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Abstract

In this paper we consider a particular class of linear sys-
tems under the max-plus algebra and derive exponential upper
bounds for the tail distribution of each component of the state
vector in the case of Markov modulated input sequences. Our
results are then applied to tandem queues with infinite buffers,
Markov modulated arrivals and deterministic service times.

1 Introduction

Consider a stochastic discrete-event system with max-plus dy-
namics:

KXnt1,e = max (Xn,j + Ak (Vo))" V20 (1)
je€

where (a)T = max(0,a) and K = {1,2,---,K} (K < oo).
The state variables X, = (Xn,%, k € K) are K-dimensional
nonnegative random variables (r.v.’s), X. € [0,00)%. The
sequence (Y,). is a finite-state, irreducible, aperiodic and ho-
mogeneous Markov chain on the finite set S = {1,2,---,S}.
For each s € &, n > 0, introduce the matrix A,(s) =
[An,jk(8)]j, ke We assume that

(A1) (An(1))n,-..,(An(S))n form S mutually independent

renewal sequences of random matrices with —oco <

A, jk(8) < oo almost surely (a.s.);
(A2) for each s € S, the matrices (A,(s))» are independent of
the Markov chain (Y3, )n.

Note, however, that for any given n > 0 and s € S, the entries
We further

assume that Xo = (Xo,1,---, Xo,x) is a nonnegative and a.s.

of the matrix A,(s) may be dependent r.v.’s.

finite random vector.
Using the max-plus algebra operators, (1) can be written in

vector form as follows

where X,, = (Xn,1,* +, Xn,x). In (2) the “plus” operator ®
and the “max” operator @ replace the usual matrix multipli-
cation and matrix addition, respectively.

Our objective is to derive exponential upper bounds on the
tail distribution of X,, r, namely, to find positive constants b
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and 6 such that P(X,, > z) < bexp(—0z) for all z > 0,
kek,n>0.

There is now a substantial body of work ([1, 3, 6, 9, 10,
13, 15, 14, 16, 19, 20, 23, 24] among others) on the problem
of deriving exact, approximate or asymptotic bounds for the
tail distribution of the workload, queue-length, and delay in
a queue in isolation. Bounds of this type have proved to be
helpful for analyzing ATM multiplexers fed by different classes
of traffic such as data, voice, video, etc. (see e.g. [12]).

This paper is one of the first attempts (see also [4, 5, 8, 17,
22] for related work) to derive bounds for more general struc-
tures, including acyclic queueing networks. Bounding quanti-
ties such as the probability distribution of the end-to-end delay
seen by individual sessions along their route in the network will
allow network designers to get a better understanding of the
network behavior and to come up with more efficient admis-
sion control schemes as opposed to schemes based only on the
performance at isolated nodes.

As in [2], we define the communicating graph G = (V, E) of
the system as follows. The set of vertices is V = K. For each
pair of vertices j, k € KC, there is an arc from j to k if and only
if there is at least one state s € S such that A, jz(s) # —oo
with strictly positive probability. Let G = {G1,Ga,---,Gg4}
be the maximal decomposition of G into strongly connected
subgraphs, where G; = (V;, E;), 1 < i < g, are strongly con-
nected subgraphs of G. Without loss of generality, we assume
that vertices of G; have smaller indices than those of G;11.

Under such a decomposition, the matrices A,(s), s € S,
have the form:

Bn,l(s) Rn,l,Z(S) e Rn,l,gfl S Rn,l,g S
—o0 Bn,Z(S) e Rn,2,gfl S Rn,Z,g S
—0o0 —0o0 : n,3,g—1\S n,3,9 S
A,(s) = . . .
-0 -0 Brg-1(s) Rng1,4(s)
—00 —00 —00 B, (s

(3)
[Anik(8)]jkev; and Ranjijin(s) =
kEVizy 13259, andlSil <Z2Sg

where Bni(s) =
[An,jk(s)]jev;

Let P = [p;;] be the transition matrix of the Markov chain
(Yn)n and let 7 = (w(1),..
Define 7, (1) = Pry(Yn = 4) for i € S, n > 1, and let mp =
(mo(1),...,m(K)) be the initial probability distribution. In
the following we shall drop the subscript 7o in Pr,.

1°

., 7(K)) be its invariant measure.



Define Fjis(z) = P(Anjx(Ya) < z|Yn
bjk,s(0) = Elexp(0An (Y,
if A, jrx(s) =—00 as.

Throughout this paper we will assume that

(A3) ©={0>0: ¢;jrs(0) < oo for all (j,k,s) € K x K xS}

= s) and let
2)) | Yn = s| where ¢jr,(6) = 0

is a nonempty set. This technical assumption is satisfied
in most cases of practical interest which includes r.v.’s with
phase-type distributions.

Introduce hjr,st(0) = Jjk,s(0)pst. Let H;r(0) =
[Ajk,st(0)]s,tes be S-by-S matrices, and let H(8) be the K S-
by-K .S matrix defined as H(0) = [H;

Then, in view of (3),

(0)]),kexc-
H(0) can be rewritten as

J1 (9)-1 2(0) -+ J1,9-1(0) J1,4(0)
0 Jo() - Jous 9; Joa(8
0 0 o J39-1 Js g
H(0) = : : : : : (4)
0 0 o T a(0) Jg1g(0)
0 0 - 0 1,(0)

where Jz(a) = [hjk,st(e)]j,kew, s,tES and Jil,iz (9) =
[Rjk,st(O)]jevi, ke, sites for 1 <41 <z < g.

Let us introduce some additional notation. We will say that
a vector v is positive (resp. nonnegative) if its components
are all larger than (resp. larger than or equal to) zero. The
notation v > 0 (resp. v > 0) will indicate that the vector v is
positive (resp. nonnegative). More generally, for any pair of
vectors v and w, the notation v < w will indicate that v is less
than or equal to w componentwise.

Since the transition matrix P of the Markov chain (Y3),
Thus,
according to Perron-Frobenius Theorem [11, Theorem 8.4.4],
3O (1<i<gisa
simple eigenvalue of the matrix and there is a positive vector
2i(0) = (2k,¢(0))1ev,, tes such that

is irreducible, the matrices J;(0) are all irreducible.

the spectral radius p;(6) of matrix

zi(0) Ji(0) = pi(0) 2i(0). (5)

For each 1 < ¢ < g, we normalize the left-eigenvector z;(0) so
that

Y ma0)=1. (6)

kev;, tesS

Let p(0) be the spectral radius of H(6).

H(0) is block triangular, its spectrum is the union of the spec-

Since the matrix

tra of matrices J1(6),...,J4(0), which in turn implies that

p(0) = pax pi 0). (M

It then follows [11, Theorem 8.3.1] that p(6) is also an eigen-
value of H(0) and that there is a nonnegative vector y(0) =

(%,6(0)) ek, tes Such that

y(0) H(0) = p(0) y(9). (8)

We also normalize y(f) so that

> a0 =1 9)

kEK, teS

We are now in position to state the main results of this
work.
2 Exponential Upper Bounds
In this section we derive exponential upper bounds for the tail

distribution of X, under Assumptions (A1)-(A3).

Proposition 1 (Exponential Upper Bound I) Assume
that 6 € ©. If p(0) <1, y(0) >0, and if for allk € K, t € S,

P(Xox > z,Y0 = t) < b(0) yr.(0) e, vz >0 (10)
then, for alln>1, k€ K, z >0,
P(Xp g >z) < b(0)e™ (11)
where
Z Pst Tn(8) (1 — Flg,s (2))
b(#) = sup jek, -es < oo.
20 pen® / ) gy ()
tES JjEK,seS
(12)
&

It is worth noting that condition (10) is automatically sat-
isfied (in particular) if Xo, = 0 a.s.

Proof. Fix 8 € © such that p(f) < 1 and y(0) > 0. Let
{vis(z),7 € K,s € S}, 75,5 + [0,00) — [0,00), be a set of
functions satisfying

S pur [ / Yo (@ = 0) dFji o () + (1 = Fji ) (&) 7 (s)

JEK
seS
< Yt (). (13)
The first step of the proof consists in proving that
P(Xmx > @, Ym =1t) < y,e(x) (14)

forallm >0,z >0, k € K, t € S. For this, we use an
induction argument on m. Note that (14) holds for m = 0
from (10) and assume that (14) is true for m = 0,1,...,n
Let us show that (14

For z > 0, we have

) is still true for m = n + 1.

P(Xnt1,k > T, Yoq1 = 1)

=P (max(Xn,j + An e (Yn)) > 2, Yo = t)
JEK



<D P(Xni + Anji(Ya) > 2, Yays = 1)
jERK

= > pemn(s)P(Xn + Ani(s) > | Yo = 5, Yar1 = 1)
JEK,s€S

Z Pst Tn () |:/_m P(Xn; >z —u|Yn =35)dFjr,s(u)

JEK,sES

+1-— ij,s(ﬂc)]

< D pw l/r Vi (@ — ) dFjk,s (u)
JEK,sES >
+7m5(s)(1 — ij,s(m))] (15)
< Y e(x)

where (15) follows from the induction hypothesis and the latter
inequality follows from the definition of the functions v; s given
in (13). This concludes the proof of (14).

Before getting to the second step of the proof, let us first
show that b(0) < oo if y(0) > 0. Indeed, we have in this case

> b () (1= Fa(2)

b(0)§ sup SES,jEK

=20 > peeis(0) (1= Fipo(o)

keX :
tes seS,jeK

(16)

Tr(8)
sup
n>0 Yi,s(0)
JEK
sES

IA

the latter quantity being finite if y(6) > 0 since both sets
K and S are finite (we used the inequality f:o exp(O(u —
z))dFji,s(u) > 1 — Fji s(z) to derive (16)).

The second step of the proof consists in checking that the
functions {v;,s = b(0) y;,s(0) exp(—0z), j € K,s € S} satisfy
(13). This proof is analogous to the proof of Proposition 2 in
[18] and is therefore omitted. Let us simply point out for later
use that this proof only uses the property that y(0) H(0) <
y(0) if p(0) < 1 (which follows from (8)) and does not require
the identity (8).

Substituting now 7x,:(z) in (14) for b(0) yr,:(9) exp(—bzx),
then summing up both sides of the inequality over all the val-

ues t in S and using the normalizing condition (9) yields (11).
L]
The condition that y(6) > 0 in Proposition 1 may be

dropped in the case that p(f) < 1. More precisely, we have
the following result:

Proposition 2 (Exponential Upper Bound II) Assume
that 0 € © with p(9) < 1.

tive constants ai,...,aq such that the positive vector v(0) =

Then, there exist strictly posi-

(vk,t(e))ke)c,tes deﬁned as ’U(t9) = (alzl (9), . ,agzg(O)) satis-
fies v(0) H(0) <v(0) and 3, 1 ,cs vre(0) = 1.
Furthermore, if for allk € K, t € S,

P(Xor > z,Yo =1) < c(0) vie(0) e ", V>0 (17)
then, for alln>1, k€ K, z >0,
P(Xpp >z)<c(f)e (18)
where
> pamal(s) (1= Fias(2))
c(d) = sup JeK, o€3 = < oo.
x> u—x
5 Y @ [ SO
teS JEK,s€ES z
(19)
&

Proof. Assume first the existence of the vector v(8). Then,
the proof of (18) is identical to the proof of (11) after sub-
stituting y(0) for v(0). This follows from the observation (cf.
step 2 in the proof of Proposition 1) that only the inequality
y(6) H(0) < y(0) and the fact that y(8) > 0 are used in the
proof of (11).

Let us now address the existence of constants a1, . .
that v(6) H(0) < v(0).
vectors z;(0), 1 < i < g, it is seen that the vector inequality
v(0) H(#) < v(0) translates into the set of inequalities

.,ag such

By using the definition of the eigen-

D @i z(0) Jis(0) + a5 (ps(6) — 1) 2(0) <0, for1<j<g.
(20)

Since p;(0) < 1foralli=1,2,...
p(0) < 1 (cf. (7)), the following simple procedure can be de-

, g under the assumption that

rived from (20) to generate positive constants a1, ...,aq: pick

an arbitrary a1 > 0, then pick as > 0,...,aq > 0 successively
so that

aj > max {
1

where [v]; denotes the I-th component of any vector v. The

7} ai[z:(0)J:; (O)]:
(1—p;(0) [z (O]

}, for2<j<yg

proof is concluded by normalizing ai,...,aq so that the com-
ponents of v(f) sum up to 1.

3 Application to Tandem Queues

Consider an open tandem queueing network consisting of K
single-server queues with infinite buffers. We assume that cus-
tomers may only enter the network from the outside at node 1
and that they all leave the network upon completion of their



service time at node K (see Fig. 1). Let (Z,)» be an irre-
ducible, aperiodic and homogeneous Markov chain on a finite
set 7 = {1,2,...,T}, with transition matrix Q = [¢;;]. Let
0n,k(Zn) < 00 be the service time required by customer n at
node k£ (1 < k < K) and let 7,(Z.) be the interarrival time
in queue 1 between customers n and n + 1. In other words,
we consider a system where the interarrival and service times
are modulated by the Markov chain (Z,),. Define X, ; as

the cumulated waiting time (excluding the service times) of

customer n through its sojourn in queues 1,2, ..., k.
Un,l(Zn) Un,K(Zn)
Tn(Zn) - ] - ]
=100~
Figure 1: Tandem queues
Define

j j-1
Un,j(21,22) = Zan,i(zl) - 20n+1,i(22) — Tn(21).
=1 =1

It is easy to check that

Xpt1k = max (Xn g 4+ Un i (Zn, Znt1), Xnt1,k-1)T (21)

(Xaj + Unj(Zn, Zut1)) " (22)

e
for all n > 0 and k € K (by convention X,t1,0 =0 in (21)).
The stochastic recursion (22) can be written in the form (1)
by defining the Markov chain (Y»)» and the matrix A,(s) as
follows:

Yo = (Zn, Znt1) (23)
Un,j(z1,22) for 1<j<k

An,jk(S) _ { i(z1,22) J (24)
—o0 fork<j<K

with s € S ={(¢,7) | ¢ > 0,4, € T}.

In this case, B, r(s) and R, x,; in (3) are all 1-by-1 matri-
ces given by B, 1 (s) = U,k (21, 22) for k € K and R, 1 ;(s) =
B, i (s) for j > k, for all s = (z1, 22), respectively. In particu-
lar, the matrix J;(0) (i =1,2,..., K) is given by

J’b(e) = [E[exp(9 Un,i(21, ZZ))] pSt]s=(z1,zg)ES,t=(Z3,z4)€S

With pst = Gzy2, if 22 = 23 and psy = 0 if 22 # 23, for all
s=(z1,22) €S, t =(23,24) €S.

In order to apply the results obtained in Section 2 to the
components of the vector X,, we must ensure that Assumptions
(A1)-(A3) are satisfied. These assumptions will hold, in par-
ticular, if the service requirements are deterministic (but not
necessarily all equal), namely, for every fixed k € K, z € T,
on,k(2) is constant for all n > 0, if (7n(1))n,--., (Ta(T"))n are

mutually independent renewal sequences, further independent
of the Markov chain (Z)n, and if 7,(z) has a phase-type dis-
tribution for each z € 7 (e.g., the arrival process is a Markov
modulated Poisson process). In this case, Propositions 1 and
2 give exponential upper bounds on the tail distribution of the
cumulated backlogs.

In particular, the unique positive solution 6* of the equation
p(0) =1 gives the best exponential decay for P(X, > z) if
y(0™) is positive.

It is worth noting that the sequences of matrices
((An(s))n)ses are not mutually independent under only the
assumption that the service and interarrival times are all
mutually independent r.v.’s. This follows from the fact
that matrices A,(s) and A,+1(t) both depend on the r.v.’s
Ont1,1(22), ..., 0nt1,k—1(22) in the case that s = (z1,22) € S
and ¢ = (z2,23) € S. Furthermore, if q.. > 0, then the
matrices A1(s), Aa(s),...

s = (z,2) for the same reason. This implies, in particular,

are not mutually independent for

that Propositions 1 and 2 do not apply to M/M/1 queues in
series.

Note that certain forms of non-deterministic service times
are permitted by augmenting the state space of the original

Markov chain (Z,),.

4 Concluding Remarks

In this paper, we have extended our work for single queues
[18, 19] to stochastic linear systems under the max-plus al-
gebra, as defined by (2), and have derived exponential upper
bounds on P(X, > z). The max-plus structure defined in
(2) appears to be a particular case of the structure considered
by Chang in [4]. We believe that our method based on an
extension of Kingman’s method for bounding the tail of the
waiting time distribution in a GI/GI/1 queue, gives sharper
upper bounds than the corresponding bounds in [4], based on
Chernoff’s bound. We also point out that the i.i.d. assump-
tion placed on the input sequence in [4] is stronger than ours.
Our approach will also allow us to derive exponential lower
bounds for the tail distribution of X, . The latter results will
be reported in a forthcoming paper.
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