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Abstract

A stochastic model is introduced that accurately models the message delay in mo-
bile ad hoc networks where nodes relay messages and the networks are sparsely
populated. The model has only two input parameters: the number of nodes and the
parameter of an exponential distribution which describes the time until two random
mobiles come within communication range of one another. Closed-form expressions
are obtained for the Laplace-Stieltjes transform of the message delay, defined as the
time needed to transfer a message between a source and a destination. From this
we derive both a closed-form expression and an asymptotic approximation (as a
function of the number of nodes) of the expected message delay. As an additional
result, the probability distribution function is obtained for the number of copies of
the message at the time the message is delivered. These calculations are carried out
for two protocols: the two-hop multicopy and the unrestricted multicopy protocols.
It is shown that despite its simplicity, the model accurately predicts the message de-
lay for both relay strategies for a number of mobility models (the random waypoint,
random direction and the random walker mobility models).

Key words: Mobile ad hoc network; Routing protocol; Absorbing Markov chain;
Mobility model; Stochastic process; Message Delay

1 Introduction

In mobile ad hoc networks (MANET), a mobile (or simply a node) can only
send data to another node if both nodes are within transmission range of one
another or in contact. Two nodes are within transmission range of one another
if the distance between them does not exceed r.
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The fact that two nodes are in contact is of course not enough to ensure the
success of a transmission, since many phenomena may occur during the trans-
mission and cause it to fail (interference, physical obstacles, power problems,
etc.). Message relaying is a technique that reduces message latency by using
intermediary nodes to forward the message.

Routing protocols using relay nodes [9,10,17] have been proposed that increase
the message delivery ratio in mobile ad hoc networks. These protocols operate
on a store-carry-forward mode to take advantage of node mobility to improve
node connectivity, and ultimately the message throughput. When information
is available (node movement, node position, etc.) these protocols may use it
in a static [17] or in a dynamic [9] way. The concept of relay nodes can also
be used when no information on the nodes is available [10].

Evaluating the performance of relay protocols (message delivery ratio, message
latency, throughput, etc.) is a difficult task due to the inherent complexity of
mobile ad hoc networks, particularly the random nature of both the movement
of the nodes and of the demand (traffic). The performance of mobile ad hoc
networks is in general studied via lengthy and complex simulations, for a
limited number of mobility models, including the random waypoint mobility
model [3] or the random direction mobility model [1,8].

In this paper we introduce a simple stochastic model to evaluate the perfor-
mance of relay protocols for MANET. The model is generic and has only two
input parameters: the number of nodes in the network and the intensity (λ)
of some identical and independent Poisson processes. In particular, the model
does not require knowledge of the stationary distribution of the location of
the nodes as input.

These processes model instances, called meeting times, at which any pair of
nodes come within transmission range of one another. Transmissions between
two nodes can only take place at meeting times and are assumed to be instan-
taneous. The latter assumption models the situation where the transmission
time of a message is very small with respect to the inter meeting times. There-
fore, the random nature of a MANET is captured in our model through a finite
number of these independent and homogeneous Poisson processes.

The selection of the intensity λ will be discussed in Sections 3 and 4.

The model is used to characterize the message delay between two arbitrary
nodes—hereafter called the source node and the destination node—for two
relay protocols and for three mobility models.

The two relay protocols are the two-hop multicopy and the unrestricted mul-
ticopy protocol. In the two-hop multicopy protocol the source node copies the
message to all the nodes it meets along its route, including of course the des-
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tination node. Any node which has received a duplicate copy of the message
from the source node may only forward it to the destination node. Note that
this is different from the two-hop relay protocol proposed in [7]: there a packet
is relayed to another node (instead of being copied).

In the unrestricted multicopy protocol the source node copies the message
to all the nodes it meets (as in the two-hop multicopy protocol), but in this
protocol any node that carries the message may in turn copy the message to
all the nodes it encounters, along its trajectory.

The three mobility models that we will consider in this paper are the ran-
dom waypoint, the random direction, and the two-dimensional random walker
mobility model. All three models and their mathematical properties will be
described in Section 3.1.

The characterization of the message delay in MANET has received some at-
tention, although explicit expressions are seldom obtained for two-dimensional
mobility models. In [14] it is shown that, under the two-hop relay protocol,
the expected message delay is of the order nTp(n) for the random waypoint
mobility model on a sphere (where n is the number of nodes per unit area
and Tp(n) is the transmission time of a message). With nodes moving as inde-
pendent Brownian motions on a sphere, it is shown in [15] that the expected
message delay is of the order log2(n)/σ2, where σ2 is the variance parameter of
the Brownian motion. In [6] the expected message delay under the unrestricted
multicopy protocol is computed for a unidimensional network topology, where
the nodes move in adjacent segments according to independent and reflected
Brownian motions.

The paper is organized as follows: the stochastic model is introduced in Section
2.1, then we compute in Section 2.2 the Laplace-Stieltjes Transform (LST) of
the message delay (Proposition 1). In this proposition, we also obtain the
distribution of the number of copies of the message at the time the message is
delivered to the destination node. In Proposition 2 we calculate the expected
message delay in closed-form and also find an asymptotic for a large number
of nodes. These calculations are done for the two relay protocols.

In Section 3, the expected message delay and the distribution of the number of
copies of the message found in Section 2 are compared to results obtained by
simulations. The simulations have been carried out for each of the six combina-
tions of the two relay protocols and the three mobility models. The simulation
results are very close to the analytical results. We observed discrepancies only
when the node transmission range is large with respect to the size of the area
in which the nodes move. In addition, an explicit expression is given for the
parameter λ for the random waypoint and random direction mobility models,
and it is shown that it hebaves as a linear function of the transmission range.
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The model assumptions have been validated in Section 3 in the absence of
interference (a situation that will typically occur when the node density is
small and the communication radius of the nodes is small with respect to the
area in which the nodes move). One way to incorporate interference into our
model is to thin the meeting time sequences: with some probability p (resp. 1−
p) a transmission occurring at a meeting time will be a success (resp. failure).
Due to the fact that a thinned Poisson process is again a Poisson process, it is
enough to replace λ by λp, with p the probability that a communication fails
due to interferences. We will not pursue the derivation of the value of p.

On the other hand, we may also argue that the communication radius of the
nodes must be small enough so that interferences remain at an acceptable
level. It has been shown in [7] that the transmission range of the nodes should
be of the order 1/

√
N for the two-hop relay protocol, in order to maintain a

constant capacity per node (with N the number of nodes per unit area). In
Section 4 it will be shown how our model can be used to compute the expected
message delay for the two relay protocols considered in this paper when the
transmission range is a decreasing function of N .

A word on the notation: given a function g(N), we write f(N) = O(g(N))
if |f(N)/g(N)| is bounded from above as N → ∞ and f(N) = o(g(N)) if
f(N)/g(N) → 0 as N →∞.

2 The Stochastic Model

We consider a network with N + 1 identical mobile nodes. There is a single
message to be delivered by a source node to a destination node. Intermediary
nodes can be used as relay nodes. The goal is to determine the distribution of
the message delay and the distribution of the number of copies of the message
at the time the message is delivered to the destination node.

We first introduce the model; then we use it in Section 2.2 to evaluate the per-
formance of the two-hop multicopy and the unrestricted multicopy protocols.

2.1 Definition of the Model

An analytical model that would carefully take into account the main features
of a MANET (transmission range, mobility pattern, interferences, fading, etc.)
would be mathematically intractable. Instead, we propose a model where the
impact of these features are captured through a single parameter λ.

Let 0 ≤ ti,j(1) < ti,j(2) < · · · be the successive meeting times between nodes
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i and j (i 6= j). Define τi,j(n) := ti,j(n + 1) − ti,j(n), the n-th inter-meeting
time between nodes i and j.

Transmissions between two nodes may only take place at meeting times and
are assumed to be instantaneous. The latter assumption corresponds to the
situation where the transmission time of a message between two nodes is neg-
ligible with respect to the time it takes the two nodes to meet one another
(this is the case when the transmission radius is small with respect to the size
of the area).

We assume that if a transmission takes place between node i and j (at some
meeting time ti,j(n)), then it will be successful. Assume that node i carries the
message just before time ti,j(n). Under the two-hop multicopy protocol node
i will transmit (a copy of) the message to node j at time ti,j(n) if i is the
source node or if j is the destination node. Under the unrestricted multicopy
protocol node i will always transmit the message to node j at time ti,j(n).

Throughout the paper the following assumption will be made:

(A) the processes {ti,j(n), n ≥ 1}, 1 ≤ i, j ≤ N +1, i 6= j, are mutually indepen-
dent and homogeneous Poisson processes with rate 1 λ > 0. Equivalently
stated, the random variables (rvs) {τi,j(n)}i,j,n are mutually independent
and exponentially distributed with mean 1/λ.

We introduce:

• T2 (resp. TU), the message delay under the two-hop (resp. unrestricted)
multicopy protocol, defined as the time needed to send the message (or a
copy of the message) from the source to the destination;

• N2 ∈ {1, 2, . . . , N} (resp NU ∈ {1, 2, . . . , N}), the number of duplicate
copies of the message in the network (excluding the original message but
including the message at the destination node) at the time the message is
delivered to the destination node.

For θ ≥ 0, let T ?
2 (θ) := E[e−θT2 ] and T ?

U(θ) := E[e−θTU ] be the LST of T2 and
TU , respectively.

2.2 Performance of Relay Protocols

Proposition 1 gives, for each relay protocol, the LST of the message delay and
the distribution of the number of copies.

1 Without restrictions we can let λ depend on the number of nodes in the network.
This is discussed in Section 4.
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Proposition 1 (LST of message delay)

Under the two-hop multicopy protocol

T ?
2 (θ) =

N
∑

i=1

i
(N − 1)!

(N −i)!

(

λ

λN + θ

)i

(1)

and

P (N2 = i) =
i

N i

(N − 1)!

(N −i)!
, i = 1, . . . , N. (2)

Under the unrestricted multicopy protocol

T ?
U(θ) =

1

N

N
∑

i=1

i
∏

j=1

λj(N + 1 − j)

λj(N + 1 − j) + θ
(3)

and

P (NU = i) =
1

N
, i = 1, . . . , N, (4)

that is, the number of copies is uniformly distributed over {1, . . . , N}. �

Proof. For both the two-hop and the unrestricted multicopy protocols the
proof is based on modeling the number of copies in the network as an absorbing
finite-state Markov chain. The transition rates of these Markov chains will
differ for each protocol.

For each protocol the Markov chain takes its values in {1, 2, . . . , N + 1}. The
Markov chain is in state i = 1, 2, . . . , N when there are i copies of the mes-
sage in the network including the original message, and it is in state N + 1
when the message has been delivered to the destination node. Note that states
1, 2, . . . , N are transient states and N + 1 is an absorbing state.

We provide a separate proof for equations (1)-(2) and (3)-(4).

Proof of (1) and (2):

�������
�
���
�
���
�
���
�

1 2 3
3λ 2λ λ

2λλ 3λ

(Ν−2)λ (Ν−3)λ

(Ν−2)λ

(Ν−1)λ
N

(Ν−1)λ

N−1N−2

Νλ

A

Fig. 1. Two-hop multicopy protocol: transition diagram of the Markov chain for the
number of copies.

The transition diagram of the Markov chain corresponding to the two-hop
multicopy protocol is given in Figure 1. Recall that under the two-hop multi-
copy protocol only the source node distributes copies of the message to nodes
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that come within its transmission range. Therefore, when there are i copies in
the network, then either a new copy is sent to the N − i nodes which do not
have a copy yet, which occurs at the rate λ(N − i) and triggers a transition
from i to i + 1, or one of these i copies reaches the destination node, which
occurs at the rate λi and triggers a transition from i to N + 1. This explains
the transition diagram in Figure 1.

The transition from i to N +1 occurs with the probability iλ/((N−i)λ+iλ) =
i/N , and the transition from i from i + 1 occurs with the complementary
probability (N − i))λ/((N − i)λ + iλ) = 1 − i/N .

The sojourn time Si in state i = 1, 2, . . . , N is exponentially distributed with
intensity λN (the sum of transition rates out of state i). Moreover S1, . . . , SN

are mutually independent random variables.

By conditioning on the state of the Markov chain just before its enters state
N + 1, or equivalently by conditioning on the number of duplicate copies N2

just after the message hits its destination, we have

T ?
2 (θ) =

N
∑

i=1

IE[e−θT2 |N2 = i]P (N2 = i) =
N
∑

i=1

IE[e−θ
∑i

j=1
Sj |N2 = i]P (N2 = i). (5)

As mentioned earlier, 1− j/N (resp. j/N) is the probability of jumping from
state j to state j + 1 (resp. N + 1). Therefore,

P (N2 = i) =
i

N

i−1
∏

j=1

(

1 − j

N

)

=
i

N i

(N − 1)!

(N −i)!
, (6)

which establishes (2).

When in state j = 1, 2, . . . , N , the Markov chain can either enter state j + 1
after a time Sj,1 that is exponentially distributed with intensity (N + 1− j)λ,
or enter state N + 1 after a time Sj,2, independent of Sj,1, and exponentially
distributed with intensity jλ. Observe that Sj = min{Sj,1, Sj,2}. Moreover

P [Sj,1<x|Sj,1 <Sj,2] =P [Sj,2<x|Sj,1>Sj,2] = P (Sj <x) = 1 − e−λNx (7)

as a consequence of the exponential distribution. Therefore,

IE[e−θ
∑i

j=1
Sj |N2 = i] =IE[e−θ(

∑i−1

j=1
Sj,1+Si,2)|Sk,1<Sk,2, k = j, . . . , i−1, Si,1>Si,2]

(8)

From (7), (8) and the fact that the rvs {Sj,k}j=1,...,N,k=1,2 are mutually inde-
pendent, we readily find

IE[e−θ
∑i

j=1
Sj |N2 = i] =

i
∏

j=1

IE[e−θSj ] =

(

λN

λN + θ

)i

. (9)
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Putting (5), (6) and (9) together yields

T ?
2 (θ) =

N
∑

i=1

i
(N − 1)!

(N − i)!

(

λ

λN + θ

)i

,

which proves (1).

Proof of (3) and (4):

�������
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�

1 2 3

2λλ 3λ

(Ν−1)λ 2(Ν−2)λ 3(Ν−3)λ
N−2 N

+1

Νλ(Ν−1)λ(Ν−2)λ

N−1
(Ν−1)λ(Ν−2)2λ(Ν−3)3λ

A

Fig. 2. Unrestricted multicopy protocol: transition diagram of the Markov chain for
the number of copies

The transition diagram of the Markov chain associated with the unrestricted
multicopy protocol is displayed in Figure 2. Under this protocol, each node
which has a copy of the message is allowed to distribute it to a node which
does not have a copy and which comes within its transmission range. Therefore,
when there are i copies of the message in the network a new copy is created at
the rate λi(N − i) (transition from i to i+1) and one of these i copies reaches
the destination node at the rate λi (transition from i to N + 1), as depicted
on Figure 2.

The chain jumps from state i to state i+1 with probability (N − i)/(N +1− i)
and it jumps from state i to state N + 1 with probability 1/(N + 1 − i). The
sojourn time S̃i in state i is exponentially distributed with intensity λi(N +
1 − i) (obtained as the sum of the transition rates going out state i).

By conditioning on the number of duplicate copies NU , we have

T ?
U(θ) =

N
∑

i=1

IE[e−θ
∑i

j=1
S̃j |NU = i]P (NU = i) (10)

with

P (NU = i) =
1

N + 1 − i

i−1
∏

j=1

N − j

N + 1 − j
=

1

N
, (11)

which proves (4). Similarly to (9) we have

IE[e−θ
∑i

j=1
S̃j |NU = i] =

i
∏

j=1

IE[e−θS̃j ] =
i
∏

j=1

λj(N + 1 − j)

λj(N + 1 − j) + θ
,

which, together with equations (12) and (13), proves (3).
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Proposition 2 gives an explicit expression, and an asymptotic for large N , for
the expected message delay for each relay protocol. This result shows that for
each protocol the expected message delay is a linear function of the expected
inter-meeting time 1/λ, and changing the value λ does not any impact except
for a time scaling.

Proposition 2 (Expected message delays)

Under the two-hop multicopy protocol, the expected message delay is given by

IE[T2] =
1

λN

N
∑

i=1

i2(N − 1)!

(N−i)! N i
=

1

λ

(
√

π

2N
+O

(

1

N

))

. (12)

Under the unrestricted multicopy protocol, the expected message delay is

IE[TU ] =
1

λN

N
∑

i=1

1

i
=

1

λN

(

log(N) + γ + O
(

1

N

))

, (13)

where γ ≈ 0.57721 is Euler’s constant. �

Proof. Since IE[T2] = − dT ?
2
(θ)

dθ

∣

∣

∣

θ=0
, IE[T2] can be derived at once from (1). For

sake of clarity the proof of the asymptotic expansion of (12) is forwarded to
the appendix.

Similarly, we find by differentiating (3) w.r.t. θ, and then by setting θ = 0,
that

IE[TU ] =
1

λN

N
∑

i=1

i
∑

j=1

1

j(N + 1 − j)
=

1

λN(N + 1)

N
∑

i=1

i
∑

j=1

(

1

j
+

1

N + 1 − j

)

=
1

λN(N + 1)

N
∑

j=1

N
∑

i=j

(

1

j
+

1

N + 1 − j

)

=
1

λN

N
∑

j=1

1

j
,

which is the first part of (13). This last summation is known as the harmonic

numbers. Its asymptotic expansion [13, p.186] is
∑N

i=1
1
i

= log(N)+γ+O
(

1
N

)

,

where γ is Euler’s constant. This gives the second part of (13) and concludes
the proof.

The second moments of the message delay can be found in [5, Section 3.2.2].
The next result gives the expected number of copies of the message at the
time the message is delivered.

Corollary 2.1 (Expected number of copies) The expected number of copies
under the two-hop multicopy protocol is given by (cf. (2) and (12))

IE[N2] =
1

N

N
∑

i=1

i2

N i

N !

(N −i)!
=

√

πN

2
+O(1). (14)
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Hence IE[N2] = λN IE[T2]. The expected number of copies under the unre-
stricted multicopy protocol is (cf. (4)) IE[NU ] = N+1

2
. �

The relative performance of the two-hop multicopy and unrestricted multicopy
protocols can be captured through the ratios IE[TU ]/IE[T2] and IE[NU ]/IE[N2]
given by (cf. Proposition 2 and Corollary 2.1)

IE[TU ]

IE[T2]
=

N
∑N

i=1
1
i

∑N
i=1

i2

N i
N !

(N−i)!

and
IE[NU ]

IE[N2]
=

N(N + 1)

2
∑N

i=1
i2

N i
N !

(N−i)!

,

respectively. Note that both ratios are independent of λ. By using the asymp-
totic expansions (12), (13) and (14), we see that for large N

IE[TU ]

IE[T2]
≈ log(N)√

N

√

2

π
and

IE[NU ]

IE[N2]
≈
√

N

2π
.

For instance, if N = 103 then IE[TU ]/IE[T2] ≈ 0.17 and IE[NU ]/IE[N2] ≈ 12.6.

3 Applications

This section is devoted to the application of the results in Section 2 to three
different mobility models. It is structured as follows: the mobility models are
presented in Section 3.1 and their simulation settings in Section 3.2. Through
both intuitive reasoning and simulations it is shown in Section 3.3 that assump-
tion (A) is reasonable when the transmission range is not too large relative
to the surface area. Based on this observation, estimates are obtained for the
meeting rate λ, for each mobility model and for various transmission ranges.
With the help of these estimates the accuracy of the model is demonstrated in
Sections 3.4 and 3.5, where the expected message delay and the distribution
of the number of copies are compared to simulation results.

3.1 Mobility Models

Although the results in Section 2 hold regardless of the dimension of the space
in which the nodes move, in the following we shall only apply them to three
standard two-dimensional mobility models: the random waypoint, the random
direction, and the random walker mobility model.

Random Waypoint Mobility Model
The random waypoint mobility model [3] is commonly used in the simulation
of mobile ad hoc networks. In the random waypoint mobility model each node
is assigned an initial location in a given area (typically a square) and travels at
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a constant speed S to a destination chosen uniformly in this area. The speed
S is chosen uniformly in (vmin, vmax), independently of the initial location
and destination. After reaching the destination, the node may pause for a
random amount of time after which a new destination and a new speed are
chosen, independently of all previous destinations, speeds, and pause times.
The stationary distributions of location and speed in the random waypoint
mobility model differ significantly from the uniform distribution. In particular,
it has been observed that the stationary distribution of the location of a node
is more concentrated near the center of the region in which the nodes move
[2]. Also, vmin needs to be strictly positive to ensure that the average speed
over time does not go to zero [16].

Random Direction Mobility model
In the random direction mobility model [1,8] each node is assigned an initial
direction θ, speed S ∈ [vmin, vmax] and a finite travel time τ . The node then
travels in the direction θ for a duration τ and at speed S. When the node travel
time has expired a new direction, speed and travel time are chosen at random
independently of all previous directions, speeds and travel times. When a node
reaches a boundary it is either reflected [1] or the area wraps around so that
the node reappears on the other side [1].

The stationary distributions of the location and direction have been shown
to be uniform [11] for arbitrary direction, speed and travel time distributions,
irrespective of the boundaries being reflecting or wrap around. This is in con-
trast with the random waypoint mobility model where nodes are more likely
to be concentrated near the center of the area. Another difference is that vmin

does not have to be strictly positive. The speed can be equal to zero since the
node maintains a certain speed only for a limited amount of time.

Random Walker Mobility Model
In the two-dimensional random walker mobility model each node moves as a
random walker on a two-dimensional lattice. The time is discrete and at each
time step each node has a probability of 1/4 of hopping to a position above,
below, to the left, or to the right of its current position. If the node is positioned
on a boundary, then instead of hopping off the lattice it hops back to the same
state. This movement can be seen as someone wandering at a constant speed
from intersection to intersection through a city, where all of the streets are
equally spaced and perpendicular to each other (Manhattan network). The
stationary distribution of the location of a two-dimensional random walker on
a square lattice is uniform over the area. This properties is a consequence of
the fact that a two-dimensional random walker can be constructed from two
independent one-dimensional random walkers, and that the stationary location
of a symmetric random walk in one dimension is uniform (take n → ∞ in
Formula (3.15) in [4, p. 357] to obtain the stationary distribution and then set
p = q = 1

2
).
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3.2 Simulation Setting

The numerical results presented hereafter are based on simulation programs
in which mobile nodes move in a square of size 4km×4km, without pausing.

As mentioned in [12] there are several pitfalls to avoid when simulating the ran-
dom waypoint mobility model. In this work we have used the implementation
of the random waypoint mobility model proposed in [12] (without pausing)
which consists of sampling the initial speeds and locations from their station-
ary distributions. Then, subsequent speeds and locations are sampled from
the uniform distribution.

Since the stationary distribution of the location of a node is uniform in both
the random direction mobility model and the random walker mobility model,
their implementation does not pose any difficulty.

For the random waypoint mobility model and the random direction mobility
model, a speed (in km/h) was chosen uniformly in [vmin, vmax] = [4, 10].

In the random direction mobility model, a node moves in a direction that is
uniformly distributed in [0, 2π), for an exponential amount of time (expressed
in hours) with mean 1/4, and at a speed that is uniformly distributed in [4, 10],
before the node chooses a new direction, travel time, and speed.

For the random walker mobility model we assume the streets are 80 meters
apart and the random walkers move at the speed of one block per minute (this
results in 512 = 2601 states and a constant speed of 4.8 km/h).

As mentioned earlier, we assume that there is no inference and that the trans-
mission of a message between two nodes (in contact) is instantaneous.

In order to apply the results in Section 2 we need, for each mobility model, to
check the validity of assumption (A) and to identify the parameter λ of the
exponential inter-meeting time distribution.

3.3 Validation of the Poisson Meeting Times

For each mobility model and for various communication radii, we have simu-
lated the movement of two nodes and have estimated the distribution of the
inter-meeting times (Section 3.3.1) and shown the independence of the pro-
cess through the autocorrelation function (Section 3.3.2). The results, based
on 100,000 observations, show that the Poisson assumption for the meeting
time sequences is valid for all three mobility models and for a large range of
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communication radii.

3.3.1 Inter-Meeting Time Distribution

Figure 3 displays, on a log-scale for the y axis, the complementary cumulative
distribution function (complementary cdf) of the inter-meeting time between
two nodes for each mobility model and for three different communication radii
(r = 50m, 100m, 250m).

For the random direction and the random waypoint mobility models, and for
each communication radius, we have also plotted the complementary cdf of
an exponential distribution (i.e. a straight line on a log-scale for the y axis)
with intensity (i.e. slope) λ. We observe an excellent agreement between the
estimated cdf (solid line) and the exponential cdf (dashed line) for the three
different communication radii. Estimates for the value of λ for these two models
can been derived and are given in Lemma 1. The proof—which confirms that
the meeting times can be modeled as a Poisson process—can be found in [5,
Chapter 4] and has been omitted here due to space constraints.

Lemma 1 (Estimates for λ) The parameter λ for the random direction (RD)
and the random waypoint (RW) mobility models are given by

λRD ≈2rIE[V ∗]

L2
, and λRW ≈ 2ωrIE[V ∗]

L2
. (15)

Here ω ≈ 1.3683 is a constant specific to the random waypoint model and
IE[V ∗] is the average relative speed between two nodes. In the special case
where v = vmin = vmax we have λRD ≈ 8rv

πL2 and λRW ≈ 8ωrv
πL2 . �

The average speed IE[V ∗] can be calculated numerically [5, Proposition 4.2.2].
For example, if [vmin, vmax] = [4, 10] km/hour, then IE[V∗] ≈ 9.2 km/hour
for the random direction and IE[V∗] ≈ 8.7 km/hour for the random waypoint
mobility model. The values of λ thus obtained are given in Figure 3.
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Fig. 3. Complementary cdf of the inter-meeting time of two nodes.

For the random walker mobility model the situation is more complicated: the
inter-meeting time is not exponential but there is an exponential tail which

13



rapidly emerges. The reason, we argue, is because random walkers have a
tendency to “hang around” the same region (resulting in many small inter-
meeting times). If, however, the two random walkers have wandered away
from one another, then we find an exponential distribution for the time until
they meet again. This explains why in [15] the first-meeting time (defined as
the time between a random moment and the moment when two nodes meet)
between two Brownian motions resembles an exponential distribution whereas
the inter-meeting time does not.

Because of the quick emergence of the exponential tail for the random walker
mobility, we have included it in our analysis to see how robust our model is. An
explicit expression for the exponential tail under the random walker mobility
model is, to the best of our knowledge, not known and it is therefore obtained
numerically as the complementary of the average first-meeting time obtained
across all simulations.

The fact that, for each mobility model, the cdf of the inter-meeting distribu-
tion is well-approximated by an exponential distribution, at least for small
to moderate transmission radii (with respect to the size of the area) finds
its roots in the various independence assumptions placed on each mobility
model. Indeed, nodes move independently of each other and future directions
and speeds (and therefore locations) of a node are independent of past direc-
tions and speeds of this node. If we pick two mobile nodes at random at some
stationary time, then there is a probability q that they will meet (in the sense
of being within transmission range of one another) before the next change of
direction of either node. At the next change of direction, because of the inde-
pendent assumptions recalled above, the process repeats itself and there is a
probability q that these nodes will meet before the next change of direction.
This yields a geometric distribution for the number of changes of direction
before both nodes meet. The exponential distribution pops up because the
number of changes of direction is “linearly” related to the time traveled before
the nodes meet.

3.3.2 Independence of Inter-Meeting Times

Let {τ(n)}n be the n-th inter-meeting times between two given nodes. To check
the assumption that the rvs {τ(n)}n are mutually independent, we have used
the following classical estimator for the autocorrelation function of {τ(n)}n

ρm(h) =
γm(h)

γ0(h)
, h ≥ 0,

where

γm(h) :=
1

m

m−h
∑

n=1

(

τ(n + h) − τ̂ (m)
) (

τ(n) − τ̂ (m)
)
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is an estimator of the autocovariance function, with τ̂ (m) = (1/m)
∑m

n=1 τ(n)
the sample mean for m observations. In particular, ρ0(h) = 1.

If the rvs {τ(n)}n are mutually independent then their autocorrelation func-
tion is equal to zero for all h ≥ 1.

The mapping h → ρm(h) corresponding to the random waypoint mobility
model is plotted in Figure 5 for m = 100, 000 and r = 0.25km. The autocor-
relation functions corresponding to other values of r (r = 0.05km, r = 0.1km)
and/or to the random direction mobility model and the random walker mobil-
ity model are not displayed since they are identical to the results in Figure 5.

Since ρm(h) is very close to zero for all h ≥ 1 we conclude that the assumption
that the inter-meeting times between two nodes are mutually independent rvs
is a reasonable assumption.

In conclusion, the results reported in Sections 3.3.1 and 3.3.2 validate the
assumption that the meeting time process between two given nodes is a Poisson
process for all three mobility models and for small to moderate communication
radii (with respect to the size of the area in which the nodes move).
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waypoint model with r = 0.25km.

3.4 Expected Message Delay

For the three mobility models introduced in Section 3.1 and for three commu-
nication radii (r = 0.05km, 0.1km, 0.25km), Figures 6-7 display the expected
message delays obtained both through simulations and by the analytical model
as a function of the number of nodes. Results for the two-hop (resp. unre-
stricted) multicopy protocol are given in Figure 6 (resp. Figure 7).

These results demonstrate the ability of the analytical model to predict the ex-
pected message delay under both the two-hop multicopy protocol and the unre-
stricted multicopy protocol for different mobility patterns, across any number
of nodes and communication radii.
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Fig. 6. Message delay versus number of nodes: the two-hop multicopy protocol.
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Fig. 7. Message delay versus number of nodes: the unrestricted multicopy protocol.

3.5 Distribution of the Number of Copies

Figures 8-10 compare the distribution of the number of copies at message de-
livery time obtained through simulations (represented by bars) and by the
analytical model (solid lines), under both relay protocols and for 40 nodes
(i.e. N = 39). Results for the two-hop multicopy protocol are displayed in
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Fig. 8. Distribution number of copies: the two-hop multicopy protocol under the
random waypoint model.
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Fig. 9. Distribution of the number of copies: the two-hop multicopy protocol under
the random walker model.
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Fig. 10. Distribution of the number of copies: the unrestricted multicopy protocol.

Figures 8-9 for the random waypoint and the random walker mobility models,
respectively (results for the random direction mobility models are identical to
that of the random waypoint mobility model and have not been displayed). We
observe that for all three mobility models the fit is quite good when r = 50m
and that it deteriorates as r increases (although the results are still accept-
able for r = 100m for the random waypoint mobility model and the random
direction mobility model).

Results for the unrestricted multicopy protocol are reported in Figure 10.
Recall that for this protocol the number of copies is uniformly distributed in
the analytical model, namely, P (NU = i) = 1/39 ≈ 0.0256 for all i = 1, . . . , 39
(see Proposition 1). Results are displayed for each mobility model, each for a
different transmission range. We can see that in all cases the distribution of
the number of copies is very close to the uniform distribution.

These results give a good indication that our model, despite its genericness,
is able to capture the main features of the interaction of the mobility models
and the relay protocols.

4 A Transmission Range Which Depends on the Number of Nodes

We have observed in Section 3 that, for the three mobility models considered
in this chapter, the inter-meeting time intensity (λ) is well approximated by
a linear function of the transmission range r. This approximation is valid as
long as r is not “too large” with respect to the size of the area in which the
nodes move. On the other hand, when the number of nodes increases r should
decrease to prevent interferences from becoming excessive. Putting these two
observations together yields λ = O(r(N)), where r(N), the transmission range
for a network with N nodes, is a decreasing function of N . Introducing this
behaviour of λ into Theorem 2 immediately gives the following:

Corollary 4.1 If λ is linearly dependent on the radius and the radius r(N)
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is dependent on the number of nodes, then for large N

IE[T2] =O
(

1√
N · r(N)

)

and IE[TU ] = O
(

log(N)

N · r(N)

)

. �

If we choose r(N) = O(1/
√

N) in order to keep interference at an acceptable
level (it is shown in [7] [14, Lemma 1] that r(N) = O(1/

√
N) achieves a

constant capacity per node with the two-hop relay protocol), then

IE[T2] =O(1) and IE[TU ] = O
(

log(N)√
N

)

.

Alternatively, one may wish to find the function r(N) so that the expected
message delay under the unrestricted multicopy protocol is O(1) as the number
of nodes becomes large. This is achieved when r(N) = O(log(N)/N) leading
to IE[T2] = O(

√
N/ log(N)).

Remark 1 Let TR be the message delay under the two-hop relay protocol.
Recall that in this protocol a message is relayed instead of copied [7] [14] [15].
Similar to the analysis conducted in Section 2, it can be shown that IE[TR] =
λ−1(1+1/N − 1/N 2) = λ−1(1+O(1/N)). Since λ = O(r(N)) for the random
waypoint model, and with the scaling r = O(1/

√
N), we find that the expected

message delay under the two-hop relay protocol is O(
√

N), just as was found
in [14] but for nodes moving on a sphere.2

5 Concluding Remarks

In this paper we have introduced a simple stochastic model with only two
parameters to characterize the delay incurred by a message in a mobile ad hoc
network. The LST of the message delay, and the distribution of the number of
copies of the message at the time the message is delivered to the destination
node, have been derived for two protocols: the two-hop and the unrestricted
multicopy protocol. These analytical results have been compared to simulation
results obtained for three different mobility models: the random waypoint, the
random direction and the random walker mobility models. For small to mod-
erate transmission radii (with respect to the size of the area), the analytical
results very closely match the simulation results.

2 The Brownian motion mobility model was studied in [15], whereas in this paper we
consider the random walker mobility model. To go from the latter movement to the
former care must be taken in terms of the limit and the metric under consideration
(expected delay).
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We believe that this generic model can be used to evaluate and compare the
performance of different routing protocols for MANET for a wide range of
mobility models.

Future research will focus on the message delivery within a certain timeframe,
the inclusion of queueing delays, non-homogeneous scenarios (nodes have a
different or a changing transmission range), the inclusion of interference and
transmission times, and the study of other mobility models (two-dimensional,
three-dimensional, or on a sphere).
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A Proof of the Asymptotic Expansion of Equation (12)

In this appendix it will be shown that (for large N)

N
∑

i=1

i2N !

(N − i)!N i
= N3/2

√

π

2
+ O(N). (A.1)

Proof. Define A(N) :=
∑N

i=1
i2N !

(N−i)!N i . If it were not for the presence of the

factor i2 in A(N), then this quantity would be the Ramanujan Q-distribution
[13, page 188], which is also known as the birthday function and often shows
up in the analysis of algorithms.

The derivation of the approximation (A.1) follows that of the Ramanujan
Q-distribution approximation [13, Proposition 4.8]. We now outline it.

Let i0 := bN3/5c. This implies that i20/N → ∞ as N → ∞ and i0 = o(N2/3).
We have

A(N) =
i0
∑

i=1

i2N !

(N − i)!N i
+ B(N),

with B(N) :=
∑N

i=i0+1
i2N !

(N−i)!N i .
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B(N) is an exponentially small function of N , in the sense that B(N) is
O(1/Na) for any a > 0. The proof of this result goes as follows. It is shown
in the proof of Proposition 4.8 in [13] that C(N) :=

∑N
i=i0+1

N !
(N−i)!N i is an ex-

ponentially small quantity. On the other hand, B(N) ≤ N 2C(N), from which
we conclude that B(N) is exponentially small since the product of an expo-
nentially small quantity and any polynomial in N remains an exponentially
small quantity [13, Exercise 4.10, p. 158].

Therefore, A(N) =
∑i0

i=1
i2N !

(N−i)!N i + ∆(N), where ∆(N) represents a function
which is exponentially small.

For any integer i that is o(N 2/3) it is shown in [13, Proposition 4.4] that

N !

(N − i)!N i
=e−i2/(2N)

(

1 + O
(

i

N

)

+ O
(

i3

N2

)

)

. (A.2)

Since i = o(N2/3) whenever 1 ≤ i ≤ i0, we deduce from (A.2) that

A(N) =
i0
∑

i=1

i2e−i2/(2N)

(

1 + O
(

i

N

)

+ O
(

i3

N2

)

)

+ ∆(N).

By applying the Euler-MacLaurin summation [13, Proposition 4.2] to the func-
tions x3e−x2/2 and x5e−x2/2 we find (see [13, Exercice 4.9] for similar results)

i0
∑

i=1

i2e−i2/(2N)O
(

i

N

)

= O(N) and
i0
∑

i=1

i2e−i2/(2N)O
(

i3

N2

)

= O(N),

respectively. Hence, A(N) =
∑i0

i=1 i2e−i2/(2N)+O(N). By noting that i2e−i2/(2N)

is exponentially small for i > i0, we can add all terms for i > i0 into the sum-
mation to give

A(N) =
∑

i≥1

i2e−i2/(2N) + O(N). (A.3)

The above summation is the summation of the function Nx2e−x2/2 at regularly
spaced points with step 1/

√
N . Another application of the Euler-MacLaurin

formula [13, Proposition 4.2] yields

∑

i≥1

i2e−i2/(2N) =N3/2
∫ ∞

0
x2e−x2/2dx + O(N) = N 3/2

√

π

2
+ O(N), (A.4)

so that A(N) = N 3/2
√

π
2

+ O(N) from (A.3) and (A.4), which concludes the

proof of the lemma.
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