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Abstract. Mobile ad hoc networks are characterized by a lack of a fixed

infrastructure and by node mobility. In these networks data transfer can be

improved by using mobile nodes as relay nodes. As a result, transmission

power and the movement pattern of the nodes have a key impact on the

performance. In this work we focus on the impact of node mobility through the

analysis of a simple one-dimensional ad hoc network topology. Nodes move in

adjacent segments with reflecting boundaries according to Brownian motions.

Communications (or relays) between nodes can occur only when they are

within transmission range of each other. We determine the expected time

to relay a message and compute the probability density function of relaying

locations. We also provide an approximation formula for the expected relay

time between any pair of mobiles.

1 Introduction

Mobile ad hoc networks can be deployed when a fixed network structure is not available.

As a consequence of the absence of a fixed infrastructure, the mobile components (or

nodes) of an ad hoc network need to behave as routers by relaying messages in order

to improve the performance of a network [7]. Instances of nodes in ad hoc networks are

laptops, planes [12], cars, electronic tags on animals [11], mobile phones, et cetera. This

has led to the design of protocols that take advantage of the node mobility (e.g. messaging

applications in [8]).



Data relaying cuts down transmission power, interferences and increases battery usage.

On the other hand, it may increase latency—since the existence at any time of a “path”

between two mobiles is not guaranteed—even if (intermediary) nodes can be used as

routers to convey a message from its source to its destination.

In this paper we study the impact of mobility on the latency in the case of nodes

acting as relay nodes. This is done for one-dimensional ad hoc network topologies and

under the assumption that nodes move according to (independent) Brownian motions.

A natural approach (but not the only one, see [10] for another approach) to modeling

a mobile ad hoc network with relaying nodes consists of looking down at the earth and

representing it as a finite two-dimensional plane. If two mobiles are within a fixed trans-

mission range of each other then a message can be relayed/transmitted (see Figure 1).

Furthermore, mobiles move according to a certain movement pattern. Unfortunately, this

simple model of an ad hoc network (no physical restrictions in the area covered by the

nodes, nodes are homogeneous, etc.) is extremely difficult to analyze, even with simple

movement patterns such as, for example, the Random Waypoint Mobility (RWM) model

[14]. For instance, finding the stationary distribution of the location of the mobiles under

the RWM is, to the best of our knowledge, an open problem.

Figure 1. Graphical representation of an ad hoc network. Nodes can transfer a message
only if they are within each others transmission range. In this case only two nodes can
communicate with each other.

Obtaining any results characterizing the first instance of time when two mobiles come

within transmission range of each other is a problem of even greater complexity. For this

reason, this paper focuses on a one-dimensional topology—a model that already reveals

interesting properties. Its extension to two dimensions is an open problem.



When analyzing a mobile ad hoc network, an important consideration is the movement

pattern. Are mobiles restricted in their movement by roads, physical objects, waterways,

or mountains? Do they roam around a central point? It has been shown that the latter is

the case for the RWM, where there is a higher concentration of mobiles around a central

region [2].

The first version of this paper was presented in [6]. However, after its publication

mistakes have been found which lead to the derivation of formulas which were a constant

(
√

2) off from the correct result. This paper contains the correct expressions.

The following scenarios are addressed in this paper. In Section 2 we consider the sit-

uation where two mobiles move along a segment with reflecting boundaries (see Figure

2). Both mobiles move along the segment according to independent Brownian motions.

We are interested in computing the expected time until both mobiles come within com-

munication range of each other. This quantity is computed for any given initial locations

(Proposition 1) as well as for the case where each Brownian motion is initially in steady-

state (Proposition 3). It is known (see Section 3) that the latter assumption implies that

both mobiles are uniformly distributed over the segment. The uniform spatial distribution

over the coverage area has attracted attention lately and several fundamental results [1,

7] have been obtained in this setting. However, our model is different from the models

considered in those papers.

In Section 3, we consider I mobiles and I segments, one mobile per segment, as

depicted in Figure 5. The mobiles move along their respective segment (with reflecting

boundaries) according to independent Brownian motions. The goal is to determine the

expected transfer time between the first and last mobile in the sequence (Proposition 5).

As an additional result, we identify the probability density function (pdf) of the position

of a mobile at a relay epoch (Proposition 4). Numerical results are reported in Section 4.

These results suggest an accurate and scalable approximation for the expected transfer

time (see equation (15)). The possible extensions of the model are discussed in Section 5.



2 Two mobiles moving along a line segment

We consider two mobiles (say mobiles X and Y ) moving along segment [0, L]. See Figure

2. Communications between these two mobiles occur only when the distance between

them is less than or equal to r ≤ L. The objective of this section is to determine the

expected transfer time, defined as the first time when both mobiles come with a distance

r of each other.

0 Lr r
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Figure 2. Two mobiles moving along [0, L] with transmission range r.

Let x(t) and y(t) be the position of mobiles X and Y , respectively, at time t. We

assume that X = {x(t), t ≥ 0} and Y = {y(t), t ≥ 0} are identical and independent

Brownian motions with drift 0 and diffusion coefficient1 D, both moving along the segment

[0, L] with reflecting boundaries at the edges. Let TL,r be the transfer time, namely,

TL,r = inf{t ≥ 0 : |y(t) − x(t)| ≤ r}. (1)

Set x(0) = x0 and y(0) = y0. By convention we assume that TL,r = 0 if |y0 − x0| ≤ r.

From now on we assume that |y0 − x0| > r.

We are interested in

TL,r(x0, y0) := IE[TL,r |x(0) = x0, y(0) = y0], 0 < x0, y0 < L,

the expected transfer time given that mobiles X and Y are located at position x0 and y0,

respectively, at time t = 0. The following result holds:

1 i.e x(t+h)−x(t) (respectively y(t+h)− y(t)) is normally distributed with mean 0 and variance 2Dh
for all h > 0, and non-overlapping time intervals are independent of each other.



Proposition 1 (Expected transfer time with given initial positions).

For 0 ≤ x0 < y0 ≤ L with x0 + r < y0 and 0 ≤ r ≤ L

TL,r(x0, y0) =
32(L − r)2

Dπ4

∞
∑

m≥1
m odd

∞
∑

n≥1
n odd

sin
(

mπ(y0+x0−r)
2(L−r)

)

sin
(

nπ(y0−x0−r)
2(L−r)

)

mn(m2 + n2)
. (2)

�

The proof of Proposition 1 is based on the following intermediary result that gives

the expected time for a two-dimensional Brownian motion Z evolving in a R by R square

to hit any boundary of the square.

Proposition 2 (Two Brownian motions in a square).

Consider two independent and identical one-dimensional Brownian motions {u(t),

t ≥ 0} and {v(t), t ≥ 0}, with zero drift and diffusion coefficient D. Define the two-

dimensional Brownian motion Z = {z(t) = (u(t), v(t)), t ≥ 0}. Set u0 = u(0) and v0 :=

v(0) and assume that 0 ≤ u0 ≤ R and 0 ≤ v0 ≤ R.

Let

τR := inf{t ≥ 0 : u(t) ∈ {0, R} or v(t) ∈ {0, R}}

be the first time when the process Z hits the boundary of a square of size R by R.

Define τR(u0, u0) = IE[τR | z(0) = (u0, v0)]. Then,

τR(u0, v0) =
16R2

Dπ4

∞
∑

m≥1
m odd

∞
∑

n≥1
n odd

sin
(

mπu0

R

)

sin
(

nπv0

R

)

mn(m2 + n2)
. (3)

�

The proof of Proposition 2 is given in Appendix A. We are now in a position to prove

Proposition 1.

Proof of Proposition 1.

Let x0 + r < y0 ≤ L. An equivalent way to view the Brownian motions X and Y

at time t = 0 is to consider that the point (x0, y0) is located in the upper triangle in



Figure 3 delimited by the lines x = 0, y = L and y = x + r. If we assume that the

boundaries x = 0 and y = L are reflecting boundaries in Figure 3, then we see that

TL,r(x0, y0) is nothing but the expected time needed for the two-dimensional Brownian

motion {(x(t), y(t)), t ≥ 0} to hit the diagonal of the triangle (i.e. to hit the line y = x+r)

given that (x(0), y(0)) = (x0, y0). (The process {(x(t), y(t)), t ≥ 0} is a two-dimensional

Brownian motion since {x(t), t ≥ 0} and {y(t), t ≥ 0} are both independent Brownian

motions.)

By using the classical method of images (see e.g. [9, p. 81]), it can be seen that this

time is itself identical to the expected time needed to hit the boundary of the square of

size
√

2(L− r) by
√

2(L− r) shown in Figure 4 given that (x(0), y(0)) = (x0, y0). This is

due to the reflecting boundaries at x = 0 and y = L acting as mirrors.

In order to apply the result in Proposition 2, we need to compute the coordinates

(x′
0, y

′
0) of (x0, y0) in a new system of coordinates (x′, y′) depicted in Figure 4 and which

is rotated 45o from the original coordinate system. We find (x′
0, y

′
0) = ((y0 + x0 − r)/

√
2

and (y0 − x0 − r)/
√

2) and we may conclude, from Proposition 2, that

TL,r(x0, y0) = τ√2(L−r)

(

(y0 + x0 − r)/
√

2, (y0 − x0 − r)/
√

2
)

. (4)

By using (3) in the right hand side of (4) we see that (2) holds.

An example of the expected transfer time TL,r(x0, y0) is displayed in Figure 6 (see

Section 4 for comments).

We conclude this section by giving the expected transfer time when both mobiles are

uniformly distributed over the segment [0, L] at time t = 0. We will see in the next section

that this case corresponds to the situation where both Brownian motions X and Y are

in steady-state at time t = 0.

Proposition 3 (Expected transfer time for uniform initial positions).

Assume that both mobiles X and Y are uniformly distributed over [0, L] at time t = 0

and 0 ≤ r ≤ L. The expected transfer time IE[TL,r] is
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Figure 3. When mobiles X and Y are at
a distance r of each other they are located
on the line y = x + r (y0 > x0 + r).
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Figure 4. Since reflecting barriers at x =
0 and y = L act as mirrors, the method
of images turns the problem into a 2D
Brownian motion inside four absorbing
barriers.

IE[TL,r] =
128(L − r)4

Dπ6 L2
C0, (5)

where C0 is a constant given by C0 =
∑∞

m=1
m odd

∑∞
n=1
n odd

1
m2n2(m2+n2)

≈ 0.52792664. �

Proof. Since X and Y are uniformly distributed at t = 0, we have

IE[TL,r] =
1

L2

∫ L

0

∫ L

0

IE[TL,r |x(0) = x0, y(0) = y0]dx0dy0

=
1

L2

∫

x0+r<y0≤L

TL,r(x0, y0) dx0dy0 +
1

L2

∫

y0+r<x0≤L

TL,r(y0, x0) dx0dy0

=
2

L2

∫

x0+r<y0≤L

TL,r(y0, x0) dx0dy0

=
64(L − r)2

Dπ4L2

∫

x0+r<y0≤L

h(y0+x0−r, y0−x0−r)dx0 dy0.

where

h(u, v) :=
∞

∑

m≥1
m odd

∞
∑

n≥1
n odd

sin(muβ) sin(nvβ)

mn(m2 + n2)
, β :=

π√
2(L − r)

.



Define the new variables u = (y0 + x0 − r)/
√

2 and v = (y0 − x0 − r)/
√

2. We find

IE[TL,r] =
64(L − r)2

Dπ4L2

[

∫ L−r√
2

u=0

∫ u

v=0

h(u, v)|J(u, v)| dv du

+

∫

√
2(L−r)

u= L−r√
2

∫

√
2(L−r)−u

v=0

h(u, v)|J(u, v)| dv du

]

(6)

where |J(u, v)| (=1) is the determinant of the Jacobian matrix

J(u, v) =













dx

du

dx

dv

dy

du

dy

dv













=















1√
2

− 1√
2

1√
2

1√
2















.

It remains to evaluate the two double integrals in equation (6). By making use of the

identity h(u, v) = h(
√

2(L−r)−u, v) we see that both integrals in the right hand side of

(6) are equal, since

∫

√
2(L−r)

u= L−r√
2

∫

√
2(L−r)−u

v=0

h(u, v)dvdu =

∫

√
2(L−r)

u= L−r√
2

∫

√
2(L−r)−u

v=0

h(
√

2(L−r)−u, v)dvdu =

∫ L−r√
2

u=0

∫ u

v=0

h(u, v)dvdu.

The first integral can be evaluated by using the symmetry h(u, v) = h(v, u). This gives

∫ L−r√
2

u=0

∫ u

v=0

h(u, v)dvdu =

∫ L−r√
2

u=0

∫ u

v=0

h(v, u)dvdu =

∫ L−r√
2

v=0

∫ L−r√
2

u=v

h(v, u)dudv

=

∫ L−r√
2

u=0

∫ L−r√
2

v=u

h(u, v)dvdu.

Hence,
∫ L−r√

2

u=0

∫ u

v=0

h(u, v)dvdu =
1

2

∫ L−r√
2

u=0

∫ L−r√
2

v=0

h(u, v)dvdu

so that

IE[TL,r] =
64(L − r)2

Dπ4L2

∫ L−r√
2

0

∫ L−r√
2

0

h(u, v)dvdu. (7)



Since the double series in h(u, v) are uniformly bounded in the variables

u, v ∈ [0,
√

2(L−r)] (its absolute value is bounded from above by (
∑

k≥1 1/k2)2 = π4/36),

we may invoke the bounded convergence theorem to interchange the integral and sum-

mation signs in (7). This gives

IE[TL,r] =
64(L − r)2

Dπ4L2

∞
∑

m≥1
m odd

∞
∑

n≥1
n odd

1

mn(m2 + n2)

∫ L−r√
2

u=0

sin(muβ)du

∫ L−r√
2

v=0

sin(nvβ)dv

=
128(L − r)4

Dπ6L2

∞
∑

m≥1
m odd

∞
∑

n≥1
n odd

1

m2n2(m2 + n2)
.

The last line follows because cos(jπ/2) = 0 for j odd.

3 A chain of relaying mobiles

We consider the situation depicted in Figure 5. There are I adjacent segments, each

of length L, and there is a single mobile per segment. We denote by Xi the mobile in

segment i. Let 0 ≤ xi(t) ≤ L (i = 1, . . . , I) be the relative position of the i-th mobile

in its segment. We assume that the process Xi = {xi(t), t ≥ 0} is a Brownian motion

with zero drift and diffusion coefficient D and that X1, . . . ,XI are mutually independent

processes. Last, we assume that each segment has reflecting boundaries at the ends. Let

0 (I−2)L IL2LL (I−1)L

Figure 5. A chain of relaying mobiles.

T1 = inf{t ≥ 0 : x1(t)+ r ≥ L+x2(t)} be the transfer time between mobiles X1 and X2,

that is T1 is the first time when X1 and X2 are located at a distance less than or equal

to r from each other. The relay times T2 ≤ · · · ≤ TI−1 between mobiles X2 and X3, . . .,

XI−1 and XI , respectively, are recursively defined by

Ti = inf{t ≥ Ti−1 : xi(t) + r ≥ L + xi+1(t)}, i = 2, . . . , I − 1.



Our objective in this section is to compute IE[Ti] for i = 1, . . . , I − 1.

Throughout this section we assume that L ≤ r ≤ 2L. This assumption is made for

the sake of mathematical tractability. Indeed, a few seconds of reflection will convince

the reader that when2 L ≤ r ≤ 2L and (x(0), y(0)) = (x0, y0) the transfer time needed

to transfer a message between two adjacent segments is the same as T2L,r(x0, y0 +L), the

expected transfer time obtained in Section 2 for a segment of length 2L (with the given

initial conditions). This observation allows us to find at once the expected transfer time

between mobiles X1 and X2 for any initial conditions x1(0) and x2(0). We find

IE[T1 |x1(0) = x, x2(0) = y] = IE[T2L,r(x, y + L)]. (8)

The difficulty arises when trying to find the expected transfer time between mobiles Xi

and Xi+1 for i = 2, . . . , I − 1, since the position of Xi when the transfer between Xi−1

and Xi takes place is not uniform in [iL, (i + 1)L].

To overcome this difficulty, we assume that the Brownian motions X1, . . . ,XI are all

in steady-state at time t = 0. This assumption implies,3 in particular, that the position

of each mobile at time t = 0 is uniformly distributed over its segment (i.e. the pdf of

xi(0) is uniform over [0, L]). The same holds of course at any arbitrary time (i.e. the pdf

of xi(t) is uniform over [0, L] if t is arbitrary).

Another consequence of this assumption is that the position of mobile Xi+1 at time

Ti−1 (i.e. when Xi receives a message from Xi−1) is still uniformly distributed over [0, L].

This property will be used later on.

Proposition 4 below addresses the location of a mobile at the time when a relay occurs.

For later reference, we state the result in a general form. Consider two adjacent segment,

each of length L, with a single mobile in each segment (mobile X in the first segment

2 When L ≤ r ≤ 2L the reflecting boundaries conditions are at x(t) = 0 and at y(t) = 2L. For 0 ≤ r ≤ L
there are two additional reflecting boundary conditions at x(t) = L and at y(t) = L which lead to a
much more difficult function which we were not able to solve.

3 Hint: let p(x) be the stationary density probability that the mobile is in position x ∈ [0, L]. Solving
the diffusion equation D∂2p(x)/dx2 = 0 with the reflecting conditions dp(x)/dx = 0 for x ∈ {0, L}
and the normalizing condition

∫

L

0
p(x)dx = 1 yields p(x) = 1/L for x ∈ [0, L] – see e.g. [3, p. 223].



and Y in the second segment). Both mobiles move in their segment (with reflecting

boundaries) according to independent and identical Brownian motions with zero drift and

coefficient diffusion D. We assume that the Brownian motion representing the movement

of Y is in steady state at time t = 0. As usual, a relay will occur the first time when both

mobiles come within a distance r of each other, with L ≤ r ≤ 2L.

Proposition 4 (Pdf of location at relay epoch).

Fix L ≤ r ≤ 2L. Let q(y; x), y ∈ [0, L], be the pdf of the (relative) position of mobile Y

at the relay epoch, given that at time t = 0 the mobile X is at position x and the position

of mobile Y is uniform.

We have

q(y; x) =
1{y≤x+r−L} + f(x, y)1{y≥r−L, x<2L−r}

L
, (9)

where

f(x, y) =
4

π2

∞
∑

m≥1

∞
∑

n≥1
n6=m

n (am,n + bm,n + cm,n)

m2 + n2
sin

(

mπ(y − r + L)

2L − r

)

+
2

π(2L − r)

∞
∑

m≥1

dm + em

m
sin

(

mπ(y − r + L)

2L − r

)

,

and

am,n =
2m sin(nθ) − 2n sin(mθ)

m2 − n2
, bm,n =

sin
(

(m − n)π + nθ
)

+ sin
(

(m − n)π − mθ
)

m − n

cm,n = −
sin

(

(m + n)π − nθ
)

+ sin
(

(m + n)π − mθ
)

m + n
, dm = 2(2L − r − x) cos(mθ)

em =
2L − r

mπ

(

sin(mθ) − sin
(

2mπ − mθ
))

, θ =
πx

2L − r
. �

The proof of Proposition 4 is given in Appendix B. We are now in a position to compute

the expected transfer times IE[Ti] for i = 1, . . . , I − 1.

Define fi(x) (0 ≤ x ≤ L) as the pdf of xi(Ti−1) for i = 1, . . . , I − 1 (that is,

P (xi(Ti−1) < y) =
∫ y

0
fi(x) dx). Note that f1(x) = 1/L for x ∈ [0, L] thanks to the

assumption that mobile X1 is in steady-state at time t = 0 (recall that T0 = 0 by con-



vention). Let us first compute IE[T1]. We find

IE[T1] =
1

L2

∫ L

0

∫ L

0

IE [T1 |x1(0) = x, x2(0) = y] dx dy

=
1

L2

∫

{x+r<y+L}
T2L,r(x, y + L) dx dy, (10)

by using (8) and T2L,r(x, y + L) = 0 if x + r ≤ y + L. Similar to the derivation of (5) we

get

IE[T1] =
64 (2L − r)4

Dπ6L2
C0. (11)

We now compute IE[Ti] for i = 2, . . . , I − 1. We have

IE[Ti] =IE[Ti−1] +
1

L

∫ L

0

∫ L

0

IE [Ti − Ti−1 |xi(Ti−1) = x, xi+1(Ti−1) = y] fi(x) dx dy (12)

=IE[Ti−1] +
1

L

∫

{x+r<y+L}
T2L,r(x, y + L) fi(x) dx dy, (13)

where we have used equation (8) to derive (13). To derive (12) we have used the fact

that the position of mobile Xi+1 is uniformly distributed over its segment at time Ti−1

(i.e. when the relay between mobiles Xi−1 and Xi occurs), and that it is independent of

the position of mobile Xi−1 at time Ti−1. It remains to evaluate the functions fi(x) for

i = 2, . . . , I − 1. Differentiating in y on both sides of the identity

P (xi(Ti−1) < y) =

∫ L

0

P (xi(Ti−1) < y |xi−1(Ti−2) = x) fi−1(x) dx,

and then using Proposition 9, gives

fi(y) =

∫ L

0

q(y; x) fi−1(x) dx, 0 ≤ y ≤ L, (14)

for i = 2, . . . , I − 1. These results are summarized in the next proposition.



Proposition 5 (Expected transfer times).

The expected transfer times IE[Ti] for i = 1, . . . , I − 1, are given by equations (11)

and (13), where the functions fi(x), i = 2, . . . , I − 1, satisfy the recursion (14) with

f1(x) = 1/L. In particular,

IE[T1] =
64 (2L − r)4

Dπ6L2
C0.

�

4 Numerical results and discussion

The expected transfer time TL,r(x0, y0) is displayed in Figure 6 as a function of the initial

position x0 and y0 of the mobiles, for L = 30, r = 5 and D = 1/4 (recall that D

is the diffusion coefficient of the Brownian motions X and Y). The figure shows that

the expected transfer time grows (roughly) linearly as the initial distance between both

mobiles increases and neither of the mobiles is near the boundaries of the interval [0, L].

We used equation (14) to determine the mapping x → f2(x) for 0 ≤ x ≤ L, the pdf of the
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Figure 6. The mapping (x0, y0) →
TL,r(x0, y0) (expected transfer time be-
tween mobiles X and Y starting from x0

and y0, respectively, at t = 0. See equa-
tion (2)) for L = 30, r = 5, D = 1/4.
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location of mobile X2 when the relay with X1 occurs. This mapping is plotted in Figure

7 for different values of the starting position of mobile X1 (x1(0) = 5, 10, 15, 20) and for



L = 30, r = 35, D = 1/4. It is interesting to observe that f2(x) is uniform in [0, x1(0)].

This is easily explained by the fact that if X2 is located in [0, r − L] at time T1 then it

was necessarily located in this interval prior to time T1, since otherwise the relay would

have occurred before T1. Each peak corresponds to the most likely value y in [0, L] where

mobile X2 will be located at time T1. This value is given by y = x1(0) + r.

Figure 8 displays mappings x → fi(x) for i ∈ {2, 3, 100} (evaluated from (14) with

uniformly distributed initial locations). It is worth observing that these functions converge

very rapidly (already f3(x) and f100(x) are extremely close to each other).
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Figure 9 displays mappings r → IE[T100], r → 100× IE[T2 − T1] and r → 100× IE[T1].

This figure carries two important messages. First, it shows for different values of the

transmission range r, that the approximation IE[T100] ∼ 100×IE[T2−T1] is very close to the

exact result IE[T100] (derived from Proposition 5)), thereby suggesting the approximation

IE[Ti] ∼ i × IE[T2 − T1] (15)

for the expected time to relay a message from mobile X1 to mobile Xi+1. This approxi-

mation is based on the fact that the relay location convergences extremely rapidly and,

with the exception of the first relay, the relay locations, and therefore also the relay times,



of the consecutive relays are very similar. We have indeed checked that equations (15)

is accurate for small values of i as well as for large values (i.e. larger than 100). Second,

it shows that the approximation IE[T100] ∼ 100 × IE[T1] may not be accurate for small

transmission ranges, thereby ruling out the approximation IE[Ti] ∼ i × IE[T1]. This is so

because the latter approximation does not account for the fact that mobile Xi does not

start from a “uniform location” at time Ti−1 (as opposed to mobile X1 whose position is

uniformly distributed over [0, L] at time t = 0).

5 Extensions to the model

In this paper the message delay over a one dimensional network was analysed for mobiles

which move as Brownian motions in adjacent segments. The extension of this theory

to more than two mobiles per segment, or with leakage from one domain to the next,

does not seem to be mathematically tractable. The reason for this is the following. If

there are N mobiles in a segment then their positions needs to be mapped to a single

N -dimensional Brownian motion. So far no problem. The model starts becoming more

complex though when one has to take into account the positions of the N -dimensional

Brownian motion which correspond to two nodes being in each others transmission range.

For two one-dimensional Brownian motions this resulted in a diagonal line (see Figure

3). For three nodes this leads to three intersecting planes in a three-dimensional space.

On top of this one has to take into account the (reflecting) border conditions for each of

the mobiles. Although writing down these conditions is still feasible, the “real” problem

lies in keeping track of which nodes have or have not received a copy of the message, the

correlation between these nodes their positions, and finding an expression for the function

which corresponds to the expected transfer time and which satisfies all of the necessary

conditions.

A similar problem arises for N two-dimensional Brownian motions. In this case the

positions of the mobiles can be mapped to a single 2N -dimensional Brownian motion.

Since the area in which two nodes can communicate is given by a circle, it means that



with the method of images the corresponding boundary conditions are no longer in the

simple form of a square. Once again, finding a function which corresponds to the expected

message delay, while keeping track of which mobile have a copy of the message, does not

seem to be feasible.

As a side remark it is worth mentioning that the process which models the distance

between two two-dimensional Brownian motions in free space (i.e. with no boundaries)

is known as a Bessel process. For this process various results exist, and, just as for two

Brownian motions on an infinite line, the expected time until two Brownian motions in

free space come within each others range is infinite. In this paper a bounded region was

assumed to ensure a finite transfer time.

6 Concluding remarks

Besides message delay, the question of power control is also central in ad hoc networking.

Ongoing research is concerned with determining the minimum transmission range that

will ensure communication between mobiles (within a certain probability) before the

battery power runs out, and with introducing utility functions into the model.

With a certain amount of overlap to this work, in a forthcoming paper the situation is

considered where instead of mobiles moving as Brownian motions they move as Random

walkers over a discrete state space. This model also corresponds to messages being passed

around a sensor network. The results thus obtained have been verified through simulations

and are in correspondence to the results presented in this paper (in the limit for an infinite

number of states).

As soon as two nodes come within each others communication range there is the

important issue of how long their contact time is. If these times are too short then a

successfull transfer of a message can not be guaranteed. This issue is discussed in detail

for a number of different mobility models in [5].

As mentioned earlier, the problem with keeping track of which mobiles do or do

not have a copy of the message in combination with their positions greatly increases the



complexity and limits the extendibility of the theory presented in this paper. However, by

assuming that r << L and by working in (at least) two dimensions it has been found that

the number of copies in the network can be decoupled from the positions of the copies.

This greatly simplifies the analysis and has led to generic results and formulas which

hold under a variety of mobility models. These results will be published in a forthcoming

paper. Oddly enough, the theory developed there can not be used for the analysis of

one-dimensional mobility models and hence there remains a need to study the one- and

the two-dimensional settings separately.

Acknowledgments

This work was partially supported by the EURO NGI network of excellence. The authors

would also like to thank Marwan Krunz for stimulating discussions at the beginning of

this work.

References

1. N. Bansal and Z. Liu. Capacity, delay and mobility in wireless ad-hoc networks. In Proc. of IEEE Infocom
Conf., San Francisco, March-April 2003.

2. C. Bettstetter, G. Resta, and P. Santi. The node distribution of the random waypoint mobility model for
wireless ad hoc networks. IEEE Transactions on Mobile Computing, 2(3), July-September 2003.

3. D. Cox and H. Miller. The Theory of Stochastic Processes. Chapman & Hall, London, UK, 1965.
4. I. Gradshteyn and I. Ryzhik. Tables of Integrals, Series, and Products. Academic Press, Inc. (London) Ltd.,

fourth edition, 1983.
5. R. Groenevelt. Stochastic Models for Mobile Ad Hoc Networks. PhD thesis, INRIA, Sophia Antipolis, France,

April 2005.
6. R. Groenevelt, E. Altman, and P. Nain. Relaying in mobile ad hoc networks. In Proc. of Workshop on

Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt’04), UK, March 2004.

7. M. Grossglauser and D. Tse. Mobility increases the capacity of ad-hoc wireless networks. ACM/IEEE
Transactions in Networking, 10(4):477–486, August 2002.

8. D. Nain, N. Petigara, and H. Bakakrishnan. Integrated routing and storage for messaging applications in
mobile ad hoc networks. In Proc. of Workshop on Modeling and Optimization in Mobile, Ad Hoc and Wireless
Networks (WiOpt’03), Sophia Antipolis, France, March 2003. To appear in MONET.

9. S. Redner. A Guide to First-Passage Processes. Cambridge University Press, 2001.
10. G. Sharma and R. R. Mazumdar. Delay and capacity trade-offs for wireless ad hoc networks with random

mobility. Submitted for publication, October 2003.
11. T. Small and Z. Haas. The shared wireless infostation model - a new ad hoc networking paradigm (or where

there is a whale, there is a way). In Proc. of ACM International Symposium on Mobile Ad Hoc Networking
and Computing (Mobihoc), Annapolis, Maryland, USA, June 2003.

12. V. Syrotiuk and C. Colbourn. Routing in mobile aerial networks. In Proc. of Workshop on Modeling and
Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt’03), Sophia Antipolis, France, March 2003.

13. G. Weiss. Aspects and Applications of the Random Walk. Random Materials and Processes. Elsevier Science
B.V, North Holland, Amsterdam, The Netherlands, 1994.

14. J. Yoon, M. Liu, and B. Noble. Random waypoint considered harmful. In Proc. of IEEE Infocom Conf., San
Francisco, March-April 2003.



Appendix A - Proof of Proposition 2

The density probability q(x, t; u0) that the Brownian motion {u(t), t ≥ 0} is in position

x ∈ (0, R) at time t, given that u(0) = u0 and that the Brownian motion has not been

absorbed up to time t, is [9, p. 255, formula (8.2.1)] [13, page 177]

w(x, t; u0) =
2

R

∑

n≥1

e−(nπ/R)2Dt sin
(nπx

R

)

sin
(nπu0

R

)

.

Since {u(t), t ≥ 0} and {v(t), t ≥ 0} are independent and identical Brownian motions,

we deduce from the above that the density probability p(x, y, t; u0, v0) that the two-

dimensional Brownian motion Z is in position (x, y) at time t, without having hit one of

the sides of the squares up to time t, is given by

p(x, y, t; u0, v0) = w(x, t; u0) w(y, t; v0). 0 < x, y < R. (16)

Conditioned on z(0) = (u0, v0), the probability S(t; u0, v0) = P (τR > t) that the process

has not hit the boundaries at time t (often called the survival probability [9]) is given by

S(t; u0, v0) =

∫ R

0

∫ R

0

p(x, y, t; u0, v0)dxdy.

Therefore,

S(t; u0, v0) =

∫ R

0

w(x, t; u0)dx

∫ R

0

w(y, t; v0)dy

=
4

R2

∑

m≥1

e−(mπ/R)2Dt sin
(mπu0

R

)

∫ R

0

sin
(mπx

R

)

dx ×

∑

n≥1

e−(nπ/R)2Dt sin
(nπv0

R

)

∫ R

0

sin
(nπy

R

)

dy (17)

=
16

π2

∑

m≥1
m odd

∑

m≥1
n odd

sin
(

mπu0

R

)

sin
(

nπv0

R

)

mn
e−

π
2

R2
(m2+n2)Dt,

where the uniform convergence of the series w(x, t; ·) in x ∈ [0,∞) (because |w(x, t; ·)| ≤

1/(1 − exp(−(π/R)2Dt))) allows one to interchange integral and summation signs in



equation (17). Note that, as expected, S(0; u0, v0) = 1 since
∑

i≥1 sin((2i−1)x)/(2i−1) =

π/4 for all x [4, Formula 1.442.1].

Finally,

τR(u0, v0) =

∫ ∞

0

S(t; u0, v0) dt

=
16

π2

∫ ∞

0

∑

m≥1
m odd

∑

m≥1
n odd

sin
(

mπu0

R

)

sin
(

nπv0

R

)

mn
e−

π
2

R2
(m2+n2)Dt dt (18)

=
16

π2

∑

m≥1
m odd

∑

m≥1
n odd

sin
(

mπu0

R

)

sin
(

nπv0

R

)

mn

∫ ∞

0

e−
π
2

R2
(m2+n2)Dtdt (19)

=
16R2

Dπ4

∞
∑

m≥1
m odd

∞
∑

n≥1
n odd

sin
(

mπu0

R

)

sin
(

nπv0

R

)

mn(m2 + n2)
,

where we have used the property that the series S(t; ·, ·) is uniformly convergent in [0,∞)

(since S(t; ·, ·) ≤ 1 for all t ≥ 0 by definition of S(t; ·, ·)) to interchange the summation

and the integral signs in (18) to give (19). This concludes the proof.

Appendix B - Proof of Proposition 4

Let x(t) and y(t) be the relative positions at time t of mobiles X and Y in [0, L] and

[L, 2L], respectively. Let T the first time when x(t) + r ≥ y(t) + L. Observe that T = 0

if x(0) + r ≥ y(0) + L. We have

P (y(T ) < y | x(0) = x0) =
1

L

∫ L

0

P (y(T ) < y |x(0) = x0, y(0) = y0) dy0

=
1

L

∫ L

0

1{x0+r≥L+y0}1{y>y0} dy0

+
1

L

∫ L

0

1{x0+r<L+y0,y≥r−L}P (y(T ) < y |x(0) = x0, y(0) = y0) dy0

=
1

L
min(x0 + r − L, y)

+
1

L
1{y≥r−L,x0<2L−r}

∫ L

x0+r−L

P (y(T ) < y |x(0) = x0, y(0) = y0) dy0,

where the indicator function 1{y≥r−L} in the second integral in the second equality ac-

counts for the fact that if the transfer does not take place at t = 0 (under the condition



x0 + r < y + L then necessarily T > 0) then mobile Y can not be located in [L,L − r)

at time T as otherwise the relay would have occurred before time T . Differentiating both

sides of the above relation with regards to y gives

q(y; x0) =
1

L
1{y≤x0+r−L} +

1

L
1{y≥r−L,x0<2L−r}

∫ L

x0+r−L

g(y; x0, y0) dy0, (20)

with g(y; x0, y0) := (∂/∂y)P (y(T ) < y |x(0) = x0, y(0) = y0). It remains to evaluate

g(y; x0, y0). To this end, we will use again the method of images (see proof of Proposition

1).

Consider a square of size R by R, with R =
√

2(2L− r), delimited by the (absorbing)

boundaries x′ = 0, x′ = R, y′ = 0 and y′ = R. Starting from position (x′
0, y

′
0) at time

t = 0, the pdf p(x′, y′, t; x′
0, y

′
0) of the location of a two-dimensional Brownian motion at

time t, given that the mobile has not been absorbed up to time t, is given by (see eq.(16))

p(x′, y′, t; x′
0, y

′
0) =

4

R2

∑

n≥1

∑

n≥1

e−(m2+n2)(π/R)2Dt×

sin

(

mπx′

R

)

sin

(

nπy′

R

)

sin

(

mπx′
0

R

)

sin

(

nπy′
0

R

)

. (21)

This expression will be used later on to derive the pdf of the location where the Brownian

motion hits the side of the square for the first time.

Let ξ(x′, y′; x′
0, y

′
0) (0 ≤ x′, y′, x′

0, y
′
0 ≤ R), be the pdf of the absorption occurring at

point (x′, y′). Since we have applied the method of images we find that g(y; x0, y0) is the

sum of four of these components. Namely, with x′ =
√

2(y+L−r), it is the sum of the

densities of hitting the side of the square R × R at the points (x′, 0), (0, x′), (R − x′, R),

and (R,R − x′). With x′
0 = (y0+x0+L−r)/

√
2 and y′

0 = (y0−x0+L−r)/
√

2 this gives

g(y; x0, y0) =ξ
(

x′, 0; x′
0, y

′
0

)

+ ξ
(

0, x′; x′
0, y

′
0

)

+ ξ
(

R−x′, R; x′
0, y

′
0

)

+ ξ
(

R,R−x′; x′
0, y

′
0

)

.

Onward calculations can be simplified slightly by making use of symmetry arguments.

Continuous rotation of the square by 90o means that each of the terms can be replaced



by the density of the probability of hitting the side of the square at (x′, 0) while starting

from, respectively, (x′
0, y

′
0), (y′

0, x
′
0), (R − x′

0, R − y′
0), or (R − y′

0, R − x′
0). This gives

g(y; x0, y0) =ξ (x′, 0; x′
0, y

′
0) + ξ (x′, 0; y′

0, x
′
0)

+ ξ (x′, 0; R−x′
0, R−y′

0) + ξ (x′, 0; R−y′
0, R−x′

0) . (22)

Note that although ξ(x′, 0; ·, ·) no longer contains y′, it still depends on y, x0, and y0

through x′ =
√

2(y+L−r), x′
0 = (y0+x0+L−r)/

√
2, and y′

0 = (y0−x0+L−r)/
√

2. It

remains to solve ξ (x′, 0; x′
0, y

′
0) for any set of initial conditions (x′

0, y
′
0). We shall do this

through the help of the first-passage probability of the point (x′, 0).

If j(x′, t) is the pdf of the first-passage probability of hitting the absorbing boundary

of the square for the first time in the point (x′, 0) at time t, then naturally

ξ(x′, 0; x′
0, y

′
0) =

∫ ∞

0

j(x′, t)dt, (23)

since it is the probability density of hitting the boundary for the first time in (x′, 0) over

all time.

It is known [9, p. 25, p. 45] that j(x′, t) is equal to the flux going out from the point

(x′, 0), i.e.

j(x′, t) = D
∂p(x′, y′, t; x′

0, y
′
0)

∂y′ |y′=0,

with p(x′, y′, t; x′
0, y

′
0) the pdf of the location of the Brownian motion at time t given by

equation (21). Combining this with (23) gives

ξ(x′, 0; x′
0, y

′
0) =D

∫ ∞

0

∂p(x′, y′, t; x′
0, y

′
0)

∂y′ |y′=0 dt

=
4

Rπ

∑

n≥1

∑

n≥1

n

m2 + n2
sin

(

mπx′

R

)

sin

(

mπx′
0

R

)

sin

(

nπy′
0

R

)

. (24)

Finally, plugging (22) and (24) into (20) yields (9) after some tedious algebra.


