.2). We have:

P(ly) = P(lo) — P(x0),
= (lp —x0)(lo +xo+2a+1),
— A2 —A+2a+1) = f(A),

where A : =1y — 2o with 0 < A < 1.

The proof is now completed by observing that the mapping A — f(A) is nondecreasing in [0, 1]
(since lp > 1) and by noting that f(1) = 2 (lp + a).

B Appendix

Up, . . .
We show in this appendix that the mapping v — W o 7(33, Yy, z) is continuous in [0, 00).

Observe first from (4.3) and (1.3) that the mapping v — WU2Y(z,y, 2) is nondecreasing (referred
below to as property (P1)) and continuous (referred below to as property (P2)) in [0, c0) for L < oo.

Let 0 <7; <72 < 0o. Then,

Unmm Urvam Uz yy2

U B
W W (z,y,2) <W o (z,y,2) < W o s

(z,y,2) <W To " (z,y,2), (B.1)
where we have used (P1) to establish the second inequality.

Using now (P2) and (B.1) we obtain that

Ul72 V2 Uf/l V1
0

lim W (:E,y,Z) =W % (Iayaz)v

Y271

which concludes the proof.
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