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Abstract

In this paper, we consider a multiplexer with constant output rate and infinite buffer capacity
fed by independent Markovian fluid on/off sources. We do not suppose that the model is
symmetrical: there is an arbitrary number K of different traffic classes, and for each class k, an
arbitrary number N}, of sources of this class. We derive lower and upper bounds for the stationary
distribution of the backlog X of the form Bexp(—60*z) < P(X > z) < C(6)exp(—0z), with
0<6<6* When K = 2or K = 1, we numerically compare our bounds to the exact distribution
of X and to other previously known results. Through various examples, we discuss the behavior
of P(X > z) and the tightness of the bounds.

Keywords: Exponential bound; Statistical multiplexing; Multiclass input; Markov fluid
input; Effective bandwidth; Large deviation; Tail distribution.

1 Introduction

In a network node a large number of incoming data streams are multiplexed and share the common
buffer space and bandwidth. New technologies, in particular ATM technology, make advantage of
statistical multiplexing over more traditional multiplexing schemes (e.g. time division multiplexing,
frequency division multiplexing) to allocate to each incoming stream a smaller output bandwidth
than that that would be required if the input streams were all emitting at their maximum rate. The
price to pay for this saving is the risk of overflow and congestion, which may harm network users
in two different ways. Some of the traffic is time sensitive and suffers mainly from queueing delays
building up when congestion occurs, while another part of the traffic may tolerate some delay but will
not accept a single lost cell in the transmitted data. Estimating the delay and cell loss probability
is thus an important part of network control. Two main problems arise: the first difficulty is to
define mathematical models which render as closely as possible the principal characteristics of real
traffic; the second difficulty is to analyze these models and derive accurate bounds or estimates, as
in most cases getting exact results is out of reach either for computational or mathematical reasons.

In this paper, we address the situation when a multiplexer with constant service rate ¢ and
infinite buffer capacity is fed by N = Zszl Ny independent Markovian on/off Fluid Sources [1]
(abbreviated as MFS in the following). More precisely, there are K classes of traffic and Ny MFS of
class k. A source of class k emits data at a constant rate r; when in state on and idles when in state
off. The time spent by each source in the off (resp. on) state is exponentially distributed with mean



1/Ai (vesp. 1/uy) for source k. Let # = ), N7y be the maximum instantaneous input rate, and
7 = > Npwgrg be the mean input rate, where wy := Ap/(Ag + pg) is the stationary probability
that source k is in state on. We assume that 7 < ¢ < 7 so that the queue will immediately start to
build up as soon as the total instantaneous rate exceeds c. Our objective is to find upper and lower
bounds for the tail distribution of the stationary workload, F(z) = P(X > x), for all z > 0.

The model considered here, where the input data stream is represented as the superposition
of a given number of MFS has been the subject of numerous studies in the past few years. In
the symmetrical case (K = 1) Anick, Mitra and Sondhy in their pioneering work [1] showed that
F(z) = 17 20 (2)<0 Qi diexp(zix) for all x > 0, where (z;,¢;)’s are pairs of eigenvalues and
eigenvectors, solutions to the eigenvalue problem z¢ (A — ¢I) = ¢Q, with @ the infinitesimal
generator of the aggregate source and A the rate matrix. In the above spectral expansion, the
coefficients a; are obtained by solving a system of linear equations. This work was extended by
Stern and Elwalid [31] to cover the case that the input stream is the superposition of reversible
n-state Markov fluid sources. It is shown in [31] that F(z) takes the same form as that obtained in
the symmetrical case, where again some unknown numbers are solutions of a generalized eigenvalue
problem. However, as pointed out by the authors, the exact computation of F(x) may be infeasible
for large systems. To overcome these difficulties, Stern and Elwalid investigated the case when the
generalized eigenvalue problem decomposes into independent subsystems and devised an algorithm
with a complexity of the order of [, Nk (3>, Nk)? for computing F(z) for all values of z (a brute
force approach would require a complexity of the order of [, (Ny)?).

Approximations, bounds and asymptotics for F'(x) have also been recently proposed for handling
cases when the computational burden for obtaining the exact value of F(z) remains high, mainly
when this computation has to be done in real-time, for instance, to perform control tasks like
admission control of new sessions [11, 14, 18, 22].

In [29], Norros et al. used Benes formula to derive an upper bound for F(z) in the case when
the input stream is the superposition of independent (non necessarily Markovian) on/off sources.
However, computing the upper bound is not easy and various approximations of this upper bound
have therefore been proposed by Norros et al. [29] and Bensaou et al. [4].

An important step in the analysis of statistical multiplexers was the discovery of the notion
of effective bandwidth by Hui [23], later specialized to queueing models by Kelly [24], Gibbens
and Hunt [17] and Guérin et al. [21]. Briefly, it has been noted that it is possible to associate
an easily calculated quantity with each source of data, referred to as the effective bandwidth of
that source, that captures the behavior of the tail of the response time at a multiplexer. In the
case when the input traffic is the superposition of K types of N, MFS of class k as described
above, then this result takes the following form [14, 17]: limy oo (1/z)log P(X > z) < —6 if
and only if >, Ny ar() < c, where ar(60), the effective bandwidth of a stream of type & is given
by ap(0) = (\/gk(0)2 + 4 X7 0 — gi(0))/26 with gx(0) = A\ + px — 7%0. In matrix form, ag(6)
appears to be the largest real eigenvalue of the matrix Q + 0diag(0,r;) from which it can be
shown (see e.g. [25]) that @ ay(0) = limy_ot ! log Elexp(6 Ax(t))], where Ag(t) is the amount of
fluid generated by a source of type k in [0,¢). The latter result gives a nice interpretation of the
effective bandwidth and shows that 7 < ax(#) < 7. Then, when the quality of service criterion is
P(X > z) < exp(—6#x) for large x, call admission may be done by checking whether the effective
bandwidth of the aggregate population, including the new stream seeking admittance, exceeds the
service capacity. Note, however, that the effective bandwidth approach may be very conservative
when used for small values of = [21, 28]. Other asymptotic results include the estimate for the
loss probability for small buffers proposed by Hsu and Walrand [22], and various large deviation
asymptotics in buffer statistics when the number of on-off sources gets large [13, 30, 33, 34].




In parallel to obtaining asymptotic bounds for F(z), there have been efforts to get bounds for
any value of z. In [5] Buffet and Duffield obtained an upper bound for F'(z) in the case of discrete
and homogeneous MFS via a martingale approach. In [7] Chang developed a general theory based
on Chernoff’s inequality for computing exponential upper bounds, which allows him, in particular,
to derive upper bounds for heterogeneous discrete time Markov on/off sources. In [28], Liu et
al. obtained lower and upper bounds for F(x) for a multiplexer fed by heterogeneous discrete
time Markov on/off sources (see next section for further details). A non-exhaustive list of papers
addressing the computation of exponential bounds for queueing models/multiplexers different than
that considered in the present paper is 3, 9, 10, 12, 19, 26, 36].

In this paper we focus on Markov on/off fluid sources. The state of a class k source at time ¢ is
represented by a continuous time Markov process Y,*, with Y;¥ = 0 or 1 if the source is respectively
silent or active at time ¢. The matrix Qy, infinitesimal generator of Y;* is determined by the mean
durations of active and silent periods of the source (resp. 1/ug and 1/A):

yas ,\k)
Qk_(uk —pr )

The Markov process Y = (Y;):er describing the aggregate arrival stream is the cartesian product
of the individual processes Y;*. The state space of Y is S = {0, 1}Z Nk and its infinitesimal generator
Q is the Kronecker sum (cf. [20] for definition, and [15]) of the matrices @y of each source:

Q = P i

1<k<K

For all state s in S, let 32 = 0 or 1 represent the state of the ith source of class k, let s, =, sfc
be the number of active class k sources, and let 7(s) = >, si 7 be the arrival rate in this state.
From the assumption 7 < ¢ < 7, the stationary workload X exists and can be expressed as a
function of the excess work arrived in the system in time intervals (—t, 0]:

0
X = sup/ (r(Y,) — o)du. (1)

>0 J_¢

In the following, we use the above expression of the variable X to show that there exists a
constant 8* > 0, obtained as the unique solution in (0, 00) of the equation ), Nj ar(f) = ¢, such
that, for 0 < 6 < 6*,

—0*x Wk Tk —0x
< F < > 0. 2
o I otgsy < F@) < €O Vo0 (2)

In the above inequalities, the coefficient 6* is the exponential decay rate of the tail distribution
of X, and provides asymptotical information for large x. But the asymptotical approximation
F(z) = exp(—0*z) is generally far from accurate, and it is important to find the best possible
coefficients B = [], wgrk/ar(0*) and C(f). We have observed in numerical examples that the
upper bound in (2) is tightest with # = 8*. We give the general formula with 0 < 6 < 6* to show
that the calculation of #* is not necessary to obtain an upper bound, as it is also shown that the
condition § < #* is easily tested without knowing 6*.

For heterogeneous MFS the coefficient C'(0) is obtained by solving an integer linear programming
problem of complexity of the order of [, Ni. We also provide an upper bound for C(#) which can



be computed by an algorithm of complexity of the order of K log(K), independent of the total
numbers of sources.

For homogeneous MFS (we set N, = N, rp =7, Ay = A\, up = p, wp = w, ag(-) = a(-)) the
optimal exponential decay rate 8* and the coefficient C(6*) are given by simple and explicit formulas.
In this particular case, we retrieve with some improvements some previously known results.

The paper is organized as follows. The next section introduces some analytical tools and describes
our approach to obtain the bounds in (2). This approach is developed in more details in Section 3,
in which we give the algorithms to calculate the bounds. Some numerical results and an application
to call admission control are presented in Section 4, before concluding.

2 Presentation of the approach

The bounds (2) are obtained by making use of some results of Liu, Nain, and Towsley in [28]. This
section reviews rapidly the results from [28] which we need thereafter, and describes how they can
be applied to our model.

2.1 Bounds for a process defined by recursion

In [28], Liu et al. extended the results of Kingman [26] and derived exponential lower and upper
bounds on the tail distribution of a discrete time process Z,, satisfying the Lindley recursion

Zn+1 = [Zn + Un]+ . (3)

The statistical assumption on the sequence U, is the following: there exists a Markov chain Y,
with finite state space S such that for all n, the pair (Y11, U,) conditioned on the process history
(Y;,7 < n;U;,i < n—1) depends only on Y,,. However, for the use that we will make of the results
in Section 3, we can simply assume that U,, = f(Y,,) for some deterministic function f from S to
R, which is a special case of the previous condition. Let P = [py] be the transition matrix of Y,
and m = (7(s))ses be its stationary distribution, and define

¢s(0) = exp(0f(s)), forallseS, (4)
®(0) = diag(¢s(0);s €5), (5)
H@O) = ()P (6)

Let p(6) be the spectral radius of the positive irreducible matrix H(6), and let z(0) = (25(0))ses
be the corresponding positive left eigenvector of norm (sum of components) equal to 1. From [28,
Lemma 2.2], there exists a stationary version Z of the process Z, under the stability condition
> m(s)f(s) < 0. Moreover, there is a unique positive and finite solution 6* to the equation

p(0) = 1, (7)
and the distribution of Z satisfies the following inequalities: for all § such that 0 < 0 < 6*,

B(0*)exp(—0*z) < P(Z > z) < C(0)exp(—0z), Vx>0, (8)
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We summarize in the next subsection the approach by discretization by which the above bounds
apply to the present situation, before going into more details in Section 3.

2.2 Discretization approach

The main difficulty in our analysis comes from the fact that the bounds in (8) are defined for a
discrete time process, characterized by a resursive equation, whereas the backlog process in the
model defined in the introduction is a continuous time process that can be characterized by a
differential equation.

We work this problem out in the following way: we split the time line into intervals of constant
length 6, with 6 > 0 a discretization parameter meant to tend to 0, and we introduce a new process
(X38,Y?), where the Markov chain Y,? is the Markov process Y; observed at time né, for n € Z,
and where X? is defined by a recursive equation similar to (3). The formulas (9) and (10) provide
bounds on the tail distribution P(X? > ) of the stationary version of X?. We first show that the
variable X% tends almost surely to X as ¢ goes to 0. Then, we show that the bounds on P(X? > )
also tend for all x > 0 to finite positive values as § goes to 0. Finally, the desired bounds in (2) are
obtained by taking the limit in (8) when Z = X?.

Before proceeding with this method, we would like to make two comments. The first comment
is to justify the use of the discretization approach for a continuous time model. Considering that
we have to study a discrete time model at some point in order to make use of the bounds in (8),
one might question the study of a continuous time model and the limiting scheme needed in our
approach: why not just analyse a discrete time queueing model and directly apply the bounds from
[28]7 The fact is that we have calculated the bounds in (8) for a queueing model with discrete time
Markovian on/off sources, but we have found that their expressions are complicated and difficult to
compute. On the other hand, when taking the limit when the discretization parameter tends to 0,
we observe that the expressions greatly simplify, and, as we will see below, the formulas which we
obtain are easily implementable.

For many applications, and in particular for ATM networks, it would seem more appropriate
to analyse discrete time models, as an ATM node inherently operates in a discrete time manner.
However, the time unit in such a model is equal to the transmisison time of one cell, and is ex-
tremely small compared to the typical tolerable queueing delay: with a 155Mb/s outgoing link, this
transmission time is about 3 microseconds, compared to tolerable queueing delays of the order of
the millisecond or above. Thus, when trying to bound queueing delays or buffer overflow probabil-
ities as we do here, the discrete time characteristic of an ATM multiplexer can be neglected and a
continuous time model with fluid arrival makes perfect sense.

The second comment is to mention the existence of an alternative to the discretization approach.
Instead of approximating X; by a variable X? and letting 6 go to 0, we can define a process (Zy,, Y,),



where Y, is a Markov chain deduced from Y; by uniformization (i.e. Y,, =Y;, with (¢,) a Poisson
process which includes all transition instants of Y;) and where Z,, is equal to the process X; observed
at the uniformization times: Z,, = X;_ . It can be shown that X; and Z,, have the same stationary
distribution. This uniformization approach provides a nice way to make use of the results from [28§]
and yields the same bounds as the discretization approach, but we do not develop it here because
the proof relies on the characterization of P(X > x) through a differential equation and initial
conditions (see [14]), which is still an unresolved conjecture. Details can be found in [2].

3 Derivation of the bounds

3.1 Discretization of the model and convergence

The discretized model is defined from the initial model by making the following changes. The
Markov process Y; is observed at times nd, for all n € Z, and the arrival rate of the input process
is assumed to be constant in the time interval [né, (n + 1)6) and equal to r(Y,s). The amount of
data entering the queue during this interval is thus 67(Y,s). The service rate of the multiplexer is
kept constant and equal to ¢ as above, so that the amount of data transmitted in each interval of
length § is equal to § ¢ if the queue is not empty. If X? denotes the backlog of the system at time
nd, we have

Xy o= X486V~ o) (12)

In this recursive equation, (Y,s)necz is a Markov chain on the state space S with transition
matrix P% = e??. Note that Y,,5 has the same stationary distribution (7(s))scs as Y;. Let X? be
the stationary regime of X%. We will present the bounds on P(X? > ) in the next subsection, but
we first show that the initial continuous time model can be considered as the limit of the discretized
model when the parameter § goes to 0. This convergence is expressed in the following lemma.

Lemma 3.1 The variable X® tends almost surely to X as & tends to 0.

Proof We give some indications without going into details. Define Y;’ = Y,,5 for all ¢ such that
nd < t < (n+1)6. Then,

0
L su r 6 — C)au.
Xt = aup [ (r(v) - (13

For all ¢, |r(Y;?) — r(Y;)] is no more than # and is zero on all intervals [né, (n + 1)), except those
containing a state transition of the process Y. There are no more than N(¢) 4+ 1 such intervals
intersecting (—t,0], with N(¢) the number of transitions of Y in (—t, 0], thus,

0 0
/_t(r(Yf)—c)du < /_t(r(Yu)—c)du b SN +1), (14)

From the ergodicity of Y, and from the fact that N(¢)/¢ tends almost surely to a finite positive
number, it can be seen that for each sample path, there is a number M > 0 and a 6y > 0 such that



for all t > M and 6 < &y, both terms in (14) are negative. Then, from (1) and (13),

0 0
X - X% = | sup (T(Yu) —¢)du — sup (r(Y) = ¢)du
0<t<M 0<t<M J—
0
< sup ‘/ —c)du —/ (r(Y2) — ¢)du
0<t<M |J—t —t
<
Letting 6 — 0 in the above inequality yields the result. [ |

This convergence result will allow us to derive bounds on the probability P(X > z) by calculating
bounds on P(X® > z) with the inequalities (8) and by taking the limit as § tends to 0.

3.2 Bounds in the discretized model

We calculate in this subsection the coefficients 05, Bs(6), and Cs(6) defining the bounds in (8) when
Z = X%. The exponential decay rate 65 is characterized by equation (7), we now try to give an
explicit form to this equation. The transition matrix P? of the Markov chain Y,,s is the Kronecker
product, with exponents IV, of the transition matrices P,f = exp(6Qk) of individual discretized

sources. We have
5 5
5 1-p p
Pk = ( 1) k k 1) ) ’

and, for small 6,

pe = M+ 0(6), (15)
@ = Suk+o(6). (16)

We define the two-dimensional matrices

Ui(0) = diag(l,exp(60ry)), (17)
Ji0) = T(O)R. (18)
Let 71,(6) be the spectral radius of the positive matrix J?(6), which is equal to its larger eigenvalue,

and let z,ﬁ(@) be the corresponding positive left eigenvector with components summing to 1. We
further define the matrices of dimension #S8

T9(9) = diag(exp(60r(s)),s € S),
Jo ) = T()P?,

and we let 7°(#) be the spectral radius of the positive matrix J°(6) and 2°(#) be the corresponding
positive left eigenvector with norm 1. From (7), the decay rate 65 is defined as the unique positive
solution of the following equation:

2(0%) = exp(66ic). (19)

The matrices U?(6) and J°(0) are the Kronecker products with powers N, of the matrices ¥ (6)
and J,f (0) respectively. As these matrices are positive, we have the following property on their



spectral radii and eigenvectors (cf. [20]):

7?0 = [ =®™, (20)
1<k<K

20) = Q) ()% (21)
1<k<K

Equations (20) and (21) provide an easy way to obtain 7°(#) and z°(6): because each matrix J2(6)
has only dimension 2, the spectral radius 7{(¢) and eigenvector 2{(¢) can be calculated explicitly
with no difficulty. This property will be useful in Subsections 3.3 and 3.4 where we will have to

take the limits of 7%(6) and 2°(#) as é tends to 0.

We now express the coefficients in the bounds for the discretized model, by using formulas (9)
and (10) of Subsection 2.1. We denote by z8(67) the components of vector z°(6%), and by p°(t, s) the
(t, s)-entry of the transition matrix P°. Then, the coefficients Bs(6) and Cs(#) in the inequalities
(8) for Z = X? are

Bs(6) = inf F(s,z,0), (22)
5es
05(0) = SupF(‘ng? 0)7 (23)

x>0
seS

where

resto) Pl 5) T
2 tes(a) pO(t,8) 22 (0) exp(0(6(r(t) — ¢) — x))’
and S(x) ={t €S/ x < 6(r(t) — c)}. The above formulas are derived directly from (9) and (10)
with the remark that f(s) = §(r(s) — ¢). We now wish to simplify the above expressions and define

some other coefficients B(6) and C§(0) such that Bj(08) < Bs(#) and Cs(0) < C}(6), and which
will be easier to compute. In the denominator of the fraction F'(s,z,8), note that

1 < exp(0(6(r(t) —c¢) —z)) < exp(h67),

F(s,xz,0) (24)

and thus

Ztes(g;) P°(t,5) m EtES(z) PO(t, s) m

< Flonf) < ZtES(;c) Po(t,5) 2 (0)

—06r
eXP( 7‘) Ztes(w) p6(t,8) zf(@) >~

(25)

From the definition of the set S(z), the numerator and denominator of each fraction in (25)
are constant functions of x on every interval (a,b], where a and b are two consecutive values of
8(r(h) — c) with h € S. Thus, the extrema of the fraction over z > 0 are equal to the extrema over
the values of = of the form 6(r(h) — c), where h belongs to the set 7 = {s € S / 7(s) > c}. Define

S tysr(ny P (t8)

BY(6) = —067 26
0 = S P (@) TP (26)

seS
Zr >r(h pé(t,é‘)ﬂ't
Cs(0) = Ser - )5(75 $)z0(0) (27)
ses Zur(ty>r(h) P\L:8) %

Then, we have from (25)
Bi(6) < ing F(s,z,0), and Cy(0) > sup F(s,x,0),
x>

SES :gg



and thus B(6) < Bs(6) < Cs(6) < C4(0).

It is easier to deal with Bj(#) and Cj(#) than with Bs(#) and Cs(f) because the extremum is
taken over a finite set in (26) and (27); this property is used in Subsection 3.4 below. Note that
the ratio between Bj(#) and Bs(6) or between Cj(6) and Cs(#) is no more than exp(667). As this
value tends to 1 for all § when 6 goes to 0, and as our objective is to take the limit of the bounds
in 0, we see that there is no loss of tightness by considering the simplified expressions: if the limits
of the coefficients Bs(f) and Cs(6) exist, then the limits of Bg(6) and C;(6) also exist and are the
same.

3.3 Exponential decay rate 6* and effective bandwidth

We now show that the decay rate 65 defined in equation (19) for the discretized model has a finite
positive limit when ¢ goes to 0. The first step is to establish the following Taylor expansion of the
spectral radius 74(6):

20) = 14 60ar(0) + o(6), (28)

where the function ag(6) is defined by

ag(f) = % (\/()\k + pk + 70)? — dpgrit — (Mg + px — Tk9)) : (29)

The proof of (28) is as follows: the spectral radius 74() of the matrix J7 (6) is its larger eigenvalue,
which is calculated explicitly as the matrix has only dimension 2. Then, the expansion is obtained
through some straightforward calculus, by using (15) and (16).

From (20) and (28), we can write
°(0) = 1+ 66a(6) + o(5), (30)
with

a(f) = Y Neay(6). (31)
k

It is easily shown that the function a(f) is strictly increasing and varies continuously from
7 =a(0) to 7 = limg_, 1 o, a(f). From the inequality 7 < ¢ < #, we deduce that the equation

a(@) = c (32)

has a unique positive solution, which we call #*. From the properties of the function a(f), this
solution satisfies the following characterization: for all 6§ > 0,
6 < 6* = a(f) < ¢, (33)
6 >0 <<= a(f) > c (34)

From a similar characterization of the number @} due to the log-convexity of 7°(f) (see [28,
Lemma 2.1]), and from the expansion (30), we obtain the limit

. *x *
lim 07 = 0%, (35)



Thus, we have shown that the decay rate 5 in the discretized model tends to a number 6*, which
is the unique positive solution of equation (32).

As mentioned in the introduction, the function a(f) is the effective bandwidth of the arrival
stream, and is equal to the sum of the effective bandwidths a (@) of all sources. We see from (32)
that the effective bandwidth a(f) of a stream in a multiplexer represents the share of bandwidth
which is consumed by this stream when the workload distribution in the multiplexer has decay rate
6. The general formula for this function is (see e.g. [25]):

a(8) = limsup— log Elexp(6A(1))], (36)
t—+00 0t

with A(t) the amount of data generated by the stream in [0,%). The effective bandwidth of a MFS
lies between its mean and peak rates, but we now illustrate on an example the influence of the
parameters \; and py on the function ax(#). The example is with two classes of MFS: sources
of class 1 have parameters 1/A; = 8s, 1/u1 = 2s, and 71 = 1Mb/s; and sources of class 2 have
parameters 1/X\g = 0.8s, 1/u9 = 0.2s, and 79 = 1Mb/s. Class 1 MFS is burstier than class 2 MFS
in the sense that the active periods, when the source is emitting at peak rate, are on the average
10 times longer for class 1 than for class 2, but the sources of both classes have the same mean and
peak rates. Figure 1 compares the effective bandwidth a(f) as a function of  for three aggregate
streams, each composed of 32 sources of class 1 and 2 in different proportions. Although these
streams have all the same peak rate 32Mb/s and same mean rate 6.4Mb/s, we observe that their
effective bandwidths are very different. This example shows the important influence of the duration
of a burst on the effective bandwidth function.
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Figure 1: Influence of burst duration on the effective bandwidth.

This concludes the study of the decay rate 6*. The next subsection presents the calculation of
the prefactor coefficients in the bounds.
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3.4 Coefficients of the upper and lower bounds

We show that the coefficients Bs(0%) and Cs(6%) in the discretized model have positive limits B and
C as the discretization parameter 6 tends to 0. For sake of simplicity, we present only the derivation
of the coefficients B = B(#*) and C = C(0*). An upper bound of the form C(6)exp(—0z) with a
parameter § < 6* can also be obtained, where the coefficient C(#) is worked out by simply replacing
6* and 65 by 6 in the following.

We first introduce some notation. Let

1
= —— e + pp + 0% — 4 0+ (Mg + +r0%) ), 37
Uk,0 2()\k+uk) (\/( kT M T Tk ) HETE ( kT ME T Tk )) ( )
1
— *\2 _ * _ *
Uk,1 20w+ ir) (\/()\k+uk+rk9 )2 = dprit* + (A + pg — 710 ))- (38)

It is easily seen that 0 < ug; <1 < ugg. The coefficients B and C are based on these numbers,
which we can also express as a function of the effective bandwidth a(é) of a class k source, of the
mean active period duration by = 1/uk, and of the peak and mean rates 7 and 7 = wgrg. The
formulas are easily obtained and are given without proof:

ugo = 1+0%r (1 - :—k) ak(6%), (39)
k
Tk
= . 40
Ug,, an (69 (40)

For all t € S, recall that t; is the number of active class k sources in state ¢, and define

Np—t t
u(t) = ] wes "uy (41)
1<k<K

We now calculate the limit of the components of vector 25(06*), which appear in the expression
of Bs and Cs. For all ¢t in S, we have

lim 2/ (65) = m/u(t). (42)

The above formula is proved in the following way. If we denote by zgyo(eg) and zgyl(eg) the
components of the two-dimensional vector 2{(6%), then, we have from (21) and from the definition
of a Kronecker product

2(65) = [ =ko(O5)" 2 1 (65)" (43)
k

Furthermore, as the different sources are independent, the stationary distribution 7 is such that

mo= [L@e)N % w)™, (44)

k

where we have defined @, = 1 — wy. By comparing (41), (43), and (44), we see that the limit (42)
is established if we prove that, for all &,

}in(l) 20(03) = @r/upp, (45)

Lim R1(05) = wi/ur. (46)
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We show the previous limit formulas by calculating the eigenvector (zg,o(ﬁg), 2271(9:;)) of J3(6%),
through a linear system of dimension 2, as a function of the spectral radius 79(6%) and of the
components of the matrix J2(6%). The equalities (45) and (46) follow after some elementary algebra
by using the expansion formulas (15), (16), and (28).

We now calculate an expansion of the coefficients p°(t,s) of P°, the transition matrix of the
Markov chain (Y,s)ncz. By using the independence of the sources, we can write explicitly the
probability p’(t, s) in terms of the individual probabilities pi and qﬁ: let nlgo be the number of class
k sources which are silent in both states ¢ and s, nlgl the number of class k sources which are silent
in state ¢ but active in state s, and n¥, and n¥; defined in a similar way. We have then, using again
(15) and (16),

Pts) = T —pd) oo (pf) o (1 — gf) i (gf)™io (47)
k

= TTn)™ (i)t + o(5781 ko). (48)
k

For all pair (¢,s) of S, we denote by |t — s| the total number of sources which are in a different
state in s and ¢: [t —s| =}, . [t} — si|, where ¢} is 0 or 1 if the ith source of class k is respectively

silent or active in state ¢, and similarly for s. By observing that Y, nk, +n¥, = |t — s|, we deduce

nk 'l"Lk .
from (48) that there is a positive number b(t, s), equal to [], A, * 11,'°, independent of § such that

Pot,s) = b(t,s)sl s 4+ o(slt2)). (49)

The limiting formulas (42) and (49) will now enable us to show that, despite their apparently
complicated form, the coefficients Bj(05) and C;(65) given by (26) and (27) respectively, and the
coefficients Bs(65) and Cs(0%), have calculable limits when 6 tends to 0. We first show that Bj(65)
tends to a positive number B when ¢ tends to 0. As noted above, this will show in the same time
that the coefficient Bs(65) also tends to B as § goes to 0. Let 7 = {s € S / r(s) > ¢}, and for all
states hin 7 and s in S, let

> ysr(ny PO(t:8) e
As(h,s) = = = (50)
Zr(t)Zr(h) pé(tv 5) Zf (96)

We can calculate the limit of As(h,s) when 6 goes to 0 by considering two cases.

e 1Ist case: r(s) > r(h). In this case, from (49), all terms of the sum in the numerator and
denominator of As(h,s) tend to 0 with 6, except the term corresponding to ¢t = s, for which
the limit of p?(¢, s) is equal to 1. From the limiting formula (42), we see that As(h,s) tends
to the number A(h,s) defined by

A(h,s) = u(s). (51)

e 2nd case: r(s) < r(h). Let ¢ be the minimum of |t — s| over all states ¢ such that r(¢) > r(h),
and let S(h,s) = {t € S / r(t) > r(h) and |t — s| = i¢}. From (42) and (49), the number
As(h, s) tends to a limit A(h,s) as 6§ tends to 0, with

D teS(hys) 0(E,8) me

Al ) = sy s T ful®) 52
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From (26), we have Bj(0}) = exp(—0567) x min{As(h,s) / h € T,s € S}. When 6 goes to 0,
Ag(h, s) tends to A(h,s) for all pair (h,s) with h in 7 and s in S, thus, the minimum of As(h, s)
tends to the minimum of A(h,s), because the minimization is done over a finite number of pairs
(h,s). The term exp(—6367) has limit 1 and thus, B;(6}) tends to the number B defined by

B = inf{A(h,s)/heT,se S} (53)

The minimum of A(h, s) is easily obtained: let § be the state of S in which all sources are active
(8k = Ny for all k). As ug1 < 1 < ugg, we have for all state ¢ the inequality u(t) > u(3), and
thus A(h,s) > w(8) for all pair (h,s), which leads to B > w($). On the other hand, the state §
isin 7, for r(§) = 7 > ¢, and thus B < A(S,8) = u(§). We have finally B = u(§), which we can
rewrite, from the definition of u(s) in (41),

B = J[ u (54)

1<k<K

In a similar manner, one can show that the coefficient Cj(6}) defined in (27) tends to a positive
number C as 6 tends to 0, with

C = sup{A(h,s)/ heT,s €S}
Let m be a state in the set 7 such that u(m) is maximum. This state exists because the set 7°

is finite. Then, from the definition of A(h,s), we have A(h,s) < u(m) forallh € 7 and all s € S,
and thus C < u(m). But we also have C > A(m,m) = u(m), because m is in 7, which yields

C = u(m). (55)

Thus, in order to derive the upper bound coefficient C, it is necessary to calculate u(m), which
is equivalent to find integer numbers my satisfying the following conditions:

0 <my < Ng, (56)

Z mgrE > C, (57)
1<k<K

H uiv’(“)*m’“ w,*  is maximum. (58)
1<k<K

We can reformulate the problem of calculating C' as a problem of integer programming of the
knapsack type: let m) = Nj — my, then the above conditions are equivalent to

0 < m), < Ny, (59)

Z myrk < F— ¢, (60)
1<k<K

Z my, log(ug o/uk,1) is maximum. (61)
1<k<K

Note that for all &, log(ugo/uk,1) > 0. The coefficient C' is then given by the formula

log(C) = log(B)+ Y mjlog(uko/ury). (62)
1<k<K
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In terms of complexity, the exact calculation of the coefficient C' is a difficult problem: the simplest
algorithm uses a dynamic programming approach where all possible combinations of numbers mj,
are considered, and has a complexity of O(] [, Ni) (see Garfinkel and Nemhauser [16]). To overcome
this difficulty, we consider the equivalent problem in real numbers: let D be the number defined by

log(D) = log(B)+ > wxlog(uo/us,1), (63)
1<k<K

where the xj are real numbers satisfying 0 < zp < Ni, >, azxry < 7 — ¢, and such that
>k Tr log(ug0/uk,1) is maximum.

Because the numbers mj, have to satisfy stronger conditions than the x, we have clearly C' < D,
thus D exp(—6*z) is also an upper bound of P(X > x), although possibly not as tight as C exp(6*x).
The gain in considering the coefficient D instead of C' is that the computational complexity is
much lower: assume that the classes are sorted in decreasing order of log(ug,o/uk,1)/r+ (the sorting
requires O(K log K) computations), then the numbers z are given by the following straightforward
algorithm, of complexity O(K). Initial parameters are Volume := 7 — ¢, Value := log(B), z; := 0
for all 4, and k := 1.

while Volume > 0
do
xy := min(N, Volume/ry)
Volume := Volume — x7g
Value := Value + zy log(ug,0/uk,1)
k:=k+1
done

The condition 0 < # —¢ < )", Nyrj, ensures the correct termination of the algorithm, and log(D) is
given by the parameter Value at the exit of the while loop. The numerical comparisons in section 4
show that the difference between the bounds log(C') and log(D) is relatively small, which suggests
that the improvement of tightness from one bound to the other is not worth the extra computational
cost.

We obtain upper bound coefficients C(6) and D(6) with non optimal parameter § < #* through
the same algorithm as C' and D, by simply replacing 6* with 6 in the formulas for uy o and uy ;.

3.5 Summary of results

We now summarize our analytical results. The model considered is the statistical multiplexing of
Markovian fluid on/off sources. We have defined a function a(f), the effective bandwidth of the
arrival process, and have shown that the exponential decay rate 8* is the unique positive solution
of the equation a(f) = c. This characterization of the decay rate through the function a(f) was
presented before in [14], with some development.

We have then introduced three coefficients B (B = B(6*)), C(0), and D(f) which define ex-
ponential lower and upper bounds on the tail distribution P(X > x). The coefficient B has an
explicit form (assuming 6* is known) and is easily calculated, log(C(0)) is the value of an integer
programming problem, and log(D(6)) is obtained through a simple and fast algorithm. The bounds
are the following: for all x > 0, and for all 0 < 8 < 6*,

Bexp(—0*z) < P(X >z) < C(0)exp(—0z) < D(0)exp(—0z). (64)
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As mentioned in the introduction, these bounds generalize some previous results on this model
in several ways. First, the inequalities (64) hold for any x, which is an important property when
considering for example overflow probabilities for small buffers. This generalizes asymptotic results
for large x. Secondly, the bounds hold for any number K of different traffic classes, which generalizes
a number of other results for homogeneous sources, and they also hold for any number N of sources
of any type, which generalizes some asymptotic results for a large number of sources. Furthermore,
the bounds are easily calculable numerically. If #* is known, the derivation of the lower bound
coefficient B is immediate with formula (54). But note that the calculation of 6*, by solving
numerically the equation a(f) = ¢, is not required to obtain the upper bounds in (64): for a given
6 > 0, the condition 6 < #* is equivalent to a(f) < ¢, and the coefficients C'(0) or D(0) are derived
directly from the effective bandwidth a(6) of the sources and simple traffic parameters (peak rate,
mean rate, burst duration). Thus, the calculation of an upper bound, say D(0) exp(—6z), does not
necessitate more than some standard traffic information, plus the effective bandwidth a(#), which
we assume is implemented for CAC or tariffing purposes.

Finally, we remark that in some sense, the coefficients B and D = D(6*) are the best possible.
Counsider the case where the service rate ¢ is such that the only state s in S with input rate r(s) larger
than c is the state §, where all sources are on. This condition is true if we have # — ming r;, < ¢ < 7.
In this case, it is easily seen that B = D, and thus, the lower and upper bounds are equal and give
the exact queue length distribution: P(X > z) = Dexp(—6*z). The bounds are then obviously
the best possible. Although the study of this particular case is not necessarily of great practical
importance, it suggests that the tightness of the coefficients may not be easily improved.

4 Application examples and experiments

We now illustrate our results through a number of numerical examples. In Subsection 4.1, we
assume K = 2 and compare our bounds with the exact distribution of X. In Subsection 4.2, we
assume K = 1 and observe that the bounds take a very simple form, and that the decay rate 8* has
an explicit expression. Finally, in Subsection 4.3, we consider the problem of call admission control
(CAQC) in a network.

4.1 Numerical Comparisons when K = 2

For every system considered, the bounds were obtained by following the steps described in Subsection
3.3 and 3.4: we solved numerically the equation a(f) = ¢, calculated log(B), and derived log(C)
through an integer programming algorithm. The exact backlog distribution was computed via
the procedure described by Elwalid and Mitra in [14], by solving a linear system of differential
equations. The difficult part in this procedure is to find all the eigenvalues and eigenvectors of a
matrix of dimension [[, (1 + N). This spectral analysis and the resolution of a linear system were
implemented by using some functions of the library Meschach, a freeware package in C language
for linear algebra (see reference manual [32]). In theory, the exact distribution can be obtained for
any number of sources, but in practice, only very small systems can be studied because of the high
computation time.

Figures 2, 3, and 4 show a few examples of the models that we have considered. Each has two
different classes of traffic (K = 2) and a relatively small number of sources of each class (N < 12).
The mean durations of off and on periods, respectively 1/A; and 1/u, are given in seconds, and
the rate r; in Mb/s. In each figure, log;q(P(X > x)) is plotted as a function of the queueing delay
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in the multiplexer, which is equal to /¢, and compared to the lower and to both upper bounds. All
three bounds are represented by straight lines with the same slope 6*, with the value at the point
x = 0 being equal to log;y(B), log,(C), and log,y(D).

In Figure 2, the load 7/c is 0.6, sources of class 1 represent voice channels, with parameters
1/A1 = 0.650, 1/p; = 0.352, r1 = 0.064, and sources of class 2 model data streams with average
on and off periods of 0.2 and 0.8 seconds respectively, and peak rate 320 Kb/s. In Figure 3, the
parameters are the same but for the load which is taken equal to 0.40.

We first notice that in all cases that we have considered, log;o(P(X > z)) appears to be a
nonincreasing and convex function of z. Thus, the gap between log;o P(X > x) and the upper bound
(that is a linear function of z) is the smallest for = 0, whereas the gap between log,, P(X > z)
and the lower bound is the smallest for large values of x.

The second observation is that the lower bound can be very close to the exact value when x is
not close to 0, and when the load of the system is very low, i.e. when the service rate c is of the
same order as 7 (but still with ¢ < # — ming 7). This phenomenon is illustrated in Figure 4 where
we have taken 7/c = 0.125. However, for medium or high loads, the exact value is usually closer to
the upper bound, even for larger z.

We further investigate decomposition properties of our bounds. Because of the difficulty to ana-
lyze exactly large systems, it would be interesting to know how to quickly and accurately extrapolate
the behavior of P(X > x) with many sources from the study of smaller systems, where the exact
distribution of X or some approximations of this distribution are more easily obtained.

Let d be a positive integer, which will act as a “scaling factor”, let X; be the stationary backlog
in a system with dNj class k sources and with a service rate equal to dc: the size of the system
has been “multiplied” by d. How does P(Xy > dx) compare to P(X > z)? We do not attempt
here to bring a precise answer to this question, but a simple remark can be made about the scaling
property of our bounds: we observe that the decay rate 8* does not depend on d (this comes from
the equality aq(0) = da(f)), and if By and D, denote the coefficients in the scaled system, it is also
easily shown that log(B,;) = dlog(B) and log(D,;) = dlog(D), which yields

d(log(B) — 6*z) < log(P(X4 > dz)) < d(log(D) — 6*z). (65)

Thus, we can easily deduce the bounds for large systems from the bounds calculated for small
systems.

The above formula also reveals a difficulty: our ability to estimate log(P(X > x)) is determined
by the gap between the upper and the lower bound, which is equal to log(D) — log(B). This
difference grows linearly with the size of the system, so that we may expect that at least one of the
bounds in (65) deviates from the exact curve when the number of sources is large. We continue
the discussion on the behavior of the bounds in the next subsection, where we present numerical
examples with a larger number of sources and with K = 1.

4.2 Bounds in a symmetrical model (K =1)

When K = 1, the simplicity of the formulas and the ability to confront them with other known
results enable us to get a more precise insight on the behavior of the bounds. We consider a system
with N sources of the same class, with parameters A, p, and r. We denote by c¢; the service rate
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Figure 3: (N1,1/A1,1/p1,71) = (12,0.650,0.352, 0.064),
(N3, 1/A9,1/pa,72) = (6,0.8,0.2,0.32), Load = 0.4.
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Figure 4: (N1,1/A1,1/p1,7m1) = (12,9.0,1.0,1.0),
(Na,1/A2,1/ 9, 72) = (4,9.0,1.0,2.0), Load=0.125.

per source, i.e. ¢; = ¢/N. In this case, the solution of the equation a(f) = c is

o= L _A (66)

r—ec; ¢y

The above formula is not new and can be found for instance in [1| and [34]. If we report this
value in (37) and (38) to calculate the numbers uy and u;, we find:

U B o
0 A+ p)(r—c1)
w = A
! A+ p)er

We now define m = |¢/r| + 1, the minimum number of active sources such that the total input
rate exceeds c. Note that m > Ne¢;/r. Then, the coefficients of the bounds are

B = u{v, (67)
C = u) ™", (68)
D = (w “ug/HN. (69)
We can write
D = exp(-NI(er)), (70)
with
I(c1) = —(1—-ci/r)log(ug) — (c1/7)log(uy). (71)
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The above formula for the coefficient D was previously known as a large deviation approximation
for the overflow probability in a bufferless model with large N (see for instance Weiss [34]), our work
shows that this approximation is really an upper bound. This upper bound was also obtained by
Buffet and Duffield in [5] for a discrete time model: we can derive D as the limit of their formula, if
we let the discrete time model which they study tend to a continuous time model, as we have done
in section 3.

We now comment on some numerical experiments. Figures 5 and 6 compare the logarithms of
three different functions: the upper bound Cexp(—60*z), the exact distribution P(X > ), and an
approximation for small buffers due to Hsu and Walrand (see [22]). Each curve is plotted as a
function of the queueing delay x/c in the multiplexer. The exact value of P(X > x) was computed
by the method proposed by Anick, Mitra, and Sondhi in [1], which is not fundamentally different
from the heterogeneous case, but leads to a simpler and quicker algorithm, which makes it possible
to analyze larger systems. The approximation found in [22] is of the form A(N)exp(—NCs+/x),
where A(NV) is an estimate of the probability that the input rate exceeds ¢, and the coefficient Cy
is derived for small buffer asymptotics by Weiss [34].

We consider a system of 100 sources modelling voice channels (1/A = 0.650, 1/u = 0.352,
r = 0.064). In Figure 5, the service rate c is such that the load of the system is 0.82, and in Figure
6, the load is 0.66. The buffer occupation X is represented by the corresponding queueing delay
in milliseconds. On both figures, we observe that our upper bound is close to the real distribution
for small = (z = cxdelay), but, as noted also in the heterogeneous model, the gap may increase by
several orders of magnitude for larger . The small buffer approximation is also very close for small
x.

The lower bound with coefficient B is in both cases very inferior to the real probability (log(B)
would be about -8 in Figure 5 for z = 0 and -18 in Figure 6), and was left out of the picture. This
is not a surprise: as mentioned above, the difference between log(D) and log(B) grows linearly with
the size N of the system and thus, at least one of the two bounds is expected to miss the exact
value by a large margin when the number of sources increases.

When K = 1, we have seen that log(D) is the large deviation approximation of log(P(X > 0))
when N goes to 400, the difference between these two terms is thus o(IN), which is consistent with
our observations: the upper bound log(D) is good when z is small, even for large N. This implies
that log(P(X > 0)) — log(B) has to grow linearly with N. Thus, for large N, the upper bound is
such that log(D) stays close to log(P(X > 0)), while the lower bound is such that log(B) deviates
linearly in N from the exact value.

Let ®(N) be the stationary probability that the input rate exceeds ¢, i.e. the probabiliy of
having m or more active sources at one time, which is given by the formula

oo = £ ()

k=

We have
®(N) < P(X >0), (73)

because the queue length is positive whenever the input rate is larger than ¢, and thus ®(N) < C.
The probability ®(IN) can be seen as an approximation of P(X > 0); because the formula (72) is
complex, authors have searched approximations of ®(NN) itself. An approximation of log(®(N)),
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obtained by refinement of a large deviation formula, is presented in [22] and has the following form:

log(A(N)) = —h(er) — 5 log(N) — NT(cx). (74)

In Figures 7 and 8, we compare numerically log(®(N)), the approximation log(A(N)), and the
upper bound log(C'), for up to 200 sources with two different sets of parameters. We can see on
the curves that the approximation log(A(N)) is very close to the exact value of log(®(INV)), even for
large N. Recall that log(D) = —NI(c1). Thus, empirically, the difference between the upper bound
log(D) and log(®(N)) is of the order of log(/N)/2. From the inequality (73), we finally deduce that
the difference between log(D) and log(P(X > 0)) is also at most of the order of log(N)/2.

This concludes our discussion on the behavior and accuracy of the bounds in the numerical
examples: for a large number of sources, the lower bound with coefficient B is in general very
inferior to the exact distribution of X, whereas the upper bound, with coefficient C' or D, stays
reasonably close.

4.3 Application to call admission control

The problem of call admission control has been one of the principal applications of the recent
developments in the theory of effective bandwidths. Papers of interest dealing with this subject
include [6, 14, 8, 18], among many others.

We now briefly describe the simple mechanism based on the effective bandwidth formula. It
relies on two assumptions. The first assumption is that the effective bandwidth ax () of each source
is known. The second assumption is that the QoS criterion is uniform over all the connections and
has the form P(X > b) < ¢, for some predefined parameters b and g.

The exponential decay rate 0* of the tail distribution of X is larger than 6 if and only if the
effective bandwidth a () of the arrival process is such that a(f#) < c. The CAC mechanism uses the
approximation P(X > x) = exp(—6*x): the QoS criterion is then equivalent to the condition

a(fy) < ¢, (75)

where 6y is such that exp(—60pb) = ¢. The decision to accept or reject a (J + 1)st connection is
taken by calculating the effective bandwidth a(6y) + as4+1(6p) of the input stream with the new
connection. If this value stays below ¢, then the algorithm considers that the connection J + 1 can
be accepted without violating the condition P(X > b) < ¢, otherwise, the connection attempt is
rejected. We now illustrate this CAC mechanism through a numerical example, and show how our
bounds can improve the performances.

The question is to find the maximum number N of fluid Markovian sources with parameters
1/A =0.650s, 1/ = 0.352s, and r = 0.064Mb/s, which can be accommodated in a multiplexer with
¢ = 3.2Mb/s such that P(X > b) < ¢7 We can derive four different numbers:

e Exact number N,: with the formulas proposed by [1], the exact distribution of X is known
for all N. We obtain N, by calculating the largest N such that P(X > b) does not exceed gq.

e Number Ngp: this is the number determined by the effective bandwidth mechanism, and is
simply equal to |c/a(fp)], with 6y = —log(q)/b.
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Figure 10: Number of admissible calls, with criterion ¢ = 0.1%.
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e Lower bound NVj: this number is obtained by using the upper bound C exp(—6*z) on P(X > x).
If the number of sources is such that the upper bound is less than ¢, then the QoS criterion
is satisfied. Thus we have N; < N, where N; = max{N / Cexp(—6*b) < ¢}, the coefficient
C depending on N.

e Upper bound Ni: similarly, Ns is calculated by using the lower bound on P(X > b) with
coefficient B.

Figures 9 and 10 compare the previous numbers as a function of b, with ¢ =1% and ¢ =0.1%.
We observe that the algorithm based purely on an effective bandwidth approach (number Ngp)
yields poor results, especially for small b, by accepting approximately only one half of the possible
connections.

We also note that the number Ny, upper bound on the maximum number of admissible con-
nections, is almost equal to the number corresponding to mean rate allocation, independently of b.
Thus, the number Ny provides only trivial information, which is due to the poor quality of coefficient
B for a large number of sources. However, the number Nj, lower bound on the maximum number
of admissible connections, deviates from the exact number by no more than about 10% in both
examples.

5 Conclusion

The multiplexing of Markovian on/off sources has received a lot of attention in the recent past,
with most of the results concerning symmetrical systems. We have proposed exponential upper
and lower bounds on the backlog distribution which are easily computed, and which hold for any
number of different traffic classes. We have conducted numerical experiments to test the validity
of the bounds, and have compared them with other authors’ results whenever possible. When
considering a symmetrical system, we retrieve some previously well known formulas as a special
case. We have argued that in large systems, our lower bound may greatly underestimate the exact
value, whereas the upper bound, as observed in the symmetrical case, is presumably reasonably
close to the exact result for small buffers.
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