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ABSTRACT
Considered is a mobile ad hoc network consisting of three
types of nodes (source, destination and relay nodes) and
using the two-hop relay routing protocol. Packets at relay
nodes are assumed to have a limited lifetime in the network.
All nodes are moving inside a bounded region according to
some random mobility model. Both closed-form expressions,
and asymptotic results when the number of nodes is large,
are provided for the packet delivery delay and the energy
needed to transmit a packet from the source to its desti-
nation. We also introduce and evaluate a variant of the
two-hop relay protocol that limits the number of copies of
a packet in the network. Our model is validated through
simulations for two mobility models (random waypoint and
random direction mobility models), numerical results for the
two-hop relay protocols are reported, and the performance
of the two-hop routing and of the epidemic routing protocols
are compared.

Keywords
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1. INTRODUCTION
Ad hoc Networks are complex distributed systems, that

are composed of wireless mobile or static nodes that can
freely and dynamically self-organize. In this way they form
arbitrary, and temporary “ad hoc” network topologies, al-
lowing devices to seamlessly interconnect in areas with no
pre-existing infrastructure.

In a Mobile Ad Hoc Network (MANET), since there is
no fixed infrastructure and nodes are mobile, links between
nodes are set up and turn down dynamically. A link be-
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tween two nodes is up when these nodes are inside one an-
other communication range, and a link is down otherwise.
The establishment of a route from a source node to a desti-
nation node requires the simultaneous availability of a num-
ber of links that are all up, one originating at the source
node and another one ending at the destination nodes. In-
deed, MANETs often experience route failures and network
disconnectivity, especially when the nodes are moving fre-
quently and the network is sparse. Grossglauser and Tse
[9] have observed that mobility in MANETs can be used to
increase the average network throughput. Their idea was
to look at the diversity gain achieved by using the mobile
nodes as relays. Their relay mechanism, called two-hop relay
protocol, is simple: if there is no route between the source
node and the destination node, the source node transmits its
packets to all neighboring nodes (called relay nodes) that it
meets for delivery to the destination. A relay node is only
allowed to send a packet to its destination node, and it is not
allowed to send the packet to another relay node, thereby
justifying the name of this protocol. It was then shown in [6]
that a bounded delay can be guaranteed under this relaying
mechanism. The aim of these studies (see also [10]) is the
scaling property of the throughput or delay as the number
of nodes in the network becomes large. Our interest in the
present work is in the performance of the above mentioned
relaying mechanism in a network consisting of a fixed finite
number of nodes.

It is important to mention that most of the studies of
scaling laws of delay and throughput in wireless MANETs
assume a uniform spatial distribution of nodes, which is the
case, for example, when the nodes perform a symmetric Ran-
dom Walk over the region of interest [6, 9], or when nodes
move according to the Random Direction model [13]. In the
present work, we replace this assumption by assuming that
the inter-meeting time between two nodes, defined as the
time duration time between two consecutive points in time
where these nodes meet (i.e. come within transmission range
of one another), is exponentially distributed. The validity of
this assumption has been discussed in [8], and its accuracy
has been shown for a number of mobility models (Random
Walker, Random Direction, Random Waypoint) in the case
when the node transmission range is small with respect to
the area where the nodes evolve. It is worth pointing out
that for some of the mobility models (non-symmetric Ran-
dom Walk and Random Waypoint) nodes are not uniformly
distributed over the area of interest.

The type of mobile networks that we address in this paper
belongs to Delay Tolerant Network (DTN) [1] in which the



incurred delay to send data between nodes can be very large
and unpredictable. In our case this high delay is due to
the high node mobility, low node density, and short node
transmission range. Hence in these cases, most of the time
the network is disconnected, and there are no routes between
nodes. For this reason we assume that the transfer of data
between nodes is done through the relay nodes using the
two-hop relay protocol.

The objective of this paper is to study a number of perfor-
mance metrics bearing on the packet delivery delay and the
overhead induced by the two-hop relay protocol (see Section
2). This will be done under the assumption that, unlike in
[8, 15], packets at relay nodes have a limited lifetime in the
network.

Another relay protocol closely related to the two-hop re-
lay protocol is the so-called epidemic routing protocol [14,
16]. This protocol is identical to the two-hop relay protocol,
except that in the epidemic routing protocol a relay node
is allowed to transmit a packet to any node that its meets,
including another relay node. Epidemic routing decreases
the delivery delay of packets at the cost of increasing the
energy consumption by the network. The performance of
both the two-hop relay protocol and the epidemic routing
protocol will also be compared in this paper.

The rest of the paper is organized as follows: Section 2
gives a careful description of the two-hop relay protocol,
sets the modeling assumptions, and defines the performance
metrics of interest (delivery delay, overhead in terms of the
number of copies of a packet). In Section 3 we develop a
Markovian analysis that yields closed-form expressions for
these performance metrics. In Section 4, we propose and
evaluate a modification of the two-hop relay protocol, called
K-limited two-hop relay protocol, that aims at limiting the
overall energy consumption. Section 5 presents an asymp-
totic analysis of the performance metrics as the number of
nodes is large; this analysis uses a mean-field approximation.
Validation of our model, and comparison of the performance
of the two-hop relay protocol and the epidemic routing pro-
tocol are given in Section 6. Section 7 concludes the paper
and suggests some research directions.

2. THE SYSTEM MODEL
We consider the model introduced in [8]. In this model

the characteristics of MANETs are captured through a sin-
gle parameter, 1/λ, representing the expected inter-meeting
time between any pair of nodes. More precisely, there are
N + 1 nodes consisting of: one source node, one destination
node, and N − 1 relay nodes. Two nodes may only commu-
nicate at certain points in time, called meeting times. The
time that elapses between two consecutive meeting times of
a given pair of nodes is called the inter-meeting time. In
[8] it is assumed that inter-meeting times are mutually inde-
pendent and identically distributed (iid) random variables
(rvs), with an exponential distribution with intensity λ > 0.

Throughout this paper we address the scenario where the
source node wants to send a single packet to the destination
node. To this end the source may use the relay nodes, as
explained below. In this paper, we will focus on the two-hop
relay protocol [9].

The two-hop relay protocol works as follows. The source
node keeps sending a copy of the packet to all nodes that it
meets and that do not have a copy, including the destination
node, until the destination node has received a copy of the

packet. Transmissions between two nodes are assumed to be
instantaneous. This corresponds to the situation where the
transfer time of a packet between two nodes is negligible with
respect to their inter-meeting time. The way the source node
is notified that the destination node has received the packet,
either directly from it or from a relay node, is irrelevant for
the metrics that we will consider (see below). A relay node
that possesses a copy of the packet is only allowed to send it
to the destination node, thereby justifying the name of this
protocol (two-hop relay protocol).

In addition to the model in [8] we assume throughout
this paper that each copy of the packet has a Time-To-Live
(TTL). When the TTL of a copy expires then the copy is
destroyed. TTLs are assumed to be iid rvs with an exponen-
tial distribution with rate µ > 0. The packet to be sent by
the source has no TTL associated with it, so that the source
is always able to send a copy to another node (if the packet
at the source has a TTL then there is a non-zero probability
that the destination node will never receive the packet. This
scenario is not considered in this paper).

What are the results obtained in our simple setting (sin-
gle packet and instantaneous transmission times) that could
shed light on the performance of the two-hop relay protocol
in more realistic contexts (multiple packets, non-zero trans-
mission times, limited relay storage capacity, etc.)? First,
note that the packet delivery delay obtained in our setting
gives a lower-bound, as a consequence of the instantaneous
transmission time. Second, the protocol overhead, measured
in terms of the total number of copies per-packet generated,
gives an upper-bound. This is so because in the realistic con-
text the source will not systematically be able to transmit a
packet to a relay node that it encounters.

We assume that the source is ready to transmit the packet
to the destination at time t = 0. The (packet) delivery time
(or delivery delay), Td, is the first time after t = 0 when
the destination node receives the packet (or a copy of the
packet).

In the following we will investigate the delivery delay, the
number of copies in the system at the delivery time, and
the total number of copies generated by the source before
the delivery time (Section 3). The latter is related to the
overhead induced by the two-hop relay protocol and, in par-
ticular, to the total energy needed to transmit the packet to
the destination (Section 4).

A word on the notation: throughout 1A will designate
the indicator function of any event A (1A = 1 if A is true
and 0 otherwise) and diag (a1, . . . , an) will define a n-by-n
diagonal matrix with (i, i)-entry ai.

3. MARKOVIAN ANALYSIS
The state of the system is represented by the random vari-

able I(t) ∈ {1, 2, . . . , N, a}, where I(t) ∈ {1, 2, . . . , N} gives
the number of copies when the packet has not been deliv-
ered to the destination (i.e. for 0 ≤ t < Td) and I(t) = a
for t ≥ Td. Under the assumptions made in Section 2,
{I(t), t ≥ 0} is an absorbing, finite-state, continuous-time
Markov chain, with transient states {1, 2, . . . , N} and ab-
sorbing state a. Let P = [p(i, j)] be the one-step transition
matrix of the absorbing, finite-state, discrete-time Markov
chain (referred to as MC from now on) embedded just be-
fore the jump times of the Markov chain {I(t), t ≥ 0}. From
the transition rate diagram of Markov chain {I(t), t ≥ 0} in



Figure 1 we find

p(i, i + 1) =
(N − i)ρ

Nρ+ i− 1
, i = 1, . . . , N − 1,

p(i, i − 1) =
i − 1

Nρ+ i− 1
, i = 2, . . . , N,

p(i, a) =
iρ

Nρ+ i− 1
, i = 1, . . . , N,

p(i, j) = 0, otherwise,

with ρ := λ/µ.
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Figure 1: Transition rate diagram of the Markov
chain {I(t), t ≥ 0}.

The transition matrix P of the Markov chain MC can be
written as

P =

(

Q R
0 1

)

,

where Q = [p(i, j)]1≤i,j≤N , R = (p(1, a), . . . , p(N,a))T , and
0 is the row vector of dimension N whose all components
are equal to 0.

Define M = (I − Q)−1, the fundamental matrix of the
absorbing Markov chain MC. The (i, j)-entry of M, denoted
by m(i, j), gives the expected number of visits to state j
given that I(0) = i [7, Chap. 11, Theorem 11.4]. The matrix
M is computed in explicit form in Lemma 1 in Appendix I,
and m(i, j) is given in (16).

We are now in position to compute the expected delivery
delay, the distribution of the number of copies at the delivery
instant, and the expected number of copies generated by the
source.

3.1 Delivery delay
In this section we first determine Ei[Td], the expected

delivery delay given that I(0) = i ∈ {1, 2, . . . , N}, from
which the expected delivery delay Td = E1[Td] will follow.
Ei[Td] is the expected time before absorption starting

from the transient state i. Let nij be the number of visits to
state j before absorption given that the chain starts in state
i, and let Tjl be the sojourn time in state j at the lth visit
to that state. Observe that E[nij ] = m(i, j), where m(i, j)
is given in Lemma 1, and that E[Tjl] = 1/(Nλ + µ(j − 1))
for j = 1, 2, . . . , N (see Figure 1). Hence,

Ei[Td] =

N
∑

j=1

E

[nij
∑

l=1

Tjl

]

=

N
∑

j=1

m(i, j)E[Tjl],

where the last equality follows from Wald’s identity, since
ni,j is independent of the rvs {Tjl}j,l. Plugging the value

found in (16) for m(i, j) in the latter equation gives

Ei[Td] = − 1

µ

((

N − 1

i − 1

)

ρi−1

)−1 N
∑

k=1

Ψk1T

zkΨkτ 2(Ψk)T
Ψk

i ,

(1)
with 1T the N -dimensional column vector whose all compo-
nents are equal to 1. Quantities Ψk

i , τ and zk are defined in
Lemma 1 in Appendix I. Note that these quantities are only
dependent on ρ and N .

More generally, the tail probability distribution of Td,
starting from I(0) = i is given by

Pi(Td ≥ t) =
1

(

N−1
i−1

)

ρi−1

N
∑

k=1

Ψk1T

Ψkτ 2(Ψk)T
Ψk

i e
zkµt.

The proof of this result is shown in Appendix II. Observe
that Pi(Td ≥ t) is nothing than a weighted sum of exponen-
tials of weights and exponents that depend ρ, µ, and N .

3.2 Number of copies in the system at delivery
time

Let Pi[Cd = j] be the probability that the number of
copies in the network at the delivery time is j, given there
are i copies in the network at time t = 0. We assume with-
out loss of generality that the Markov chain MC is left-
continuous so that Pi[Cd = j] = P [I(Td−) = j] (by conven-
tion I(t−) is the state of the process MC just before time t).
In words, Pi[Cd = j] is the probability that the last visited
state before absorption is j, given that the initial state is i.

If we split the absorbing state a into N absorbing states
a1, . . . , aN , as shown in Figure 2, we will not affect the
dynamics of the original Markov chain before absorption.
This means that the fundamental matrix of the modified ab-
sorbed Markov chain is the same as the fundamental matrix
of the original absorbed Markov chain. Clearly, Pi[Cd = j]
is now equal to the probability that the modified chain is ab-
sorbed in state aj . Let bi,aj

denote this probability. From
the theory of absorbing Markov chains, we see that [7, Chap.
11, Theorem 11.6]

bi,aj
=

N
∑

k=1

m(i, k)r(k, aj),

where r(k, aj) is the one-step transition probability from
state k to the absorbing state aj in the modified Markov
chain. Clearly (see Figure 2) r(k, aj) = jλ/(Nλ+(j−1)µ) =
jρ/(Nρ+j−1) if k = j and r(k, aj) = 0 if k 6= j. Therefore,

Pi[Cd = j] = m(i, j)r(j, aj) (2)

The nth-order moment of Cd is equal to

Ei[C
n
d ] = − 1

(

N−1
i−1

)

ρi−2

N
∑

k=1

Ψk
i

zkΨkτ 2(Ψk)T
ΨkJT

n+1, (3)

with Jn := (1, · · · , in, · · · , Nn). Coming back to the original
problem, the probability distribution of the number of copies
at delivery time is given by P1[Cd = j], and the n-th order
moment is given by E1[C

n
d ].

3.3 Total number of copies generated by the
source before delivery time

The objective is to find, Gd, the expected number of copies
generated by the source before the delivery time (or equiva-
lently, before absorption). Let Gi,j

d be the number of copies
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Figure 2: The modified absorbing Markov chain
with N absorbing states.

generated by the source before absorption given that the
chain starts in state i and that state j is the last state visited
before absorption (i.e. I(Td−) = j). Introduce J i,j (k, k+1)
(resp. J i,j(k + 1, k)) the number of transitions from state
k (resp. state k + 1) to state k + 1 (resp. state k) given
that I(0) = i and I(Td−) = j. It is easy to see that for
k = 1, 2, . . . , N − 1 that

J i,j(k, k + 1) = J i,j(k + 1, k) + 1{i≤k<j} − 1{j≤k<i}, (4)

A copy of the packet is generated by the source each time
there is a transition from state k to state k+ 1 for all states
k = 1, 2, . . . , N − 1. Hence,

Gi,j
d =

N−1
∑

k=1

J i,j(k, k + 1).

On the other hand, nj
i,k, the total number of visits to state

k given that I(0) = i and I(Td−) = j, satisfies the relation

N
∑

k=1

nj
i,k =

N−1
∑

k=1

J i,j(k, k + 1) +

N−1
∑

k=1

J i,j(k + 1, k) + 1.

From (4) we find that

N−1
∑

k=1

J i,j (k + 1, k) =

N−1
∑

k=1

J i,j(k, k + 1) + i− j.

Combining the three last identities gives

Gi,j
d =

1

2

[

N
∑

k=1

nj
i,k + j − i − 1

]

.

The expected number of copies given that I(0) = i, denoted

byGi
d, is given by (Hint: remove the conditioning on Cd = j)

Gi
d =

1

2

[

N
∑

k=1

m(i, k) +Ei[Cd] − i− 1

]

where m(i, k) is given in Lemma 1 and Ei[Cd] is given in (3)

(with n = 1). Finally, Gd = G1
d. Note that the probabil-

ity distribution of Gd can be computed by defining a two-
dimensional and continuous-time absorbing Markov chain
with state (i, c), where i ∈ {1, · · · , N} represents the num-
ber of copies in the network, and c ∈ N denotes the total
number of copies generated by the source. Thus, P [Gd = l]
is the probability that the absorption occurs at one of the
following transient states {(i, l) : 1 ≤ i ≤ min(l + 1, N)}.

We will see in the next section how Gd can be used to
compute the overall energy needed to transmit a packet to
the destination.

4. LIMITED ENERGY CONSUMPTION
We will only consider the energy consumption due to

packet transmission and decoding. Let pt be the energy
needed at the sender to transmit a packet to another node
and let pr be the energy needed at the receiver to decode
a packet. The energy consumed by the source before the
packet is delivered to the destination Ps = ptGd, since the
source needs to generate on the average Gd copies of the
packet before one copy reaches the destination. The energy
consumed by all nodes before the delivery time is given by
Pd = (pt + pd)Gd.

In this section we introduce and evaluate a new two-hop
relay scheme that limits the energy consumption by limiting
the number of copies that the source can generate before the
packet reaches the destination. A similar scheme was intro-
duced in [15] to limit the energy consumption of epidemic
routing. We now assume that the source can generated at
most K copies of the packet. In the following this scheme
will be referred to as the K-limited two-hop relay protocol.
Alike in the original protocol in Section 3 (corresponding to
K = ∞), we will compute the expected delivery delay and
the expected number of copies generated before the delivery
time for theK-limited two-hop relay protocol. The behavior
of the K-limited two-hop relay protocol can be modeled as
a two-dimensional, finite-state, absorbing and continuous-
time Markov chain (referred to as MCK) with state (i, c),
where i ∈ {1, 2, . . . , N} gives the number of copies in the
network, and c ∈ {0, 1, . . . , K} records the total number of
copies generated by the source. It is easy to see that the
one-step probability transition matrix PK = [pK((i, c), ·)] of
the absorbing, finite-state, discrete-time Markov chain (re-
ferred to as MCK)) embedded just before the jump times
of MCK is given by

pK((i, c), (i+ 1, c+ 1)) = (N−i)ρ
Nρ+(i−1)

, 1 ≤ i ≤ Km and

i − 1 ≤ c ≤ K − 1,

pK((i, c), (i− 1, c)) = (i−1)
Nρ+(i−1)

, 2 ≤ i ≤ Km and

i − 1 ≤ c ≤ K − 1,
pK((i, c), a) = iρ

Nρ+(i−1)
, 1 ≤ i ≤ Km and

i − 1 ≤ c ≤ K − 1,

pK((N, c), (N − 1, c)) = (N−1)
Nρ+(N−1)

1{K≥N},

N − 1 ≤ c ≤ K − 1,
pK((N, c), a) = Nρ

Nρ+(N−1)
1{K≥N},

N − 1 ≤ c ≤ K − 1,

pK((i,K), (i− 1, K) = (i−1)
iρ+(i−1)

, 2 ≤ i ≤ Km + 1,

pK((i,K), a) = iρ
iρ+(i−1)

, 1 ≤ i ≤ Km + 1,

pK((i, c), (j, d)) = 0, otherwise,

with Km := min(K,N − 1), and where a is the absorbing
state. Let L denotes the total number of transient states.
If K ≤ N − 1 then L = L1 := (K + 1)(K + 2)/2 whereas if
K > N then L = L2 := N(2K −N + 3)/2.

If we label the transient states (1, 0) as 1, (2, 1) as 2, · · ·
, (i, c) as (c+1)(c+2)

2
− i + 1 for c ≤ Km and i ≤ c + 1, · · · ,

(i, c) as N(2c−N+1)
2

+N − i+ 1 for c > Km and i ≤ N , then
we can write the matrix PK as

PK =

(

QK RK

0 1

)

,

where QK is an L-by-L matrix giving the one-step transition
probability between two transient states, RK is an L-by-
1 matrix giving the one-step transition probability from a



transient state to the absorbing state a, and 0 is the 1-by-L
zero matrix.

The fundamental matrix associated with the absorbing
Markov chain MCK is MK = (I−QK)−1. Let mK(i, j) be
the (i, j)-entry of MK . The matrix (I − QK) can be seen
as an upper-bidiagonal block matrix that it is easy to invert
recursively. Once the matrix MK has been computed the
main performance metrics can easily be deduced, as shown
below.

4.1 Expected delivery delay
We distinguish the cases K ≤ N − 1 and K ≥ N . In

the former case, the expected delivery delay given that the
chain starts in state (1, 0) reads

TK
d =

K+1
∑

i=1

mK(1, L1 − i + 1)

iλ+ (i− 1)µ
+

K
∑

i=1

∑K−1
j=i−1 mK(1, a(i, j))

Nλ+ (i− 1)µ
, (5)

where a(i, j) := 1− i+ (j+1)(j+2)
2

, and Tj is the sojourn time
in the transient state with label j.

If K ≥ N we find

TK
d =

N
∑

i=1

mK(1, L2 − i+ 1)

iλ + (i − 1)µ
+

N
∑

i=1

∑N−1
j=i−1mK(1, a(i, j)) +

∑K−1
j=N mK(1, b(i, j))

Nλ+ (i− 1)µ
, (6)

where b(i, j) := N − i + 1 + N(2j−N+1)
2

.

4.2 Expected number of copies
The expected number of copies generated by the source

before the delivery time, given that the chain starts in state
(1, 0) is given by

GK
d =

K
∑

c=1

c

Km
∑

i=1

P (absorption occurs in state (i, c)).

If K ≤ N − 1 then

GK
d = ρ

K−1
∑

c=1

c+1
∑

i=1

ic
mK(1, a(i, c))

Nρ+ i − 1
+

ρK
K+1
∑

i=1

i
mK(1, a(i,K))

iρ+ i − 1
, (7)

while if K ≥ N

GK
d = ρ

N−1
∑

c=1

c+1
∑

i=1

ic
mK(1, a(i, c))

Nρ+ i− 1
+

ρ

K−1
∑

c=N

N
∑

i=1

ic
mK(1, b(i, c))

Nρ+ i− 1
+ ρK

N
∑

i=1

i
mK(1, b(i,K))

iρ+ i− 1
, (8)

where a(i, c) and b(i, c) are defined in Section 4.1.
The energy consumed by the source before the packet is

delivered to the destination is given by ptGK
d while the

energy consumed by all nodes during this period is (pt +

pd)GK
d .

5. ASYMPTOTIC ANALYSIS
In this section we derive asymptotic results for the ex-

pected delivery delay and the expected number of copies at
delivery instant in the two-hop relay protocol when the num-
ber of nodes N is large. Deriving these asymptotic results
from the explicit formulas in (1) and (3), respectively, is not
easy (in the more simpler case when there are no timeouts
getting asymptotics from the explicit results were already
quite involved [8, Appendix A]).

We shall instead follow a mean field approach to find ap-
proximations of these asymptotics. The same approach was
used in [14] and in [16] to derive asymptotic results for epi-
demic models.

The mean field approximation says thatX(t) (resp. G(t)),
the expected number of copies (resp. of copies generated
by the source) in the network at time t, before absorption,
when N is large, can be approximated by the solution of
the following 1st-order differential equation (see [12] for the
general theory)

Ẋ(t) = λ(N −X(t)) − µ(X(t) − 1), t > 0. (9)

Ġ(t) = λ(N −X(t)), t > 0. (10)

This equation simply reflects the fact that at time t X(t)
increases with the rate λ(N −X(t)) and decreases with the
rate µ(X(t)−1). We need to complement this equation with
another equation whose the solution approximates D(t) :=
P (Td < t), the probability distribution of the delivery delay.
It was found in [14] that

Ḋ(t) = λX(t)(1 −D(t)), t > 0. (11)

Solving (9), (10), and (11) with the initial conditions X(0) =
x0 (x0 = 1 in our model), G(0) = 0, and D(0) = 0 yields

X(t) =
Nλ+ µ

λ+ µ
+
(

x0 − Nλ+ µ

λ+ µ

)

e−(λ+µ)t (12)

G(t) = λNt− fN (t), D(t) = 1 − e−fN (t) (13)

where fN (t) := λ
λ+µ

[

(Nλ+µ)t+
(

x0−Nλ+µ
λ+µ

)

(1−e−(λ+µ)t)
]

.

It can be checked that D(0) = 0, limt→∞D(t) = 1 and
t → D(t) is nondecreasing, so that D(t) is indeed a proba-
bility distribution of a proper rv. As expected from the very
definition of X(t), we note that X(∞) = (Nλ + µ)/(λ+ µ)
is the expected stationary number of customers in a finite-
state birth and death process, with birth rate (resp. death
rate) λ(N − i) (resp. µ(i − 1)) in state i ∈ {1, 2, . . . , N}.

5.1 Delivery delay
By definition, E[Td] =

∫ +∞
0

P (Td > t)dt, so that from
(12) E[Td] can be approximated by

E[Td] ≈
∫ +∞

0

e−fN (t)dt

when N is large. When N is large it is easily seen that
the dominant contribution of e−fN (t) to the above integral
comes from small values of t since fN (t) is a nondecreas-

ing function of N . Hence, e−fN (t) can be approximated by

e−f
′′

N (0)t2/2 since fN (0) = 0 and since f
′

N (0) = λx0 does not

depend on N , with f
′′

N (0) = λ(Nλ + µ − (λ + µ)x0). For
0 ≤ x0 < X(∞) this gives the 1st-order asymptotics

E[Td] ≈
√

π

2λ(Nλ+ µ − (λ+ µ)x0)
≈ 1

λ

√

π

2N
(14)



for N → ∞. The 2nd-order asymptotics of E[Td] can be
obtained by expanding fN (t) in Taylor series at the order
three in the vicinity of t = 0. We find

E[Td] ≈
∫ +∞

0

e−
f
′′

N
(0)

2!
t2
(

1 − f
(3)
N (0)

3!
t3
)

dt

=

√

π

2λ(Nλ+ µ− (λ+ µ)x0)
+

(λ+ µ)(Nλ+ µ− (λ+ µ)x0)

3λ3(N − 1)2
(15)

for N → ∞. Asymptotics, as N is large, for any order
moment of Td can be derived using a similar approach (see
[11]).

Figure 3 displays the 1st-order and 2nd-order asymptotics
of E[Td], given in (14) and in (15), respectively, as a function
of N , and compare them with the exact value obtained in
(1). We observe that, as N increases, both asymptotics
converge to the exact result.

5.2 Expected number of copies at delivery in-
stant

When N is large, E[Cd], the mean number of copies at

the delivery time Td, is approximated by
∫ +∞
0

X(t)dD(t).
With the use of (12) an integration by part gives

E[Cd] ≈ x0 + (Nλ+ µ− (λ+ µ)x0)

∫ ∞

0

e−fN (t)−(λ+µ)tdt

for N → ∞. By using again the property that the dominant
contribution of e−fN (t)−(λ+µ)t to the above integral comes
from small values of t. we may approximate e−fN (t)−(λ+µ)t

by e−f
′′

N (0)t2/2. Hence,

E[Cd] ≈ x0 +

√

π

2λ

√

Nλ + µ − (λ+ µ)x0 ≈
√

πN

2

for N → ∞.

5.3 Expected number of copies
WhenN is large, E[Gd], the mean number of copies gener-

ated by the source before delivery time Td, is approximated
by
∫ +∞
0

G(t)dD(t). With the use of (13) an integration by
part gives

E[Gd] ≈ λN

∫ +∞

0

e−fN (t)dt− 1 ≈
√

πN

2
(N → ∞).

From these asymptotic results of E[Td] and E[Gd] we de-
rive the Little-like formula E[Gd] ≈ λNE[Td] (N ↑ ∞) re-
lating the total expected number of copies generated by the
protocol (protocol overhead) to the expected delivery time.

6. NUMERICAL RESULTS
In this section we first validate the Markov model intro-

duced in Section 3 by comparing its performance (expected
delivery delay) to that obtained by simulations, for two dif-
ferent mobility models (Random Waypoint (RWP) and Ran-
dom Direction (RD) models). Simulation results of RWP
and RD are obtained using the NS-2 code of the random
trip model [4]. We then compare the expected delivery de-
lay and the energy consumption induced by the two-hop
relay protocol and the epidemic protocol. We conclude by
investigating the performance of the K-limited two-hop re-
lay protocol.

6.1 Model validation
We have simulated the two-hop relay protocol with ex-

ponential timeouts for both the RWP and the RD mobility
models. In the RWP model [5] each node is assigned an
initial location in a given area (typically a square) and trav-
els at a constant speed to a destination chosen randomly
in this area. The speed is chosen randomly in (vmin, vmax),
independently of the initial location and destination. After
reaching the destination the node may pause for a random
time, after which a new destination and speed are chosen,
independently of previous speeds, destinations, and pause
times. In the RD model [3] each node is assigned an initial
direction, speed and travel time. The node then travels in
that direction at the given speed and for the given duration.
When the travel time has expired, the node may pause for a
random time, after which a new direction, speed and travel
time are chosen at random, independently of all previous
directions, speeds and travel times. When a node reaches a
boundary it is either reflected or the area wraps around so
that the node reappears on the other side. In both mobility
models nodes move independently of each other.

In our simulation settings, for both the RWP and the
RD models the area is a square of side-length L = 2000m,
the speed is constant and equals to V = 10m/sec., there
is no pause time, and the transmission range R is constant
and the same for all nodes. In addition, in the RD model
the travel time is constant and equals to 30sec. and the
nodes reflect on reaching the boundaries. It has been exper-
imentally observed in [8] that whenever R << L then the
node inter-meeting time is exponentially distributed with
rate λ = 10.94 RV

πL2 for RWP and λ = 8 RV
πL2 for RD.

For different values of the ratio R/L and for different val-
ues of the number of nodes N , Table 1 reports the expected
delivery delay obtained from the exact result in (1) and by
simulations for the RWP model, and give relative errors.
The same results for the RD model are reported in Table 2.

From the results in Tables 1-A, 2-A we conclude that, for
both mobility models, our model is accurate for N relatively
small. Observe that more accurate results are reported for
the RD model for a given ratio R/L and a given number
of nodes. In addition, the relative error as a function of
R/L was evaluated and our model shows good results for
small value of R/L especially in the case of RD model, see
Table 2-B.

6.2 Comparison of two-hop and epidemic
routing protocols

In this section, we compare the expected delivery delay,
E[Td], and the expected number of packets transmitted,
E[Gd], as a function of µ, the timeout intensity, for the two-
hop relay and the epidemic routing protocols. The absorbing
Markov chain modeling the epidemic routing protocol is the
same as the absorbing Markov chain in Section 3, except
that the birth rate in state i is now equal to λi(N − i), since
in the epidemic routing protocol all nodes are allowed to
generate copies of the packet. The death rate (resp. ab-
sorption rate ) in state i is unchanged and equal to µ(i− 1)
(resp. λi). The computation of the expected delivery de-
lay and the expected number of packets transmitted for the
epidemic routing protocol is therefore similar to that carried
out for the two-hop relay protocol, except that the funda-
mental matrix for the epidemic routing protocol cannot be
computed in explicit form. This matrix was obtained nu-
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Figure 3: Comparing asymptotics for the expected delivery delay to the exact result (µ=0.001: (a) λ=0.0001,
(b) λ=0.00025, (c) λ=0.0005.)

R/L (%) 1.25 1 0.5 0.1
Em[Td] (s) 1216 1529 3154 20102
Esim[Td] (s) 945 1245 2851 20861

|1 − ESim[Td]
Em[Td]

| (%) 22 18 10 4

N 10 20 30 40 100
Em[Td] (s) 4344 3154 2596 2257 1436
Esim[Td] (s) 4093 2851 2237 1839 1068

|1 − ESim[Td]
Em[Td]

| (%) 6 9 14 18 26

(A) (B)

Table 1: Expected delivery delay calculated from (1) and by simulations for the RWP model (µ = 0.0001: (A)
N = 20 and R/L decreases. (B) R/L = 0.5% and N increases).

merically.
As expected, we observe that the epidemic routing proto-

col induces a smaller expected delivery delay than the two-
hop relay protocol, but at the expense of a much more im-
portant overhead in terms of the number of copies generated
Figures 4 and 5. We also point out that the conclusions
drawn from the results in Figure 5 apply for the energy
consumptions Ps and Pd in the case where the energy to
transmit (resp. decode) a packet is constant, since we have
shown in Section 4 that in this case Ps and Pd are both
linear functions of E[Gd].
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Figure 4: Expected delivery delay for two-hop relay
and epidemic routing protocols as a function of µ
(N = 100).

6.3 Limited energy consumption
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Figure 5: Expected number of packet transmitted
for two-hop relay and epidemic routing protocols as
a function of µ (N = 100).

For different values of λ, the inter-meeting time rate, Fig-

ure 6 plots the expected delivery time, TK
d , under the K-

limited two-hop relay protocol for different values of K, the
maximum number of copies of the packet that the source
may generate (see Section 4). For each λ, we observe there

exists a threshold K0 such that TK
d is almost constant when

K ≥ K0 (K0 ∼ 20 for λ = 0.001). Also, this constant value

of TK
d when K ≥ K0 is nothing than the mean delivery

delay obtained in (1) of the original two-hop relay protocol
.

7. CONCLUDING REMARKS
In this work, we have evaluated the main performance

metrics of the two-hop relay protocol under the assumption



R/L (%) 1.25 1 0.5 0.1
Em[Td] (s) 1678 2116 4416 30264
Esim[Td] (s) 1596 1988 4176 31651

|1 − Esim[Td]
Em[Td]

| (%) 6 6 5 4

N 10 20 30 40 100
Em[Td] (s) 6116 4416 3622 3141 1987
Esim[Td] (s) 6208 4141 3297 2867 1512

|1 − Esim[Td]
Em[Td]

| (%) 1 5 9 9 24

(A) (B)

Table 2: Expected delivery delay calculated from (1) and by simulations for the RD model (µ = 0.0001: (A)
N = 20, and R/L decreases. (B) R/L = 0.5%, and N increases).
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Figure 6: Expected delivery delay under K-limited
two-hop relay protocol for different values of K
(N=100, µ=0.001).

that packets in relay nodes have a limited lifetime. Closed-
form expressions have been derived for the probability dis-
tribution of the packet delivery delay, the expected number
of copies in the system at the delivery instant, and the over-
all expected number of copies generated by the source at
the delivery instant. We have observed that the latter met-
rics is directly related to the energy needed to transmit the
packet to the destination node, in the case when the energy
needed to transmit a packet between two nodes and the en-
ergy needed to decode a packet are constant. We have also
proposed, and evaluated, a modification of the two-hop re-
lay protocol that limits the number of copies of the packet
that the source may generate.

In this paper our work has focused on the performance
of the two-hop relay protocol before the destination receives
the packet for the first time. It would also be interesting to
quantify the impact of using an anti-packet mechanism on
the total amount of energy consumed by the network during
the entire lifetime of the packet, including its copies, in the
network. Also, we have assumed that there is no timeout
on the packet lifetime at the source. This assumption may
not be realistic in some applications, and would therefore be
worthwhile to relax it.

This study is part of a research effort towards developing
simple analytical models for quantifying the performance of
relay protocols for MANETs and, in particular, for better
understanding the delay-energy tradeoff of this class of pro-
tocols.

Appendix I: The fundamental matrix
Lemma 1. The matrix I-Q has N distinct, real, and

strictly negative eigenvalues z1, . . . , zN given by

zk =
−N(2ρ+ 1) + 1 − (N + 1 − 2k)

√
4ρ+ 1

2
,

for k = 1, 2, . . . , N . Therefore the fundamental matrix M =
(I − Q)−1 exists, and its (i,j)-entry is given by

m(i, j) = −Nρ+ j − 1
(

N−1
i−1

)

ρi−1

N
∑

k=1

Ψk
i Ψk

j

zkΨkτ 2(Ψk)T
, (16)

with Ψk = (Ψk
1 , . . . ,Ψ

k
N ) where

Ψk
i = (−1)i−1xN−i

2

l1
∑

l=l0

(

k − 1

l

)(

N − k

i− 1 − l

)

(

x1

x2

)k−1−l

,

x1 =
−1 −√

1 + 4ρ

2ρ
, x2 =

−1 +
√

1 + 4ρ

2ρ
,

and where l0 = max(0, i− 1−N + k), l1 = min(i− 1, k− 1),

and τ = diag (τ1, . . . , τN ), with τi =
(

(

N−1
i−1

)

ρi−1
)−1/2

. �

Proof. To simplify the computation of M we introduce
the matrix A defined as

A = −B(I − Q), (17)

where B = diag (b(1), . . . , b(N)) with b(i) = Nρ + (i − 1).
Matrices M are A are related through the simple identity
M = −A−1B. In the following we will compute A−1. We
will follow the approach developed in [2]. We first compute
the eigenvalues and left/right eigenvectors of A.

Eigenvalues of A.
Let z be some eigenvalue of A and let Ψ = (Ψ1, . . . ,ΨN )

be the associated left eigenvector. That is, ΨA = zΨ, or
equivalently,

ρ(N − (i− 1))Ψi−1 − (ρN + i− 1 + z)Ψi + iΨi+1 = 0 (18)

for i = 1, . . . , N , with Ψ0 = ΨN+1 = 0 by convention. Let
ψ(x) =

∑N
j=1 Ψjx

j denote the generating function of Ψ.

Multiplying (18) by xi and then summing over i yields

ψ′(x)

ψ(x)
=
ρNx− (ρN − 1 + z) − 1/x

ρx2 + x− 1
. (19)

Let the zeros of x2 +x/ρ−1/ρ be x1 = −1−√
1+4ρ

2ρ
and x2 =

−1+
√

1+4ρ
2ρ

. The unique solution of (19) such that ΨN = 1 is

ψ(x) = x (x1 − x)c1 (x2 − x)c2 (20)

c1 :=
x2

1ρN − x1(ρN − 1 + z) − 1

ρx1(x1 − x2)
,

c2 :=
−x2

2ρN + x2(ρN − 1 + z) + 1

ρx2(x1 − x2)
.



It is easily seen that c1+c2 = N−1 (Hint: use x1x2 = −1/ρ),
so that (20) also writes

ψ(x) = x (x1 − x)c1 (x2 − x)N−1−c1 . (21)

Because ψ(x) is a polynomial of degree N , we observe from
(21) that necessarily c1 is an integer lying in the set {0, 1, . . . ,
N − 1} since x1 and x2 are always distinct.

The equations c1 = k−1 for k = 1, . . . , N give the follow-
ing N eigenvalues of A:

zk =
−N(2ρ+ 1) + 1 − (N + 1 − 2k)

√
4ρ+ 1

2
, (22)

for k = 1, . . . , N . All eigenvalues of A are distinct (obvious
from (22)). Furthermore, zk increases as k increases, and it
is easily seen that zN < 0 for ρ > 0. Thus, zk < 0 for all
k = 1, · · · , N .

Left eigenvectors of A.
Recall that Ψk = (Ψk

1 , . . . ,Ψ
k
N ) is the left eigenvector as-

sociated with the eigenvalue zk of A. The ith component
Ψk

i of the eigenvector Ψk is the coefficient of xi in the poly-
nomial x(x1 − x)k−1 (x2 − x)N−k that is

Ψk
i = (−1)i−1xN−i

2

∑l1
l=l0

(

k−1
l

)(

N−k
i−1−l

)

(

x1
x2

)k−1−l

.

where l0 = max(0, i− 1−N + k) and l1 = min(i− 1, k− 1).
Right eigenvectors of A.
Recall that Φk = (Φk

1 , . . . ,Φ
k
N )T is the right eigenvector

associated with the eigenvalue zk, for k = 1, . . . , N . We
proceed like in [2, Section 2.4], that is we look for a diagonal
matrix τ = diag (τ1, . . . , τN ) such that

τ−1Aτ =
(

τ−1Aτ
)T
. (23)

It is easily found that (Hint: solve τ 2
i /τ

2
i+1 = ρ(N − i)/i for

i = 1, . . . , N with τ1 = 1)

τi =

((

N

i

)

i

N
ρi−1

)−1/2

, i = 1, . . . , N

satisfy (23). The identity ΨkA = zkΨ
k implies that

Ψkτ (τ−1Aτ ) = zkΨ
kτ.

Therefore, Ψkτ is a left eigenvector of the matrix τ−1Aτ
associated with the eigenvalue zk. Since the matrix τ−1Aτ
is symmetric, it has identical left and right eigenvectors.
Hence, (τ−1Aτ )(Ψkτ )T = zk(Ψkτ )T which gives that

Aτ 2(Ψk)T = zkτ
2(Ψk)T .

This shows that αkτ
2(Ψk)T is a right eigenvector associated

with the eigenvalue zk for any constant αk 6= 0.
Without loss of generality we select the constants α1, · · ·

, αN so that ΨkΦk = 1 for every k = 1, · · · , N . Hence,
αk = 1/Ψkτ 2(Ψk)T for k = 1, . . . , N . Finally,

Φk = τ 2(Ψk)T /Ψkτ 2(Ψk)T ,

or equivalently

Φk
i =

1

Ψkτ 2(Ψk)T

((

N

i

)

i

N
ρi−1

)−1

Ψk
i , i = 1, . . . , N.

(24)
The proof is concluded by noting that

â(i, j) =
N
∑

k=1

Φk
i Ψk

j

zk
=

1
(

N−1
i−1

)

ρi−1

N
∑

k=1

Ψk
i Ψk

j

zkΨkτ 2(Ψk)T
, (25)

by using (24). Equation 25 together with m(i, j) = −(Nρ+
(j − 1))â(i, j) (coming from M = −A−1B) gives (16). �

Remark 7.1. Replacing x by 1 in (19) implies the follow-
ing relation between the eigenvalue zk and its corresponding
left eigenvector Ψk

N
∑

j=1

jΨk
j = −zk

ρ

N
∑

j=1

Ψk
j , 1 ≤ k ≤ N. (26)

Appendix II: Distribution of delivery delay
The delivery delay, Td, given that there are i copies in the
network at time 0 is the time to absorption of the Markov
chain MC of Figure 1, given that I(0) = i. In order to
compute the distribution of Td, Pi(Td ≤ t), given that I(0) =
i, first we derive the Laplace Steiltjes Transform (LST) given
that I(0) = i, fi(s) = Ei[e

−sTd ], and next we invert fi(s).
fi(s) will actually hold for any complex number s such that
<(s) ≥ 0. Starting at state i, if we condition on the next
possible transition of the MC, fi(s) reads

fi(s) =
λi

λN + µ(i− 1) + s
+

µ(i− 1)

λN + µ(i− 1) + s
fi−1(s)

+
λ(N − i)

λN + µ(i − 1) + s
fi+1(s) (27)

for i = 1, . . . , N (by convention f0(·) = fN+1(·) = 1). Mul-
tiplying both sides of (27) by λN +µ(i−1)+ s and dividing
by µ, yields

(i− 1)fi−1(s) −
(

ρN + i− 1 +
s

µ

)

fi(s)

+ ρ(N − i)fi+1(s) = −ρi (28)

for i = 1, . . . , N , with ρ := λ/µ. Let f = (f1(s), . . . , fN (s))T .
In matrix form (28) writes

(

A − s

µ
I

)

f = b, s ≥ 0, (29)

with I the N -by-N identity matrix,

b := (−ρ,−2ρ, · · · ,−ρN)T ,

and A is the N-by-N matrix defined in (17) in Appendix I. It
is shown in Appendix I that the matrix A is invertible and
diagonalizable, namely, there exists an invertible matrix F
such that

A = Fdiag (z1, · · · , zN )F−1.

where z1, · · · , zN are the eigenvalues of A, the jth right
eigenvector of A, Φj , is the jth column of the matrix F,
and the left eigenvector, Ψi, is the ith row of the matrix
F−1. Hence
(

A − s

µ
I

)−1

= Fdiag
( 1

z1 − s/µ
, · · · , 1

zN − s/µ

)

F−1 (30)

provided that zk−s/µ 6= 0 for k = 1, · · · , N . Since, we know
from Appendix I, that the eigenvalues of A are all strictly
negative, so that the right-hand side of (30) is well defined
(in particular) for all s ≥ 0. Therefore for s > 0, (cf. (29))

f = Fdiag
( 1

z1 − s/µ
, · · · , 1

zN − s/µ

)

F−1b. (31)



Since Φj is the jth column of the matrix F, and Ψi is the
ith row of the matrix F−1, we see from (31) that the ith
component, fi(s), of the vector f is given by

fi(s) = −ρ
N
∑

j=1

N
∑

k=1

jΦk
i Ψk

j

zk − s/µ
, s ≥ 0. (32)

Closed-form expressions for the eigenvalues and right/left
eigenvectors of the matrix A are provided in Lemma 1. Re-
mark 7.1 and Lemma 1 of Appendix I give that

fi(s) =
1

((

N
i

)

i
N
ρi−1

)

N
∑

k=1

Ψk
i (Ψk1T )

Ψkτ 2(Ψk)T

zk

zk − s/µ
, (33)

for s ≥ 0, where 1T is the column vector of dimension N
whose all components are equal to 1, one. Equation 33 im-
plies that the distribution of Td given that the MC starts
at state 1 reads

Pi(Td ≥ t) =
1

(

N−1
i−1

)

ρi−1

N
∑

k=1

Ψk
i

Ψkτ 2(Ψk)T
Ψk1T ezkµt. (34)

Since zk < 0 for 1 ≤ k ≤ N and ρ > 0, thus

lim
t→+∞

Pi(Td > t) = 0.

Further, Pi(Td > 0) = 1 (Hint:ΨiΦj = 0 for i 6= j, and
ΨkΦk = 1).
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