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Abstract. When designing an accurate automated guidance
system for vehicles, a major problem is sliding and pseudo-
sliding effects. This is especially the case in agricultural
applications, where five-centimetre accuracy with respect to
the desired trajectory is required, although the vehicles are
moving on slippery ground.

It has been established that RTK GPS was a very suit-
able sensor to achieve automated guidance with such high
precision: several control laws have been designed for vehi-
cles equipped with this sensor, and provide the expected
guidance accuracy as long as the vehicles do not slide.
In previous work, further control developments have been
proposed to take sliding into account: guidance accuracy
in slippery environments has been shown to be preserved,
except transiently at the beginning/end of curves. In this
paper, the design of this control law is first recalled and
discussed. A Model Predictive Control method is then ap-
plied in order to preserve accuracy of guidance even dur-
ing these curvature transitions. Finally, the overall control
scheme is implemented, and improvements with respect to
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1. Introduction

Environmental problems are steadily gaining importance in
the political stakes of industrialized countries, especially
with respect to agricultural activities. In particular, one way
to be more environmentally friendly is to design automatic
systems for farm vehicle guidance. Such developments can
increase the accuracy of a task during long periods of work,
and hence reduce negative impacts on the environment linked
to agronomic activities. For example, when using an au-
tomated guidance device, spraying can be achieved more
accurately, so that areas with too much fertilizer can be re-
duced. Pollution and the time needed to perform farming
tasks are then both reduced. Furthermore, such automation
can improve the farmer’s comfort, as the tracking task is
performed by the vehicle itself. The driver can then focus on
the work done by the implement fitted and stay concentrated
all day long. This positive aspect, added to the capacity of
guidance laws developed to detect cases which could be dan-
gerous, increases security with respect to farm applications.
Environmental considerations, benefits to yield and security
improvement generate a lot of interest both from farmers
and manufacturers. For this reason, the latter have developed
various solutions for automated path following during the
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last few years. As an example, research work described in
this paper is conducted in partnership with the agricultural
machine manufacturer CLAAS.

Numerous systems have already been marketed for differ-
ent applications, using various technologies and supplying
more or less accuracy. Some of them use relative sensors
such as the device dedicated to harvesting machines mar-
keted by manufacturer CLAAS, relying on laser technology
(see (Brunnert, 2003)), or such as research work carried out
at Cemagref using artificial vision (see (Debain et al., 2000)).
However, most current developments focus on Global Posi-
tioning Systems (GPS), whose accuracy is becoming better
and better. Centimetre accuracy can now be achieved with
the Real-Time Kinematic version (RTK-GPS). Early devices
marketed have used GPS in addition to other sensors (such
as the Fiber Optic Gyroscope in Nagasaka et al. (1997), vi-
sion in Reid and Niebuhr (2001) or several GPS antennas
in O’Connor et al. (1996)). The latest solutions are based
on the use of a single GPS or RTK-GPS sensor (e.g. Trim-
ble systems or the Outback guidance system, which pro-
poses a complete panel of GPS guidance solutions). How-
ever, acceptable accuracy with respect to agricultural tasks
can be attained only when following straight lines on level
ground.

Previous research work on RTK-GPS based guidance sys-
tems (detailed in Thuilot et al. (2002) and in Cordesses
(2001)) has investigated not only straight line but also curved
path tracking and has proposed control solutions offering
very good accuracy (about 10 cm) whatever the path to
be followed. Unfortunately, this accuracy is seriously im-
paired as soon as the vehicles slide, which inevitably oc-
curs during agricultural tasks (curved path tracking on slip-
pery fields or guidance on sloping ones). There are currently
a few programmes devoted to vehicle control in the pres-
ence of sliding (see e.g. (Ellouze and Andréa-Novel, 2000)).
However, they are always dedicated to steering road ve-
hicles outside the sliding domain (their aim is to ensure
that, as far as possible, vehicles satisfy conditions of pure
rolling without sliding). Moreover, they use dynamic mod-
els whose parameters could hardly be estimated on-line in
agricultural applications: complex and expensive measure-
ment devices would be required, and estimation of parame-
ters would be very sensitive to disturbances (such models are
indeed mainly dedicated to cars). Another field of research
which deals with the problem of sliding is localization. In
this case, detection of sliding is important to preserve good
estimation of the robot’s position, whatever its path may be.
Sliding has then to be integrated into the localization algo-
rithm as is done in Lindgren et al. (2002), for example).
However the approaches developed are specific to local-
ization and cannot be easily transposed to address control
problems.

In this paper, good estimation of vehicle position is avail-
able, relying on an RTK-GPS sensor. The occurrence of
sliding, and the effects associated with such a phenomenon,
have to be evaluated on-line so that they can be introduced
into the control laws to be designed, which can prevent ve-
hicles from making the lateral deviations generally observed
in the presence of sliding. In the first part, an extended kine-
matic model accounting for sliding effects is designed. It en-
ables the characterization of vehicle behaviour with respect
to our measurement system. A complete dynamic model,
such as that used in Ellouze and Andréa-Novel (2000), has
not been considered, because it is hardly applicable for con-
trol design. The validity of the extended kinematic model is
checked theoretically and experimentally. Next, a new con-
trol law is designed in order to correct vehicle behaviour in
the presence of sliding. Preliminary tests are presented. Sat-
isfactory performance can be observed, except at transitions
in sliding conditions (when sliding appears or disappears).
Further control developments, relying on a Model Predictive
Control approach, are then introduced to deal with these limi-
tations. Finally, full scale experiments are reported and show
the improvements achieved when the sliding phenomenon
is thus taken into account, with respect to applications de-
manding high accuracy path tracking capabilities on natural
ground.

2. Work context and previous work

2.1. Experimental background

Since the work described in this paper is carried out in part-
nership with German manufacturer CLAAS, the automatic
guidance developments have to be experimentally validated
on several actual vehicles. Figure 1 shows the experimental
vehicles lent by CLAAS: an Ares 640 tractor and a Domina-
tor combine harvester.

All the experiments reported in this paper were carried
out with the tractor and the description of the control laws
is relevant to the case of the tractor. To address the case
of the combine harvester, since the steering axle is the rear
one, sign modifications have to be introduced. However, the
control principles and performance are identical.

Fig. 1 Vehicles used in actual experiments
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These experimental vehicles are the same as those sold
to customers, except that an actuator has been introduced
to steer the front wheels and an RTK-GPS sensor has been
added to provide vehicle localization.

Specifically, the RTK GPS sensor is an Aquarius 5002
unit manufactured by Thales Navigation. It supplies a posi-
tioning signal accurate to within 2 cm, at a 10 Hz sampling
frequency. This sensor is composed of a reference antenna
and a mobile antenna fixed on the vehicle. For the tractor,
the mobile antenna is fitted on the top of the cabin, straight
up above the centre of the rear axle (since this is the vehicle
point to be controlled, as described in Section 2.2.1). This
location ensures satisfactory satellite reception, but position
measurement is then sensitive to cabin oscillations. On level
fields, few oscillations are indeed observed, since the cabin
is linked to the axle via shock absorbers and an anti-roll
bar. The only unfavourable case is sloping fields, since the
shock absorbers on one side of the vehicle are then more
compressed than the ones on the other side, thus generat-
ing noticeable cabin oscillations. However, although these
movements add some noise to the position measurement,
they do not lead to a bias in tracking error results, as will be
explained in greater detail in Section 2.2.4.

In all the experiments reported in this paper, vehicle ve-
locity has always been manually controlled by the driver.
Thus the only control variable is the steering angle. A nested
closed loop scheme with two levels is currently implemented
on the tractor. In this paper, only the higher level closed loop
is discussed: from the localization measurement supplied
by the RTK-GPS sensor, the control laws to be designed
aim at providing the steering angle value to be sent to the
steering actuator. An inner closed loop, making use of an
angular sensor located on the front right wheel, thus ensures
that the actual steering angle converges with the desired
angle.

2.2. Control assuming rolling without sliding

2.2.1. Modelling
Since the extended kinematic model is derived from the clas-
sical model relying on conditions of rolling without sliding,
the latter, known as the Ackermann model, is recalled here.
As shown in Fig. 2, the vehicle is reduced to a bicycle shape:
the front axle (or respectively the rear axle), actually com-
posed of two wheels, is considered as a single wheel. As the
goal of the application is trajectory tracking, the description
of the vehicle’s movement is made with respect to the path
to be followed, assumed to be known in our application (pre-
liminarily computed or stored from a previous run). Specifi-
cally, the absolute state of the vehicle (absolute location and
heading, supplied by the RTK GPS sensor) is converted into
a relative state (curvilinear abscissa, lateral deviation and

Fig. 2 Classical kinematic model parameters

heading deviation). The parameters and notations used in
this model are listed below:

� C is the path to be followed.
� O is the centre of the vehicle’s virtual rear wheel.

This is the point to be explicitly controlled.
� M is the point on C which is the closest to O.

M is assumed to be unique, which is realistic when the
vehicle remains quite close to C.

� s is the curvilinear coordinate of point M along C.
c(s) denotes the curvature of C at that point.

� γ and θ̃ are respectively the lateral and angular deviation
of the vehicle with respect to the reference path C (see
Fig. 2).

� δ is the virtual front wheel steering angle and the sole
control variable.

� v is the vehicle’s linear velocity, considered here as a
parameter, whose value may be time-varying during the
travel of the vehicle.

� L is the vehicle wheelbase.

With these notations, and assuming in this case that the
two virtual wheels (front and rear) of the vehicle satisfy
conditions of rolling without sliding, classical system (1) can
be calculated (for further details, see (Thuilot et al., 2002)):






ṡ = v cos θ̃

1 − c(s)y

ẏ = v sin θ̃

˙̃θ = v

[
tan δ

L
− c(s) cos θ̃

1 − c(s) y

]
(1)

The only singularity of model (1) is (1 − c(s) y) = 0,
which occurs only if point O is superposed on the curva-
ture centre of reference path C. From a practical point of
view, the curvature of reference paths is never very large, so
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that, if point O is reasonably close to C, the singularity is
never met.

2.2.2. Control law without sliding accounted

The objective of curved path following is to ensure the con-
vergence of y and θ̃ towards 0, independently of changes
in the variable s (which mainly depends on the value of
parameter v). The control approach proposed in Thuilot
et al. (2002) consists in pointing out that a part of non-linear
model (1) can be converted, without any approximation, into
linear equations. More precisely, injecting into model (1) the
invertible non-linear state transformation:

�((s, y, θ̃ )) = (a1, a2, a3)
�= (s, y, (1 − c(s) y) tan θ̃ ) (2)

and describing the vehicle’s movement with respect to s
(instead of with respect to time) leads to the linear model:





d a2

d s
= a3

d a3

d s
= m3

(3)

Computations show that the new control variable m3 and
the actual control variable δ are related by an invertible
transformation. Such a model conversion can be achieved,
since model (1) enters into the class of non-linear systems
which can be converted into chained forms (see for instance
(Samson, 1995)).

The celebrated linear control theory can then be used to
design control law m3 in order to ensure the convergence
of (a2, a3) to 0. In view of (2), this consequently implies
the desired convergence of (y, θ̃) to 0. If m3 is chosen as a
classical PD controller, the inversion of the non-linear rela-
tion between m3 and δ (see (Thuilot et al., 2002)) gives the
non-linear control law to be eventually implemented:

δ(y, θ̃ ) = arctan

(

L

[
cos3θ̃

(1 − c(s)y)2

(
d c(s)

d s
y tan θ̃

− Kd (1 − c(s) y) tan θ̃ − K p y

+ c(s)
(
1 − c(s) y) tan2 θ̃

) + c(s) cos θ̃

1 − c(s)y

])

(4)

Since control law (4) is designed from system (3), which is
driven with respect to curvilinear abscissa, its capabilities are
independent of vehicle velocity. To be precise, closed loop
performance can be adjusted by tuning parameters (K p, Kd ),
which here define a distance of convergence.

The implementation of control law (4) requires the on-line
measurement of the vehicle state vector (s, y, θ̃ ). The first
two elements s and y can be calculated straightforwardly

from the absolute coordinates of O, supplied by the RTK
GPS sensor, and from the reference path C. In contrast, no
sensor is available to provide a direct measurement of vehicle
heading. The last element of the vehicle state vector has then
to be reconstructed. A Kalman filter based on model (1), and
making use of the vehicle velocity vector supplied by the
RTK GPS sensor, has been designed. The angular deviation
θ̃ is then obtained by using the direction of the tangent to the
reference path C at point M.

2.2.3. Experimental results

Since control law (4) was designed on the assumption
of rolling without sliding, trajectory tracking is actually
achieved with satisfactory accuracy as long as the sliding
phenomenon is negligible (i.e. when tracking reference paths
with a very low curvature on level ground). But as soon as
sliding appears (e.g. when tracking curved paths on level
ground or straight lines on sloping fields), guidance accu-
racy is impaired and no longer meets the expectations of
agricultural applications.

To illustrate this point, the reference path shown in Fig. 3
was tracked, relying on control law (4). This reference path,
composed of two straight lines linked by a half-turn, was
recorded when the tractor was manually driven on an actual
field (slippery ground).

Figure 4 shows the lateral deviation y (i.e. the tracking
error) with respect to the curvilinear abscissa s travelled
along the reference path. Vehicle velocity v is 8 km · H−1. As
expected, during the straight line parts of the reference path
(before curvilinear abscissa 30 m or after 55 m), the tracking
error stays close to 0 (a 4 cm standard deviation from the
mean can be computed). In contrast, during the curved part
of the reference path, a significant lateral deviation appears
and remains fairly constant (around 45 cm) all along the
curve.

The same phenomenon occurs when tracking a straight
line on a field with a constant slope. The lateral deviation
recorded in such a situation is shown in Fig. 5: after a tran-
sient period, the vehicle suffers a lateral deviation of 30 cm.
Some other experiments show that the asymptotic value de-
pends on vehicle velocity, on the curvature of the reference
path, and also on ground conditions.

2.2.4. Influence of roll angle

The tracking errors observed in Figs. 4 and 5 are indeed
mainly due to sliding effects. To make this point clear, the
contribution of roll angle in these errors is investigated here,
and shown to be far less than the decimetre errors observed
in these figures.

Some qualitative arguments are first presented. The GPS
antenna is located on the top of the tractor cabin. This means
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Fig. 3 Reference path

Fig. 4 Curved path tracking
result, when relying on control
law (4)
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Fig. 5 Straight line following on a sloping field, relying on control
law (4)

that the roll effect actually alters the absolute coordinates
of the point O supplied by the RTK GPS sensor, and hence
alters the vehicle lateral deviation thus recorded. Neverthe-
less, on level ground, the presence of the anti-roll bar ensures

that the mean value of the roll angle is null, even when the
tractor describes a curve. Therefore, the large tracking error
observed in Fig. 4 cannot be explained by a roll effect. On
sloping fields, the vehicle is of course inclined. However,
when the reference path was recorded, the vehicle inclina-
tion was identical. In other words, the reference trajectory
already includes the vehicle’s inclination. Therefore, during
automatic guidance on sloping fields, the roll effect intro-
duces some noise in lateral deviation, but no bias. Once
more, the large tracking error observed in Fig. 5 cannot be
explained by a roll effect.

In order to provide quantitative arguments, the following
experiment was performed. Two inclinometers were fitted to
the vehicle, as shown in Fig. 6: one is located on the top
of the tractor cabin (close to the GPS antenna) providing
an angle that we shall call α1. The other one is fitted on
the rear axle (close to point O) and provides an angle that
we shall call α2. When the vehicle describes a curve, the
rear axle is not inclined, and the measured angle α2 records
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Fig. 6 Position of inclinometers

only the centrifugal acceleration (the inclinometers are me-
chanical ones and based on the measurement of the Earth’s
gravity). In contrast, the inclinometer located on the top of
cabin measures both centrifugal acceleration and cabin in-
clination. Therefore, the cabin roll angle can be computed as
the difference between the two angles supplied by the incli-
nometers. Finally the lateral deviation yinclino induced by the
roll angle is provided by relation (5) (where h is the cabin
height, with h = 3 m):

yinclino = h sin (α1 − α2) (5)

Figure 7 displays a comparison between the lateral devi-
ation recorded by the RTK GPS sensor when the reference
path shown in Fig. 3 is tracked, relying on control law (4)
(already shown in Fig. 4), and the lateral deviation yinclino

computed according to relation (5).
It can be seen in Fig. 7 that there is no inclination of the

cabin during the curve (deviation yinclino stays close to 0),
as was to be expected since the tractor is equipped with an
anti-roll bar. There are only some transient inclinations at the
beginning and at the end of the curve (at curvilinear abscissae
32 and 52 m). The 45 cm lateral deviation observed during
the curve is therefore not due to a roll effect. In view of
the amplitude of the signal yinclino, the cabin oscillations can
only provide the explanation for 10 cm. These oscillations

are perceptible on the vehicle’s lateral deviation, since this
latter signal is actually corrupted by a 10 cm noise during the
curve, greater than the 2 cm accuracy of the RTK GPS sensor.

3. Modelling with sliding incorporated

3.1. About dynamic modelling

Classically, the description of sliding relies on dynamic ve-
hicle models, since kinematic ones are generally derived on
the assumption of rolling without sliding.

First, inclusive dynamic models (e.g. see (Pham, 1986))
can be considered. These can describe vehicle dynamics
as a whole, even when conditions of rolling without slid-
ing are not satisfied. Only the classical dynamic parame-
ters of the vehicle are required to run this kind of model
(such as moments of inertia, position of centre of gravity,
etc.). However, such models are designed on the assump-
tion of tyre linearity: they are correct only in the case of
pseudo-sliding (deformation of the tyre) and false as soon as
tyre adherence is not ensured on the contact area with the
ground.

For a complete description of sliding phenomena, general
tyre models have to be considered. Such models, often used
in the car industry (especially for trajectory control units
such as ESP, see (Andréa-Novel et al., 2001) for example)
are based on the celebrated Pacejka formula described in
Bakker et al. (1987). Interaction forces on contact between
the tyre and the ground depend on the one hand on variables
(longitudinal slip, side slip angle, vertical load, camber, fric-
tion coefficient, etc.) to be measured (or estimated) on-line,
and on the other hand on numerous empirical parameters
(their number depends on the desired accuracy of the model)
to be identified for each tyre.

Finally, these tyre models have to be coupled with a vehi-
cle model. A complete description of vehicle dynamics thus
requires (see, for instance (Thuilot, 1995) or (Dormegnie
et al., 2002)) several sets of parameters:

Fig. 7 Path tracking result
compared to lateral deviation
induced by roll angle
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� Geometrical parameters: wheelbase, camber, position of
gravity centre, etc.

� Inertial parameters: inertial moments or matrices, mass
distribution on each tyre, etc.

� Vehicle state: longitudinal slip, side slip angle, etc.
� Tyre parameters (Pacejka empirical parameters for in-

stance), which depend on tyre configuration (pressure,
shape, etc.).

The use of such dynamic models is not convenient for agri-
cultural vehicle guidance applications, since some of these
numerous parameters and/or variables are very difficult to
measure or to identify in an off-road context. Moreover, in
agricultural tasks, some of these parameters can be expected
to change as work progresses (e.g. tyre pressure, mass distri-
bution and inertial moments if an implement is used, the co-
efficient of friction, which depends on both tyre and ground,
etc.) so that measurements and/or identifications should be
performed on-line, which is an additional difficulty. There-
fore, in this paper, control design relying straightforwardly
on such dynamic models is not considered. Dynamic con-
siderations are investigated only with the aim of designing
a kinematic model which could account for sliding effects.
This new model will be referred to from now on as the “ex-
tended kinematic model”.

3.2. The proposed modelling approach

As has been pointed out, a complete dynamic model does
not appear tractable from a control design point of view,
especially with respect to agricultural applications. How-
ever, in order to improve guidance accuracy in the pres-
ence of sliding, this latter phenomenon has to be taken
into account in control laws, and therefore in vehicle
modelling.

The proposed approach aims at preserving a kinematic
structure. The sliding phenomenon is then introduced via its
effects on vehicle motion: the additional movements due to
sliding are described by parameters incorporated into a clas-
sical kinematic model derived on the assumption of rolling
without sliding (such as model (1)). These parameters do
not necessarily describe physical phenomena in detail, but

are representative for the effects of these phenomena on
vehicle motion. According to this approach, a complete de-
scription of the contact between the tyre and the ground is
no longer necessary. With respect to dynamic models, the
number of parameters to be measured or estimated is there-
fore considerably reduced. The kinematic structure of the
proposed model, and the limited number of parameters to be
measured/estimated are both very attractive features from a
control design point of view.

In Lenain et al. (2003a), a first extended kinematic model
was proposed to describe vehicle behaviour in the presence
of sliding. This preliminary model is identical to a kinematic
model designed under conditions of rolling without sliding,
but two “sliding parameters” are additively incorporated into
the equations describing the evolution of y and θ̃ . They are
representative of the two motions induced by the sliding phe-
nomenon (a pure lateral translation and a pure rotation). This
approach, consisting in incorporating additive parameters to
be estimated into a classical model, is inspired by nauti-
cal applications, where parameters are added to take into
account the effect of current, see (Holzhüter and Schultze,
1996). Relying on this model, an adaptive control law based
on Internal Model Control techniques has thus been designed
(see (Thuilot et al., 2005) for further details). In this paper,
another extended kinematic model is proposed, based on a
partial dynamic analysis. This new model makes it possible
to design an adaptive control law which is expected to be
more reactive.

3.3. Extended kinematic modelling

The proposed extended kinematic model is derived from
dynamic considerations relative to the interaction between
the tyre and the ground. Specifically, when the assump-
tion of rolling without sliding is satisfied, the direction of
the velocity vector at the centre of the wheel remains in
the wheel plane. This is no longer the case when slid-
ing occurs, as shown in Fig. 8(a). The difference between
the wheel plane and the actual direction of the velocity
vector is called “side slip angle”, and is denoted βP in
the sequel. This side slip angle is generated both by tyre

Fig. 8 Sliding parameters to be
used in the extended kinematic
model
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deformation and by tyre slipping on the ground. It is the key
parameter to describe the lateral component of the interac-
tion force at the contact between the tyre and the ground, (see
Bakker et al., 1987) or (Thuilot, 1995). From the dynamic
point of view, this force ensures that the vehicle actually
turns.

When a vehicle is described as a bicycle shape, such as
in Fig. 2, two side slip angles βF

P and βR
P , associated respec-

tively with the front and the rear virtual wheel, have to be
considered, as shown in Fig. 8(b) . Tyre behaviour can then
be introduced into the kinematic vehicle model according to
the following analogy: the model of a car-like vehicle in the
presence of sliding can be viewed as the model of a vehicle
with two steerable wheels satisfying conditions of rolling
without sliding. According to this view, the front steering
angle is the addition of the actual steering angle and the front
side slip angle, i.e. δF = δ + βF

P , and the rear steering angle
is directly equal to the rear side slip angle, i.e. δR = βR

P .
Kinematic models of vehicles with two steerable wheels can
be found for instance in Micaelli and Samson (1993). Replac-
ing the steering angles δF and δR of such models according to
this analogy leads to the desired extended kinematic model,
describing car-like vehicle behaviour in the presence of
sliding:






ṡ = v cos(θ̃ + βR
P )

1 − c(s)y

ẏ = v sin
(
θ̃ + βR

P

)

˙̃θ = v

[

cos βR
P

tan(δ + βF
P ) − tan βR

P

L
− c(s) cos(θ̃ + βR

P )

1 − c(s) y

]

(6)

It can be checked that, as expected, the classical
kinematic model for a vehicle in conditions of rolling
without sliding can be recovered from (6): by applying
null sliding parameters (βF

P = 0, βR
P = 0), the extended

kinematic model (6) does indeed become identical to
model (1).

4. Estimation of sliding parameters

As presented in Section 2.1, the only exteroceptive sensor on
board is an RTK GPS unit. From the information supplied
by this device, the whole vehicle state vector (s, y, θ̃ ) can be
inferred, so that control law (4), designed on the assumption
of rolling without sliding, can actually be computed.

In order to account for sliding effects, control design has
now to rely on the extended kinematic model (6). Hence,
the sliding parameters βF

P and βR
P must also be supplied.

These parameters are definitely not constant during the guid-
ance task, since reference path curvature and adherence

Fig. 9 Internal Model Adaptive Scheme

conditions are always varying. They cannot therefore be ob-
tained via preliminary identification, but have to be mea-
sured or estimated on-line. Obviously, they cannot be di-
rectly supplied by the RTK GPS sensor. Moreover, accu-
rate measurement of side slip angles does not appear re-
alistic at limited cost. Therefore, the proposed approach
consists in keeping the existing measurement device and
then designing an estimation algorithm providing sliding
parameters.

4.1. Estimation algorithm

The proposed estimation algorithm relies on the following
hypothesis: the difference between the actual process (actual
vehicle trajectory) and the model (1) designed on the
assumption of rolling without sliding is solely due to sliding
effects. As a consequence, sliding parameters can then be
extracted via an Internal Model Adaptive scheme detailed
in Lozano and Taoutaou, (2001), for example, or in Borne
et al. (1990), and shown in Fig. 9: the desired steering angle
(resulting from control law calculation) is entered into both
actual process and model (1). The outputs of the process and
the model are then compared to extract sliding parameter
values.

4.2. Estimation design

Since the whole vehicle state vector (s, y, θ̃ ) is directly mea-
sured, the derivative of these variables is available. More-
over, the steering angle δ can also be measured. As a con-
sequence, all the variables appearing in the equations of the
extended kinematic model (6) are available on-line, except
the two sliding parameters to be estimated. These equations
can therefore be solved to supply the desired sliding param-
eter values.

Since the vehicle’s absolute heading θ is inferred from the
RTK GPS sensor, the estimation algorithm can be slightly
simplified by writing the vehicle model with respect to this
latter variable, rather than with respect to the angular de-
viation θ̃ (as it is done in model (6)). The equations to be
inverted are indeed simpler:





ẏ = v sin
(
θ̃ + βR

P

)

θ̇ = v cos βR
P

tan(δ + βF
P ) − tan βR

P

L

(7)
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Inverting Eq. (7) leads then to the following expression
for the sliding parameters:





βR
P = arcsin

(
ẏ

v

)

− θ̃

βF
P = arctan

(
L θ̇

v cos βR
P

+ tan βR
P

)

− δ

(8)

The relations (8) are not singular provided that:

� v �= 0. This condition is always satisfied, since the vehi-
cle’s velocity is directly controlled by the operator (the
farmer in agricultural applications).

� |ẏ| < v (in order that the arcsin function in βR
P expression

may be properly defined. Moreover, it is assumed that the
vehicle’s velocity is always strictly positive). This condi-
tion reveals that the lateral deviation velocity has to be
less than the overall vehicle velocity, which is the case in
most of the situations encountered. Otherwise, this would
mean that the vehicle is moving faster laterally than longi-
tudinally. In such harsh situations, the vehicle is no longer
steerable.

� βR
P �= π

2 [π ]. If this condition was not satisfied, then the
direction of the velocity vector at the centre of the vir-
tual rear wheel would be in the opposite direction from
the direction defined by the wheel plane. Such a situation
is never encountered in practical applications, since once
more the vehicle would no longer be steerable.

However, the relations (8) cannot be used straightfor-
wardly to provide sliding parameter values: since the RTK
GPS device supplies only y and θ measurements, these quan-
tities have to be numerically derived. The noise inevitably
present on the measurements would then be significantly
amplified by such a derivation, so that the resulting sliding
parameter values would be very noisy. Filters therefore have
to be introduced. They improve signal quality but slightly
delay the estimation of sliding parameters. These limitations
and potential improvements on the sliding estimation scheme
are discussed below.

4.3. Validation of the extended kinematic model
and of the associated estimation algorithm

4.3.1. Experimental validation

The first objective of the extended kinematic model is to
describe vehicle behaviour in the presence of sliding with
sufficient accuracy. This is an obvious preliminary point,
in order to be able to design a new control law preserving
guidance accuracy in the presence of sliding.

The capabilities of the extended kinematic model have
been investigated as follows: in parallel to actual path track-
ing relying on control law (4), classical model (1) without
sliding accounted and extended kinematic model (6) are both
simulated. The measurements supplied to the vehicle by the
RTK GPS sensor (vehicle state vector, actual vehicle veloc-
ity, etc.) are provided on-line to both simulators. In addition,
sliding parameters βF

P and βR
P are provided to the extended

kinematic model according to estimation algorithm (8). Of
course, both simulations rely on the same control law (4) as
the one actually used on the vehicle. Moreover, both simu-
lators take into account the features of the steering actuator
(identified as a second order process with a pure delay).

The actual path to be followed, shown in Fig. 3, was
attempted on a level but wet field. It is composed of two
straight lines linked by a half-turn. A sliding phenomenon
mainly occurs when tracking the curved part of the trajec-
tory. The lateral deviation y recorded during the actual path
tracking is shown as a solid line in Fig. 10. It is compared to
the lateral deviations provided by the simulations of classical
model (1) (dashed line) and extended kinematic model (6)
(dotted line).

Figure 10 can be separated into three parts:

� Straight line following (up to curvilinear abscissa 30 m).
On level ground, even if the adherence properties are low,
lateral behaviour is not perturbed by sliding effects, so
that the lateral deviation y actually stays close to 0. Since
sliding effects are not preponderant during this first part,

Fig. 10 Comparison between
actual lateral deviation and
simulations relying on models
(1) and (6)
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both simulator outputs are very close to the lateral devia-
tions actually measured. This shows that classical control
laws can achieve straight line following with satisfactory
accuracy.

� Curve following (from 30 to 60 m). During this part of
the trajectory, the vehicle turns, and consequently sliding
occurs. Since control law (4) does not take such a phe-
nomenon into account, the actual lateral deviation grows
to 45 cm.

More precisely, the lateral deviation simulated from
classical model (1) stays close to 0 during this part. From
the model (1) point of view, path tracking then appears sat-
isfactorily achieved. Therefore, since control law (4) has
been designed from this model, no steering action is gen-
erated in order to bring the vehicle back to the reference
trajectory.

On the contrary, the lateral deviation simulated from the
extended kinematic model (6) fits the actual lateral devia-
tion pretty well. This model therefore appears relevant to
the design of a control law ensuring accurate path tracking
in presence of sliding.

� Straight line following (after 60 m). When the reference
trajectory turns into a straight line again, classical con-
trol (4) brings the vehicle back to the trajectory. Sliding
effects are present only during the transient phase (from
about 60 to 75 m), so that, after 75 m the lateral deviation
has converged to 0.

Figure 10 demonstrates the relevancy of both extended
kinematic model (6) and estimation algorithm (8) when slid-
ing occurs during curve following. Sliding effects are how-
ever also observed when the vehicle is moving along a slope.
In that case, the vehicle movement is more perturbed: since
the vehicle is inclined, the behaviour of the shock absorbers
is modified. In consequence, the oscillations of the tractor
cabin with respect to the axle are amplified. Since the GPS
antenna is located on the top of the tractor cabin, a dis-
turbing lateral movement is thus generated. The estimated
sliding parameters provided by relation (8) therefore have to
be filtered.

Figure 11 shows the same results as Fig. 10 (with the same
colour convention), when the reference path to be followed
is a straight line on a field with a 15% slope. As usual in
agricultural applications, this reference straight line is per-
pendicular to the slope. In such a configuration, gravity and
low adherence properties on the field generate significant
sliding effects.

The results observed in Fig. 11 are identical to those previ-
ously obtained during curve following. Due to the presence of
sliding effects, the vehicle does not stay on the reference path:
after a transient phase, the actual lateral deviation converges
to around 30 cm. Nevertheless, from the model (1) point of
view, path tracking is satisfactorily achieved: the lateral devi-

Fig. 11 Comparison between actual lateral deviation on a slope and
simulation relying on models (1) and (6)

ation thus simulated stays very close to 0 throughout straight
line following. This explains why control law (4), designed
from model (1), does not steer the vehicle back to the refer-
ence trajectory. However, it can satisfactorily be checked that
the lateral deviation simulated from the extended kinematic
model (6) fits once more with the actual lateral deviation.
This demonstrates that this model, coupled with estimation
algorithm (8), is also relevant to describing vehicle behaviour
when sliding effects are induced by a slope.

4.3.2. Limitations of the estimation algorithm

In the extended kinematic model (6), the 2 parameters βF
P

and βR
P were introduced to account exclusively for sliding ef-

fects on the vehicle behaviour. However, they are estimated
on-line by computing the difference between actual vehi-
cle behaviour and the behaviour that can be expected when
relying on the classical model (1) designed on the assump-
tion of rolling without sliding, see relation (8). The sliding
phenomenon is undoubtedly mainly responsible for this dif-
ference, but it is not the only factor. Consequently, sliding
is not the sole phenomenon incorporated into the βF

P and
βR

P values provided by estimation algorithm (8), contrary to
initial expectations. Such an estimation strategy offers both
advantages and drawbacks.

Positive effects: The sliding phenomenon is mainly respon-
sible for the lateral deviations observed during path follow-
ing. However, lateral deviations may also originate from dy-
namic phenomena (such as vehicle inertia, etc.) and delays
(introduced for instance by the steering actuator). In view of
the estimation algorithm (8), these phenomena are then also
taken into account in the values of sliding parameters βF

P and
βR

P and therefore integrated into model (6).
Thus the extended kinematic model (6) and the associated

estimation algorithm (8) allow us to account not only for
sliding effects, but also for several other phenomena, even if
these are not explicitly described in the vehicle model. For
example, this estimation strategy can compensate for bad
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calibration of the right front wheel angular sensor used in
the inner closed loop.

Negative effects: In view of the estimation algorithm (8), any
phenomenon generating a lateral deviation is incorporated in
the βF

P and βR
P values. Therefore, disturbances such as the

noise on the measurements supplied by the RTK GPS sensor
or ground irregularities (since they lead to cabin oscillations)
are, alas, integrated into parameter estimation. The noise
level on βF

P and βR
P is then unfortunately raised, but no

bias is introduced. These negative effects can however be
significantly reduced by the use of filters, as has already
been mentioned.

As shown in Figs. 10 and 11, the extended kinematic
model (6) and the associated estimation algorithm (8) can
describe vehicle behaviour in actual agricultural applications
with satisfactory accuracy (to a few centimetres), despite the
occurrence of sliding. They therefore constitute relevant tools
for designing high accuracy path tracking laws.

5. Control law design

As can be seen in Figs. 10 and 11, the classical control
law (4), designed from model (1) constructed on the as-
sumption of rolling without sliding, fails to provide satisfac-
tory path tracking accuracy as soon as sliding occurs. When
sliding conditions are constant, the lateral deviation also con-
verges to a significatively large constant, e.g. 45 cm when
performing the half-turn part of the reference path shown
in Fig. 3 (see Fig. 10) or 30 cm when following a straight
line on a 15% sloping field (see Fig. 11). In order to im-
prove guidance accuracy in such situations, sliding effects
must be taken into account explicitly in control law design.
The extended kinematic model (6), as pointed out just above,
reveals itself to be a relevant model to derive such a design.

5.1. Chained system transformation

In previous work (Lenain et al., 2003b), a complete adaptive
control scheme was developed to steer a vehicle in the pres-
ence of sliding, relying on a slightly different extended kine-
matic model. In this paper, it is proposed to take advantage
of the special structure of the extended kinematic model (6)
in order to design a non-linear control law, providing better
reactivity with respect to the phenomenon of liding.

As pointed out in Section 3.3, the extended kinematic
model (6) is similar to the kinematic model of a vehicle with
two steerable wheels, derived on the assumption of rolling
without sliding. Such a model is known (e.g. see (Samson,
1995)) to be transformable into a form known as a chained
system, from which relevant control laws can then easily be

designed. More precisely, a 3-dimensional chained system is
described by:






ȧ1 = m1

ȧ2 = a3m1

ȧ3 = m2

(9)

Such a chained form can actually be obtained from the
extended kinematic model (6) by applying the invertible state
transformation (10) and control transformation (11):

(a1, a2, a3) = �(s, y, θ̃ )

= (s, y, tan
(
θ̃ + βR

P

)
[1 − c(s)y]) (10)

(m1, m2) = M(v, δ) (11)

with the following definitions for m1 and m2:

m1 = v cos
(
θ̃ + βR

P

)

1 − c(s)y
(12)

m2 = d

d t
(tan

(
θ̃ + βR

P

)
[1 − c(s)y]) (13)

The attractive feature of chained systems can be revealed
by replacing time derivation by a derivation with respect to
the first state variable a1 (consistent here with s, the curvilin-
ear abscissa). Provided that m1 �= 0 (which is true in view of
definition (12)), chained system (9) is then turned, without
any approximation, into a linear system:





a′
1 = 1

a′
2 = a3

a′
3 = m3 = m2

m1

(14)

where a′
i stands for d ai

d s .
The only difficulty in this chained form conversion con-

cerns control transformation (11): computation of m2 accord-
ing to (13) requires the derivation of rear sliding parameter
βR

P with respect to time. However, no analytical expression
is available for βR

P , and its value provided by the estimation
algorithm (8) is too noisy to be numerically differentiated.
Therefore, when deriving the expression for m2 according
to (13), βR

P has been assumed to be a constant (i.e. d
dt β

R
P = 0),

which finally leads to:

m2 = −c(s)v sin
(
θ̃ + βR

P

)
tan

(
θ̃ + βR

P

) + v
1 − c(s)y

cos2
(
θ̃ + βR

P

)

×
[

cos βR
P

(
tan(δ + βF

P ) − tan βR
P

L

)

− c(s) cos
(
θ̃ + βR

P

)

1 − c(s)y

]

(15)
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It can then be checked that state and control trans-
formations (10–11) are invertible, provided that: y �= 1

c(s)
(singularity of model (6)), v �= 0 (satisfied, since v is manu-
ally controlled by the driver) and (θ̃ + βR

P ) �= π
2 [π ] (satisfied

when path tracking is properly initialized).

5.2. Control law design

Since extended kinematic model (6) can be converted, with-
out any approximation, into a linear system (14), the de-
sign of a path tracking control law can now very easily be
achieved.

Convergence of state variables a2 and a3 to 0 can easily
be ensured by designing virtual control law m3 according
to:

m3 = −Kd a3 − K p a2 (K p, Kd ) ∈ R
+2 (16)

since, by injecting (16) into system (14), the following equa-

tion for error dynamics is then obtained:

a′′
2 + Kd a′

2 + K p a2 = 0 (17)

Differential Eq. (17) clearly implies the convergence of
both variables a2 and a3 to 0. On one hand, in view of (10),
the convergence of a2 ensures the convergence of the lat-
eral deviation y. The path tracking objective is therefore
achieved. On the other hand, the convergence of a3 implies
that (θ̃ + βR

P ) → 0. This means that vehicle heading com-
pensates for rear sliding effects (the vehicle moves crabwise).
Front sliding effects, as can be seen in the expression (18)
below for the path tracking control law, are directly compen-
sated by the steering angle δ.

The expression (16) of the virtual control law m3 is con-
sistent with a PD controller. Since the error Eq. (17) is
written with respect to a1 (which is equal to the curvi-
linear abscissa s), the gains (K p, Kd ) do not specify a
settling time, but a settling distance. Thus the capabili-
ties of the path tracking control law are theoretically in-
dependent of vehicle velocity v . From a practical point
of view, the choice of (K p, Kd ) has nevertheless to take
vehicle velocity into account in order to protect the steer-
ing angle sent to the actuator from saturation and from in-
stabilities that would then be induced by the inner closed
loop. However, if the gains are properly tuned, the capabil-
ities of path tracking are actually velocity independent, as
desired.

Finally, injecting (16) into (15) and (12), and inverting
this relation, provides the non-linear analytic expression for

Fig. 12 Path #1: long constant curve on a level field

the path tracking control law:

δ = arctan

(
L

cos βR
P

[

c(s)
cos θ̃2

α
+ A

cos3 θ̃2

α2

]

+ tan βR
P

)

− βF
P

with






θ̃2 = θ̃ + βR
P

α = 1 − c(s)y
A = −Kdα tan θ̃2 − K p y + c(s)α tan2 θ̃2

(18)

Relation (18) constitutes the steering angle value to be
sent to the actuator. It can be checked that, as expected,
the classical control law (4) designed on the assumption of
rolling without sliding can be recovered from (18): by apply-
ing null sliding parameters (βF

P , βR
P ) = (0, 0), path tracking

control law (18) becomes identical to control law (4).

5.3. Results without prediction

In order to investigate the performance and the limitations of
the proposed approach, the new control law (18) was used
to follow the path shown on Fig. 12. Sliding parameters βF

P

and βR
P , required in control expression (18), are provided

according to the estimation algorithm (8). Lateral deviation
recorded during this experiment is shown as a dashed line in
Fig. 13, and is compared with the deviation obtained when
using the classical control law (4). In both cases, (K p, Kd )
were set to (0.09, 0.6), which corresponds to a 15 m settling
distance.

Since it does not account for sliding effects, classical
control law (4) leads to a constant tracking error during the
curved part of the trajectory (in this case, the vehicle is
30 cm aside of the reference trajectory). On the contrary, the
new control law (18) succeeds in bringing back the vehicle
to the reference trajectory during the curve. Nevertheless,
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transient errors still appear at the beginning and at the end
of the curve, i.e. when the reference path presents a step
in curvature. The delays introduced by the actuator features
and vehicle inertia are responsible for such overshoots. This
last difficulty is now addressed, relying on Model Predictive
Control techniques.

5.4. Predictive control

Since, on one hand, the shape of the reference path is known
in advance, and on the other hand, a model for the actuator
response can be identified, predictive control can indeed be
investigated. The objective is then to send a control value
to the actuator a moment before the curve appears. Then,
the steering angle actually applied to the vehicle when the
curve starts could correspond to the desired angle and could
prevent overshoots due to delays.

5.4.1. Separation of control law

Since angular and lateral deviations and especially sliding
parameters cannot be anticipated, prediction has to be applied
only with respect to curvature. To identify the contribution
of curvature in control law (18), let us first assume that
the vehicle follows the reference path perfectly. Considering
this case and assuming conditions of rolling without sliding
(since the values of sliding parameters cannot be predicted),
the curvature defined by the vehicle’s steering angle has to
be equal to the curvature of the path. This condition can be
mathematically described by:

⇒ c(s) = tan δ

L
(19)

Condition (19) can be analytically checked: applying
null deviations and sliding parameters to control law (18)

leads to:

δ(y = 0, θ̃ = 0)
∣
∣
βR

P =0,βF
P =0 = arctan(L .c(s)) (20)

These considerations show that the expression for the
control law (18) can be split into two constituent parts:

δ = arctan(u + v) − βF
P

with






u = L

cos βR
P

c(s)
cos θ̃2

α

v = L

cos βR
P

A
cos3 θ̃2

α2
+ tan βR

P

(21)

which can be rewritten as the more convenient expression
(22) using the geometrical relation (23):

δ = δTraj + δDeviation






δTraj = arctan(u)

δDeviation = arctan

(
v

1 + uv + u2

)

− βF
P

(22)

arctan(a + b) = arctan(a) + arctan

(
b

1 + ab + a2

)

(23)

The expression of control law (18) in presentation (22)
constitutes the desired separation of the control law into two
additive terms, which play two different roles, as detailed
below:

� δDeviation: Null term when deviations and sliding are equal
to zero. This term mainly depends on sliding parameters
(βR

P , βF
P ) and deviations (y, θ̃2) to ensure the convergence

of the latter to 0.
As these variables and parameters cannot be anticipated,
this additive term will not be introduced into the predictive
algorithm.
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Fig. 14 Application of prediction to control expression

Fig. 15 Notations and general description of Model Predictive Control

� δTraj: Non-null term when deviations and sliding are equal
to zero. This term mainly depends on the properties of
the reference path, and ensures path-following conditions
defined by (19).
As the future curvature of the path to be followed is

known (attached to the reference path), the future ob-
jective attached to this term can be calculated. This
additive term will then be entered into the predictive
algorithm.

The predictive control scheme is sketched in Fig. 14.
The trajectory term δTraj is entered into the prediction
algorithm (detailed below) and replaced by the output
of this algorithm, named δPred

Traj . The new control law to
be sent to the steering actuator is then the addition of
δDeviation (which remains unchanged) and the predictive
term δPred

Traj :

δ = δPred
Traj + δDeviation (24)

5.4.2. Prediction algorithm

Since the future curvature is known and a model of the ac-
tuator is available, the Model Predictive Control principle,
defined in Richalet (1993b) and applied in Richalet (1993a),
is used to design the prediction algorithm. It requires the def-
inition of the variables shown in Fig. 15 and detailed below:

� δC : Control variable sent to the actuator. In the current case
of a separate control, this variable is only the trajectory part
δTraj of the control law, defined by (21) and (22).

� δR : Measured steering angle. This is the output of low level
process resulting from the action of control δC , which is
only the trajectory part of the control actually applied.

As we cannot separate the measured steering angle into
two parts, actual response to δC is approximated by the
relation (25), where δM

[n] is the nth measurement of steering
angle supplied by the sensor.

δR
[n] = δM

[n] − δDeviation[n] (25)

� H: Horizon of prediction. This is the constant time in the
future, which will be used to determine the control value
to be applied in the present (iteration n) to reach the future
objective δObj as well as possible. In the remainder of this
paper, the integer nH is the iteration number attached to
the horizon of prediction H: nH defines the number of
coincidence points, i.e. H = nH T with T denoting the
sampling period.

� δObj : Known future objective. It represents the future de-
sired process output value. In the present case, this variable
is linked to the future curvature of the reference path by
the relation: δObj = arctan(L .c(s + Hs)), where Hs is the
Horizon of prediction in the curvilinear abscissa associated
with H.

� δRef : Desired reference shape to be followed by the pro-
cess output δR to converge to the future objective δObj .
Classically, a first order system is chosen. When succes-
sive objectives δ

Obj
[i] are considered on the prediction hori-

zon, δRef is defined by relation (26), where i ∈ [0, nH ] and
γ ∈ [0, 1[ is a parameter tuning the convergence speed of
reference trajectory.

δ
Obj
[n+i] − δ

Ref
[n+i] = γ i

(
δ

Obj
[n] − δR

[n]

)
(26)

In the current case, only the objective at the moment nH

is used for reference path calculation and is considered as
constant all along the horizon of prediction. The reference
path is then defined as follows:

δ
Ref
[n+i] = δObj − γ i

(
δObj − δR

[n]

)
(27)

� δ̂R : Predicted output of the process. This variable is the fu-
ture response of the low level model (previously identified)
to a given set of control δC .

Using these notations, the goal of Model Predictive Con-
trol is to find on the horizon of prediction H, the control set
δC

[n,...,n+nH ] which minimizes the deviation between predicted
output δ̂R and the desired trajectory δRef chosen to reach the
objective δObj . The first element of this set δC

[n] is then the
term δPred

Traj to be used in (24).
A criterion to be minimized can then be defined. It is

shown graphically in Fig. 16, and the mathematical ex-
pression of this criterion, hereafter called D, is defined
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Fig. 16 Visualization of the criterion to be minimized

by:

D(n) = 	
nH
i=0

(
δ̂R

[n+i] − δ
Ref
[n+i]

)2 (28)

In Eq. (28), the number of coincidence points used for
criterion calculation, and consequently for minimization, is
equal to the number of iterations required to meet the horizon
of prediction. For example, if the horizon is set to 0.9 s, 10
iterations are required, and finally 10 coincidence points are
defined.

5.4.3. Low level model and inertial compensation

As calculation of the criterion (and consequently its mini-
mization) requires the prediction of the process output during
the horizon of prediction, a model for the low level actuator
must be available. Actuator response to some control inputs
is then measured, and an identification establishes that the
low level can be described as second order (with a 400 ms
settling time and a 10% first overshoot). However, such an
identification has been performed with no load on the steer-
able wheels. Actuator response may therefore be substan-
tially different from that model in some of the experiments.

Moreover, the low level is not the only phenomenon gen-
erating overshoots. Vehicle inertia also plays a significant
role during transient phases. The general equations of ve-
hicle dynamics show that it is possible to account for such
inertial effects by extending the low level model up to a
third order system, see (Lenain, 2005). However, numerous
parameters such as vehicle inertia, cornering stiffness, etc.
would then have to be estimated. In agricultural applications,
these parameters are very difficult to identify, and moreover
they often vary in the course of the work. A more straight-
forward approach is therefore considered here: relying on
the robustness of the predictive algorithm, its parameters
(horizon of prediction H), and parameter γ introduced in the
relation (27)) are empirically adjusted to take inertial effects
into account as well as possible.

6. Experimental results

As demonstrated in Fig. 10, straight line following on a
level field, whatever the adherence properties of the field

Fig. 17 Tracking error in straight line following in a sloping field

are, can be satisfactorily achieved either with classical con-
trol law (4), designed on the assumption of rolling without
sliding, or with control laws (18) or (24), accounting for
sliding effects, and relying on a prediction algorithm for
the latter. The capabilities of control laws (18) and (24) are
therefore investigated here with respect to guidance tasks
where sliding effects actually occur and impair the tracking
accuracy obtained when relying on classical control law (4).

The tracking errors obtained with the different control
laws are compared in the figures shown below, where the
colour convention is:

� solid line: tracking error when relying on classical control
law (4), designed on the assumption of rolling without
sliding.

� dashed line: tracking error when relying on control
law (18), accounting for sliding effects.

� dotted line: tracking error when relying on control law (24),
accounting for sliding effects and incorporating a predic-
tion algorithm.

The reference paths were all recorded with the tractor
manually driven, so that they are all clearly feasible (non-
holonomic constraints are obviously satisfied). It should also
be recalled that the maximum tracking accuracy that can be
expected when vehicles are manually driven is ± 15 cm.

6.1. Straight line following on a sloping field

As already shown in Fig. 11 (and recalled in Fig. 17), clas-
sical control law (4) is not able to keep the vehicle on the
reference path: after a transient phase, a 30 cm lateral devi-
ation is recorded. In contrast, the lateral deviation recorded
when relying on control law (18) is significantly reduced,
and is very close to the accuracy obtained when the vehicles
are manually driven. Control law (24) has not been consid-
ered since the reference path is a straight line, and therefore,
no prediction can be made.

Figure 18 supplies statistical data on tracking error signals
(mean, standard deviation and percentage of time inside the
acceptance range of ± 15 cm). It can be clearly verified
that control law (18) significantly improves the accuracy of
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Fig. 18 Deviation signal properties during straight line following on
a sloping field

the tracking task (considering mean values or percentage of
acceptance), and moreover reduces the maximum deviation
recorded.

Path tracking along sloping fields is the worst case for au-
tomatic guidance systems. Even if the mean lateral deviation
value is considerably reduced when using control law (18),
it is not as close to zero as could have been expected hav-
ing regard to theoretical results. The main reason is that the
vehicle is moving crabwise (the orientation of the vehicle
velocity vector is different from the vehicle heading). As a
result, the vehicle heading, computed according to a Kalman
filter based on the velocity measurements supplied by the
RTK GPS sensor (see Section 2.2.2), is slightly biased, and
therefore the guidance accuracy provided by control law (18)
is also slightly impaired.

Moreover, on sloping fields, adherence conditions can
quickly change. Due to the several filters used for practi-
cal reasons (essentially to deal with the cabin oscillations),
such abrupt variations cannot be instantaneously taken into
account by control law (18). Transient overshoots (such as
at curvilinear abscissa 55 m on Fig. 17) can therefore be
observed. Nevertheless, even in this difficult tracking appli-
cation, the guidance capabilities of control law (18) (with re-
spect to the mean and maximum lateral deviations recorded)
are significantly superior to those obtained with classical
control law (4).

6.2. Curved path following on level but slippery fields

The benefits of both sliding effects correction and the predic-
tion algorithm are now investigated with respect to curved
path following on level ground. Figures 19 and 22 present lat-
eral deviations recorded when following path #1 and path #2
respectively. These reference paths are shown respectively
in Figs. 12 and 21.

Path #1 is first considered. In Fig. 13, the relevancy of con-
trol law (18) has already been shown: during the curved part
of path #1, the vehicle returns to the reference path while,
on the contrary, a 30 cm lateral deviation is recorded when
classical control law (4) is used. The only unsatisfactory re-
sult when relying on control law (18) is transient overshoots
observed at the beginning and at the end of the curve, due
to the delays introduced by the actuator features and vehicle
inertia.
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Fig. 19 Lateral deviation recorded while following path #1

Fig. 20 Deviation signal properties while following path #1

It can be seen in Fig. 19 that, as expected, the predictive
algorithm incorporated into control law (24) succeeds in
eliminating these overshoots, and still rejects sliding effects
satisfactorily. The overall performance of the tracking task
carried out is therefore improved: guidance accuracy remains
satisfactorily within the target range ± 15 cm (except at
abscissa 48 m, where a hole is crossed).

Figure 20 presents the same statistical data as in 18, but
with respect to the tracking of the curved part of path #1
(between curvilinear abscissa 30 to 80 m). It can be seen
that control law (24) significantly improves the accuracy
of the tracking task (the mean value and the percentage of
acceptance could have been even more satisfactory without
the negative overshoot at the end of the curve). Standard
deviation is also improved and corresponds to the acceptance
range of ± 15 cm.

The tracking of path #2, shown in Fig. 21, is quite an
arduous task since the curves to be followed are very close
to each other. The tracking accuracy obtained when relying
on control law (24), displayed in Figs. 22 and 23, appears

Fig. 21 Path #2: several half-turns on a level field
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Fig. 22 Lateral deviation recorded while following path #2

Fig. 23 Deviation signal properties while following path #2

very convincing: during 90% of the duration of the path
following experiment, the tracking error remains in the target
range ± 15 cm, while this same target range is reached for
only 30% of the duration of the experiment when relying
on the classical control law (4). Moreover, at curvilinear
abscissae 25, 50, 65, 90, 105 and 130 m (i.e. at each important
curvature variation) overshoots are not actually significant,
as expected from the prediction algorithm. The mean values,
displayed in Fig. 23, are not very significant here, because
the lateral deviation is alternatively positive and negative,
since the vehicle turns alternately to its right and to its left.
Therefore, a small mean value, such as the value obtained
with control law (4), does not imply that the tracking task is
satisfactorily achieved, as can be verified in Fig. 22.

Finally, Fig. 24 compares the steering angle recorded
when relying on control laws (4) and (24), while follow-
ing path #1. First, it can be observed that the steering angle
generated by control law (24) begins to grow earlier than
the one generated by control law (4). This shows clearly
the action of the predictive algorithm. Secondly, the steering
angle applied to the vehicle appears to be smoothed when

0 10 20 30 40 50 60 70 80
–10

–5

0

5

10

15

20

25

30

35

40

Curvilinear abscissa (m)

M
ea

su
re

d 
st

ee
rin

g 
an

gl
e 

(°
)

Fig. 24 Steering angle recorded while following of path #1

prediction is used. This improves comfort for passengers in
the vehicle and reduces the stresses on vehicle mechanics.

The experimental results displayed in this Section show
that the capabilities of control law (24) meet the expectations
of agricultural applications, whatever the shape of path to be
followed, and whatever the adherence conditions.

7. Conclusion and future work

7.1. A correction effective control law

The overall control algorithm presented in this paper pro-
poses a high accuracy solution to achieve path-tracking for
mobile robots in all-terrain conditions (independent of the
shape of the path to be followed and of the adherence prop-
erties of the ground on which the vehicle runs). The main
negative phenomenon compensated is sliding effects which
are likely to occur in the agricultural applications consid-
ered here. Moreover, the proposed control algorithm can also
compensate for the different delays due to low level actua-
tors and vehicle inertial effects, which may be an important
concern with heavy agricultural machines.

As the rolling without sliding assumption cannot be used,
an extended kinematic model was designed, ensuring an ac-
curate description of vehicle movement including lateral slid-
ing effects, and preserving the advantage of the kinematic
approach (the simplicity of such models, the possibility of
measuring most of the required variables, etc.) The only
two variables in this extended new model which cannot be
directly measured are the sliding parameters.

These parameters are then estimated by comparing the
vehicle’s actual behaviour to the behaviour that can be ex-
pected from a vehicle model designed on the assumption of
rolling without sliding. Disturbances due to other phenom-
ena (such as pitch and roll motions due to vehicle mechanics
and dynamic effects) can then lead to local misinterpreta-
tion. However, full-scale experiments have shown that this
technique enables accurate reconstruction of the vehicle’s
behaviour in most of the situations encountered in practical
cases.

The structural properties of the extended kinematic model
were then used to designed a non-linear guidance law, relying
on chained systems theory. The capabilities of such a control
are satisfactory when sliding parameters vary slowly, but are
limited by the inevitable delays due to both the steering angle
actuator and vehicle inertia. As a result, overshoots appear as
soon as a significant variation of curvature must be followed.
Even if it only appears in isolation, such a phenomenon is
not acceptable, as the tracking error recorded in such cases
(e.g. when the vehicle is entering/leaving a curve) can reach
quite significant values.
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In order to prevent multiple overshoots in path tracking, a
Model Predictive Control principle has been integrated into
the proposed control law. Currently, as predictive control is
indexed on the future curvature values of the reference path,
benefits can be gained only during curved path tracking. The
predictive principle is not yet transferred to slope anticipa-
tion, as there is no sensor measuring slope integrated into
the process. Nevertheless, variations of sliding parameters
induced by slope modifications are less abrupt than those
generated by curvature changes.

Full scale experiments on tractors, in real working condi-
tions (manoeuvring on fields typically used for agricultural
production) highlight the benefits of the control laws with
both sliding accounted and predictive action. The results
presented in this paper show that tracking accuracy can be
preserved whatever the path to be followed and whatever
the adherence properties of the ground: the overall algorithm
almost always keeps the tracking error within an acceptance
range of ± 15 cm, with very limited variability, thus meeting
the expectations of farmers.

7.2. Improvements and future work

The weakest part of the proposed control algorithm is cur-
rently the sliding estimation algorithm, especially on sloping
fields, since vehicles are then moving “crabwise.” The slid-
ing estimation algorithm is a basic one, and can assuredly
be improved. Observers (such as Luenberger, for example)
are currently being developed to address this point. As a
first step, such observers are expected to be applied only to
the extended model and to rely solely on the current sensor
system, i.e. the RTK-GPS device. As a second step, it is
planned to test observers based on partial dynamic models,
since the sliding parameters used in the extended kinematic
model are compatible with such dynamic models. However,
other sensors, such as a gyrometer, must then be used.

Dynamic models, even if they are not expected to be used
specifically for control design (as explained at the begin-
ning of this paper), can however be partially integrated into
the overall control algorithm: either in the sliding estimation
algorithm as mentioned above, or in order to improve the
prediction algorithm. The model currently used for predic-
tion does not take vehicle inertia into account, although such
a dynamic effect implies delays when the vehicle has to turn.
Such phenomena can be implicitly integrated into the pre-
diction algorithm by tuning the horizon of prediction, as is
done in this paper. However, the efficiency of the prediction
algorithm can be improved by considering explicitly simpli-
fied dynamic models. Such simplified dynamic modelling is
currently under study.

Finally, the control algorithm presented in this paper re-
lies exclusively on a single RTK-GPS sensor. Disturbances

due to the position of the antenna, which is very sensitive
to pitch and roll movements, can be misinterpreted by the
estimation algorithm (although it can be improved by obser-
vation techniques) and consequently by the control law, thus
impairing path following accuracy. Future work will there-
fore also deal with the addition of sensors to increase the
accuracy of estimation of sliding parameters.
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Français de Mécanique Avancée (IFMA),
Clermont-Ferrand. He is performing re-
search at the Robotics and Vision Group of
LASMEA-CNRS, Clermont-Ferrand. He is

the leader of the group. His research interests include visual servoing,
vision-based control, robust control, automatic guided vehicles,
enhanced mobility, active vision and sensor integration, visual
tracking, and parallel architecture for visual servoing applications.

Springer


