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Abstract. We study bisimilarity and the security property of noninter-
ference in a core synchronous reactive language that we name CRL.

In the synchronous reactive paradigm, programs communicate by means
of broadcast events, and their parallel execution is regulated by the no-
tion of instant. Within each instant, programs may emit events and get
suspended while waiting for events emitted by other programs. They
may also explicitly return the control to the scheduler, thereby suspend-
ing themselves until the end of the instant. An instant is thus a period of
time during which all programs compute until termination or suspension.
In CRL there is no memory, and the focus is on the control structure
of programs. An asymmetric parallel operator is used to implement a
deterministic scheduling. This scheduling is fair — in the sense that it gives
its turn to each parallel component — if all components are cooperative,
namely if they always return the control after a finite number of steps.
We first prove that CRL programs are indeed cooperative. This result
is based on two features of the language: the semantics of loops, which
requires them to yield the control at each iteration of their body; and a
delayed reaction to the absence of events, which ensures the monotonicity
of computations (viewed as I/O functions on event sets) during instants.
Cooperativeness is crucial as it entails the reactivity of a program to its
context, namely its capacity to input events from the context at the start
of instants, and to output events to the context at the end of instants.
We define two bisimulation equivalences on programs, formalising respec-
tively a fine-grained observation of programs (the observer is viewed as
a program) and a coarse-grained observation (the observer is viewed as
part of the context). As expected, the latter equivalence is more abstract
than the former, as it only compares the I/O behaviours of programs at
each instant, while the former also compares their intermediate results.
Based on these bisimulations, two properties of reactive noninterference
(RNTI) are proposed. Both properties are time-insensitive and termination-
insensitive. Coarse-grained RNI is more abstract than fine-grained RNI,
because it views the parallel operator as commutative and abstracts away
from repeated emissions of the same event during an instant.

Finally, a type system guaranteeing both security properties is presented.
Thanks partly to a design choice of CRL, which offers two separate
constructs for loops and iteration, this type system allows for a precise
treatment of termination leaks, which are an issue in parallel languages.

* Work partially supported by the french ANR 08-EMER-010 grant PARTOUT.



1 Introduction

Many systems of widespread use, such as web browsers and web applications,
may be modelled as reactive programs, that is programs that listen and react to
their environment in a continuous way, by means of events. Since the environment
may include mutually distrusting parties, such as a local user and a remote web
server, reactive programs should be able to protect the confidentiality of the
data they manipulate, by ensuring a secure information flow from the inputs
they receive from one party to the outputs they release to another party.

Secure information flow is often formalised via the notion of noninterference
(NI), expressing the absence of dependency between secret inputs and public
outputs (or more generally, between inputs of some confidentiality level to out-
puts of lower or incomparable level). Originally introduced in [10], NI has been
studied for a variety of languages, ranging from standard imperative and func-
tional languages [14,12] to process calculi based on CCS or the pi-calculus [9)].
On the other hand, little attention has been paid to noninterference for reactive
programs, with the notable exception of [11], [2] and [5].

We shall focus here on a particular brand of reactive programming, namely
the synchronous one, which was first embodied in the synchronous language
SL [7], an offspring of ESTEREL [4], and later incorporated into various program-
ming environments, such as C, JAvA, CAML and SCHEME. In the synchronous
paradigm, the parallel execution of programs is regulated by a notion of instant.
The model of SL departs from that of ESTEREL in that it assumes the reaction
to the absence of an event to be postponed until the end of the instant. This
assumption helps disambiguating programs and simplifying the implementation
of the language. It is also essential to ensure the monotonicity of programs and
their reactivity to the environment.

In this work, we will not explicitly model the interaction of a reactive program
with the environment (this could be easily done but it would not bring any
further insight). Instead, we concentrate on the interaction within a reactive
program, making sure it regularly converges to a stable state (end of instant),
in which the program is ready to interact with the environment. We call this
property cooperativeness [1] or internal reactivity. In the sequel, we shall abandon
the distinction between internal reactivity (among the components of a program)
and external reactivity (towards the environment), to focus on the former.

This paper attempts to explore “secure reactive programming in a nutshell”.
To this end, we concentrate on a minimal reactive language without memory,
consisting of standard sequential operators, an asymmetric parallel operator t
(formalising a kind of coroutine parallelism under a deterministic scheduling),
together with four typical reactive constructs, which we briefly describe next.

In our Core Reactive Language C'RL, programs are made of parallel compo-
nents s, s’ — also called “threads” for simplicity in the following — combined with
the operator s 1 s’ and communicating by means of broadcast events. Threads
may emit events, via a generate ev instruction, and get suspended while wait-
ing for events to be emitted by other threads, through an await ev instruction.
They may also explicitly yield the control to the scheduler, via a cooperate



instruction, thereby suspending themselves until the end of the current instant.
An instant is therefore a period of time during which all threads compute until
termination or suspension. Clearly, this is a logical rather than a physical notion
of instant, since the termination of instants is determined by the collective be-
haviour of threads rather than by some physical clock. At the end of an instant,
all threads are inactive and share the same view of emitted events. At instant
change, a preemption construct do s watching ev allows some suspended parts
of threads to be pruned off, thus implementing a time-out mechanism. Interac-
tion with the environment is limited to the start and the end of instants: the
environment injects events at the start of instants and collects them at the end.

The starting point of our work is the paper [2], which laid the basis for the
study of noninterference in a synchronous reactive language. The present work
improves on [2] in several respects, which we summarise below.

The language examined in [2] is similar to CRL but strictly more expressive,
including imperative constructs, local declarations and a memory. Indeed, our
asymmetric parallel operator {1 is inspired by that of [2]. Here, however, we adopt
a slightly different semantics for st s, prescribing a late cooperation on the left
(s executes up to termination or suspension before giving the control to s’) and
an early cooperation on the right (when getting the control from s, s’ executes
only until unblocking s - by generating the event that s is waiting for - or, if this
is not possible, until termination or suspension). This simple change forces the
scheduler to serve the same thread at the start of each instant, thus avoiding the
so-called scheduling leaks of [2], and allowing for a more relaxed typing rule for
t, which is just the standard rule for symmetric parallel composition.

Moreover, reactivity was not a concern in [2]: as soon as they contained while
loops, programs were not guaranteed to terminate or suspend within an instant.
Hence, it only made sense to consider a fine-grained notion of noninterference.
By contrast, in CRL all programs are reactive, thanks to a clear separation be-
tween the loop construct loop s and the iteration construct repeat exp do s, and
to our semantics for loops, which requires them to yield the control at each it-
eration of their body. This makes it possible to define a notion of coarse-grained
reactive noninterference (RNI), which accounts only for the I/O behaviour of
programs within each instant. The coarse-grained RNI property has an advan-
tage over the fine-grained one: it exploits in a more direct way the structure of
reactive computations, and it recovers the flavour of big-step semantics within
each instant, offering a more abstract NI notion for reactive programs.

Finally, our type system is more permissive than that of [2], thanks to the
relaxed typing rule for parallel composition and to refined typing rules for the
conditional. Both improvements are made possible by design choices of CRL.

The main contributions of this paper are: 1) the reactivity result, 2) the
definition of two bisimulation equivalences for synchronous reactive programs,
of different granularity. To our knowledge, semantic equivalences for reactive
programs have only been studied previously by Amadio [3]; 3) the proposal of
two properties of reactive noninterference, based on the above bisimulations, and
4) the presentation of a type system ensuring both noninterference properties.



The rest of the paper is organised as follows. Sections 2 and 3 present the
syntax and the semantics of the language C'RL. Section 4 is devoted to proving
reactivity of CRL programs. Section 5 introduces the two bisimulation equiv-
alences and gives some properties of them. In Section 6 we define our two NI
properties. Section 7 presents our security type system and the proof of its
soundness. Finally, future and related work are briefly discussed in Section 8.

2 Syntax

In this section we introduce the syntax of CRL. Let Val be a set of values,
ranged over by v,v’, Var a set of variables, ranged over by z,y, z, and FEvents a
set of events, ranged over by ev, ev’. A fixed valuation function V : Var — Val
for open terms is assumed, which however will be left implicit until Section 6.
Expressions. An expression exp € Exp may be a basic value, a variable, or
the value returned by a function. Letting exp denote a tuple of expressions
exrpy,...,expn, the syntax of expressions is:

exp€ Exp=v | = | f(ezp)

The evaluation of a function call f(exp) is assumed to be instantaneous, and
therefore so is the evaluation of an expression exp, denoted by exp ~» v, which
is formally defined by the three rules:

V(z)=w Vie{l,...,n}. exp; ~ v; flor,...,on) =0
(aady¥ €T ~~> v f(e?fo)wv

Programs. We now present the syntax of C RL programs. Alongside with typi-
cal sequential operators, C RL includes four operators that are commonly found
in reactive languages, cooperate, generate ev,await ev and do s watching ev,
as well as a binary asymmetric parallel operator, denoted by 1, which performs
a deterministic scheduling on its components. This operator is very close to that
used in [2] and, earlier on, in the implementation of SugarCubes [8]. However,
while in [2] and [8] each parallel component was executing as long as possible, our
operator 1 implements a form of prioritised scheduling, where the first compo-
nent yields the control only when terminating or suspending (late cooperation),
while the second yields it as soon as it generates an event that unblocks the first
component (early cooperation).

s € Programs ::= nothing | s;s | (sts) |
cooperate | generate ev | await ev | do s watching ev |

(loop s) | (repeat expdo s) | (if exp then s else s)

Note that our language includes two different constructs for loops and itera-
tion, in replacement of the standard while loop operator. This allows for a clear
separation between nonterminating behaviours and iterative behaviours.



3 Semantics

This section presents the operational semantics of CRL. Programs proceed

through a succession of instants, transforming sets of events. There are two

transition relations, both defined on configurations of the form (s, E), where s is

a program and E C Fvents is an event environment, i.e. a set of present events.
Let us first give the general idea of these two transition relations:

1. The small-step transition relation describes the step-by-step execution of a
configuration within a an instant. The general format of a transition is:
! !/
where: {8 B} = (s, B)

— s is the program to execute and s’ is the residual program;

— F is the starting event environment and E’ is the resulting event envi-
ronment: E’ coincides with F if the transition does not generate any new
event; otherwise E' = F U {ev}, where ev is the new generated event.

2. The tick transition relation describes the passage from one instant to the
next, and applies only to suspended configurations. A transition of this kind
has always the form:

(s, E) — ([s]p,0)

where the resulting event environment is empty and [s] g is a “reconditioning”
of program s for the next instant, possibly allowing it to resume execution at
the next instant even without the help of new events from the environment.

Before formally defining — and <, we introduce the suspension predicate
(s, E)t, which holds when s is suspended in the event environment F, namely
when s waits for some event not contained in E, or when s deliberately yields
the control for the current instant by means of a cooperate instruction.

The rules defining the predicate  and the relations — and < are given in
Fig. 3. The reconditioning function [s]g prepares s for the next instant: it erases
all guarding cooperate instructions, as well as all guarding do s’ watching ev
instructions whose time-out event ev is in E (i.e. has been generated).

Let us comment on the most interesting transition rules. The execution of
a parallel program always starts with its left branch (Rule (pary)). Once the
left branch is over, the program reduces to its right branch (Rule (parsy)). If
the left branch is suspended, then the right branch executes (Rule (pars)) until
unblocking the left branch. Thus early cooperation is required in the right branch.
To avoid nondeterminism, a terminated right branch can only be eliminated if
the left branch is suspended (Rule (pary)). A loop s program executes its body
cyclically: a cooperate instruction is systematically added in parallel to its body
to avoid instantaneous loops, i.e. divergence within an instant! (Rule (loop)).
A do swatching ev program executes its body until termination or suspension
(Rule (watchy)), reducing to nothing when its body terminates (Rule (watchs)),
and getting processed by the reconditioning function when its body suspends.

The small-step transition relation satisfies two simple properties: determinism
and incremental production of events throughout an instant.

! In general, we shall call “instantaneous” any property that holds within an instant.
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(do nothing watching ev, E) — (nothing, F) (watchz)

(Loop s, E) — ((s t cooperate); loop s, E) (loop)

erp ~» n n>1
(repeat)
(repeat expdo s, E) — (s;...;8, E

——

n times
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1]1 1]2
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Fig. 1. Operational Semantics of CRL



Proposition 1. (Determinism)
Let s € Programs and E C Events. Then:
s #nothing = either (s,E)1 or 3§ E'. (s,E)— (s, E)

Proof. By inspecting the suspension and transition rules, it is immediate to see
that at most one transition rule applies to each configuration (s, E).

Lemma 1. (Event persistence)

Let s € Programs and E C Events. Then: (s,E)—(s',E') = ECFE'

Proof. Straightforward, since the only transition rule that changes the event
environment F is the rule for generate ev, which adds the event ev to F.

We define now the notion of instantaneous convergence, which is at the basis
of the reactivity property of C RL programs. Let us first introduce some notation.

The timed multi-step transition relation (s, E) =, (s', E') is defined by:
(s, E)y =¢ (s, E)
(s, E) = (s',E"Y N ($,E")=, (", E") = (s,E)=pi1(s",E")
Then the multi-step transition relation (s, E) = (s', E') is given by:
(s, By=(s',E"Yy & An.(s,E) =, (s, E')
We define now the relation and the predicate of instantaneous convergence:
Definition 1. (Instantaneous convergence)
(s, EY § (¢, E"Y if (s,E)=(s,E') A (s’ =nothing V (s',E')])
(s, E) | if 3 E'. (s,E) | (s',E)
The relation and predicate of instantaneous termination are defined similarly:

Definition 2. (Instantaneous termination)
(s, By T E' if (s,E) | (nothing, E’)
(,E) T if 3E.(s,E) T E'

The relation (s, E) || (s, E’) defines the overall effect of the program s
within an instant, starting with the set of events E. Indeed, || may be viewed as
defining the big-step semantics of programs within an instant?.

As an immediate corollary of Proposition 1, the relation |} is deterministic.

The timed versions of (s, E) || (s', E"), (s, E} |}, (s, E} § (s, E') and (s, E) {
are defined in the expected way.

In the next section we prove an important property of CRL, namely that
every configuration (s, F) instantaneously converges. This is true in particular
for initial configurations, where E = ). This property is called reactivity.

2 A direct definition of the big-step arrow |} by a set of structural rules would be slightly
more involved, as it would require calculating the output set E’ as a fixpoint.



4 Reactivity

In this section we present our first main result, the reactivity of CRL programs.
In fact, we shall prove a stronger property than reactivity, namely that every
configuration (s, F) instantaneously converges in a number of steps which is
bounded by the instantaneous size of s, denoted by size(s). The intuition for
size(s) is that the portion of s that sequentially follows a cooperate instruction
should not be taken into account, as it will not be executed in the current instant.
Moreover, if s is a loop, size(s) should cover a single iteration of its body.

To formally define the function size(s), we first introduce an auxiliary func-
tion dsize(s) (where“d” stands for “decorated”) that assigns to each program an
element of (Nat x Bool). Then size(s) will be the first projection of dsize(s).
Intuitively, if dsize(s) = (n,b), then n is an upper bound for the number of steps
that s can execute within an instant; and b is ¢t or [f depending on whether or
not a cooperate instruction is reached within the instant. For conciseness, we
let n” stand for (n, tt), n stand for (n, ff), and n° range over {n”",n}.

The difference between n” and n will essentially show when computing the
size of a sequential composition: if the decorated size of the first component has
the form n”, then a cooperate has been met and the counting will stop; if it has
the form n, then n will be added to the decorated size of the second component.

Definition 3. (Instantaneous size)
The function size : Programs — Nat is defined by:
size(s) =n if (dsize(s)=n V dsize(s) =n").

where the function dsize : Programs — (Nat x Bool) is given inductively by:
dsize(nothing) = 0 dsize(cooperate) = 0"
dsize(generate ev) = dsize(await ev) = 1
n if dsize(s1) = ng"
(L4+n1+n2)° if dsize(s1) =n1 A dsize(sz) = no®
(14+ny+n2)" if dsize(s1) = m™ A dsize(ss) = no
dsize(s1152) =< (1 +ny+n2)" if dsize(

(I+mn1+mn92)° if dsize(

dsize(s1;82) = {

)
s1) =ny A dsize(sz) = na"
) o

s1 n1° A dsize(sa) = ng®

dsize(repeat exp do s) = (m + (m x n))° if dsize(s) =n® A exp~~m
dsize(loop s) = (2+n)" if dsize(s) =n°
dsize(do s watching ev) = (1 +n)° if dsize(s) =n°

(14 maz{ny,na )", if dsize(s;) =n;",
dsize(if exp then s1 else s9) = ¢ (1 + maz{ni,na}), if for i #j

dsize(s;) =n; A dsize(s;) = n;°

It may be proven that size(s) decreases along small-step execution:



Lemma 2. (Size reduction within an instant)
VsVE ((s,E)—(s',E"Y = size(s") < size(s))

To prove reactivity, we will use the following Lemma, which establishes that the
termination capacities of a program are preserved by event generation, and that
feeding a larger event environment in input will produce a larger event environ-
ment in output. It is important to notice that the terminating computation will
not in general be the same in both cases, since a larger input environment will
cause fewer control switches and thus longer turns for each parallel component.
However, the two computations will have the same length.

Lemma 3. (Monotonicity of terminating computations)
VsVE ((s,E) I,E = VE,DFE 3E]DE (s,E1) J,E])

We are now ready to prove our main result, namely that every program s
instantaneously converges in a number of steps that is bounded by size(s).

Theorem 1. (Script reactivity) Vs, VE (3n <size(s) (s, E) {n)

The proof proceeds by simultaneous induction on the structure and on the size
of s. Induction on the size will be needed in the case s = s1 { s5. Lemma 3 will
be used in the case s = repeat exp do s;. It guarantees that if s; terminates in
ny steps, then each successive iteration of s; also terminates in ni steps.

5 Fine-grained and coarse-grained bisimilarity

We now introduce two bisimulation equivalences (aka bisimilarities) on pro-
grams, which differ for the granularity of the underlying notion of observation.
The first bisimulation formalises a fine-grained observation of programs: the ob-
server is viewed as a program, which is able to interact with the observed program
at any point of its execution. The second reflects a coarse-grained observation of
programs: here the observer is viewed as part of the environment, which interacts
with the observed program only at the start and the end of instants.

Let us start with an informal description of the two bisimilarities:

1. Fine-grained bisimilarity ~f9. In the bisimulation game, each small step
must be simulated by a (possibly empty) sequence of small steps, and each
instant change must be simulated either by an instant change, in case the
continuation is observable, or by an unobservable behaviour otherwise.

2. Coarse-grained bisimilarity ~ . Here, each converging sequence of steps
must be simulated by a converging sequence of steps, at each instant. For
instant changes, the requirement is the same as for fine-grained bisimulation.

As may be expected, the latter equivalence is more abstract than the former,
as it only compares the I/O behaviours of programs (as functions on sets of
events) at each instant, while the former also compares their intermediate results.
Let us move now to the formal definitions of the equivalences ~79 and ~ .



Notation. e Lsup = ! i & (s, E)f Vs =nothing
s otherwise

det {[S]E B

Definition 4 (Fine-grained bisimulation).

A symmetric relation R on programs is a fg-bisimulation if s; R so implies, for
any E C FEvents:

1) (s1,E) = (s, E") = 3sy. ((s2,E)= (s, E") N s1R s3)
2) <81,E>i = (<82,E>$ A Lsiug R LSQJE)
Then sy, 5o are fg-bisimilar, s; =79 s,, if 51 R so for some fg-bisimulation R.

The equivalence ~f9 is time-insensitive, and thus insensitive to internal moves.
It is also termination-insensitive, as it cannot distinguish proper termination
from suspension (recall that no divergence is possible within an instant and thus
the execution of a diverging program always spans over an infinity of instants).
On the other hand, ~/9 is sensitive to the order of generation of events and to
repeated emissions of the same event (“stuttering”). Typical examples are:

(nothing; generate ev) ~ 19 generate ev ?,éfg (generate ev; generate ev)
(generate ev; { generate evy) #/9  (generate evy, f generate ev;)
nothing ~7/9 cooperate ~/Y loopnothing

Definition 5 (Coarse-grained bisimulation).

A symmetric relation R on programs is a cg-bisimulation if s; R so implies, for
any £ C FEvents:

(s1, B) U (s, E") = 3Fsh. ((s2,E) | (s5, E') A Lsjap R Lsyop)
Then s1,s2 are cg-bisimilar, s1 &~ %9 sg, if s1 R so for some cg-bisimulation R.

Like ~f9, the equivalence ~ % is both time-insensitive and termination-insensitive.
Furthermore, it is also stuttering-insensitive and generation-order-insensitive
(that is, it ignores the generation order of events within an instant). Typically:

generate ev ~“ (generate ev; generate ev)

(generate ev; f generateevy) ~% (generate evs { generate ev;)

More generally, the equivalence ~ % views { as a commutative operator:

Theorem 2. (Commutativity of t up tox~ %) Vsy,s5 (51182~ s91s1)

Finally, we prove that /9 is strictly included in ~ (the strictness of the
inclusion being witnessed by the last two examples above):

Theorem 3. (Relation between the bisimilarities) =~/ C ~%

This concludes our discussion about semantic equivalences. We turn now to the
definition of noninterference, which is grounded on that of bisimulation.



6 Security property

In this section we define two noninterference properties for programs. As usual
when dealing with secure information flow, we assume a finite lattice (S, <) of
security levels, ranged over by 7, 0,19. We denote by LI and M the join and meet
operations on the lattice, and by | and T its minimal and maximal elements.
In CRL, the objects that are assigned a security level are events and variables.
An observer is identified with a downward-closed set of security levels (for short,
a dc-set), i.e. a set £ C S satisfying the property: (te L A 7/ <7) = 7' € L.
A type environment I is a mapping from variables and events to their types,
which are just security levels 7, 0. Given a dc-set L, a type environment I and
an event environment F, the subset of E' to which I assigns security levels in £
is called the L-part of E under I'. Similarly, if V : Var — Val is a valuation, the
subset of V' whose domain is given levels in £ by I is the L-part of V under I'.
Two event environments F+q, Fo or two valuations Vi, Vs are :E—equal, or
indistinguishable by a L-observer, if their £-parts under I" coincide:

Definition 6 (I'L-equality of event environments and valuations).
Let L C S be a dc-set, I' a type environment and V' a valuation. Define:

Ey =L By if Veve Events (I'(ev) €L = (ev€ By & ev € Ey))

Vi =L Vo if VeeVar (I'(z)el = Vi(z)=Va(z))

Let —v,=v, v denote our various semantic arrows under the valuation V.
Then we may define the indistinguishability of two programs by a fine-grained or

coarse-grained L-observer, for a given I', by means of the following two notions
of I'L-bisimilarity:

Definition 7 (Fine-grained I'L-bisimilarity).

A symmetric relation R on programs is a fg-I'L-V1Vs-bisimulation if s1 R s
implies, for any Ey, Es such that F, :E Es:

1) (s1,B1) —v; (51, E7) = 385, B . ({52, B2) =v, (s, E3) N Ef =7 By A s R s)
2) <51,E1>i = (<82,E2>$ N LS14E, R I_SQJE2)

Then programs si, So are fg-I"L-bisimilar, s; z}{yﬁ sa, if for any V1, Vo such that

1% :£ Vo, s1 R sq for some fg-I" L-V1 Vo-bisimulation R.

Definition 8 (Coarse-grained I'L-bisimilarity).

A symmetric relation R on programs is a cg-I'L-V1Va-bisimulation if s; R so
implies, for any Ey, Es such that F, :£ FEs:

(s, B1) vy (s1,B1) = 3sh, By ( (2, Ba) by, (55, E3) A By =f B A
LSllJEi R LS/QJEé)

Two programs s1,ss are cg-I'L-bisimilar, sy & so, if for any Vi, Va such that
Vi zg Va, s1 R so for some cg-1I"'L-V, Vs-bisimulation R.



Our reactive noninterference (RNI) properties are now defined as follows:

Definition 9 (Fine-grained and Coarse-grained RNI).

A program s is fg-secure in I' if s z}igﬁ s for every dc-set L.

A program s is cg-secure in I if s =7, s for every dc-set L.
In examples, we use superscripts to indicate the level of variables and events.

Example 1. The following program is cg-secure but not fg-secure:

s=if x| =0 then generate evlL { generate 61)2l

else generate 6”02J‘ { generate evlJ‘

If we replace the second branch of s by generate evi- ; generate evs-, then we
obtain a program s’ that is both fg-secure and cg-secure.

In general, from all the equivalences/inequivalences in page 10 we may obtain
secure/insecure programs for the corresponding RNI property by plugging the
two equivalent/inequivalent programs in the branches of a high conditional.

Theorem 4. (Relation between the RNI properties)

Let s € Programs. If s is fg-secure then s is cg-secure.

7 Type system

We present now our security type system for CRL, which is based on those
introduced in [6] and [13] for a parallel while language and already adapted to
a reactive language in [2]. The originality of these type systems is that they
associate pairs (7, 0) of security levels with programs, where 7 is a lower bound
on the level of “writes” and o is an upper bound on the level of “reads”. This
allows the level of reads to be recorded, and then to be used to constrain the level
of writes in the remainder of the program. In this way, it is possible to obtain a
more precise treatment of termination leaks® than in standard type systems.

Recall that a type environment I is a mapping from variables and events
to security levels 7, 0. Moreover, I" associates a type of the form 7 — 7 to
functions, where 7 is a tuple of types 71, . . ., 7. Type judgements for expressions
and programs have the form I' F exp : 7 and I' b s : (7,0) respectively.

The intuition for I" + exp : 7 is that 7 is an upper bound on the levels of
variables occurring in exp. According to this intuition, subtyping for expressions
is covariant. The intuition for I' & s : (7,0) is that 7 is a lower bound on the
levels of events generated in s (the “writes”of s), and o is an upper bound on the
levels of events awaited or watched in s and of variables tested in s (the “reads”
or guards of s, formally defined in Definition 10). Accordingly, subtyping for
programs is contravariant in its first component, and covariant in the second.

3 Leaks due to different termination behaviours in the branches of a conditional. In
classical parallel while languages, termination leaks may also arise in while loops.
This is not possible in CRL, given the simple form of the loop construct.



The typing rules for expressions and programs are presented in Figure 7.
The three rules that increase the guard type are (WATCHING), (REPEAT) and
(ConDpl), and those that check it against the write type of the continuation
are (SEQ), (REPEAT) and (LooPr). Note that there are two more rules for the
conditional, factoring out the cases where either both branches are finite or
both branches are infinite: indeed, in these cases no termination leaks can arise
and thus it is not necessary to increase the guard level. In Rule (ConD2), FIN
denotes the set of finite or terminating programs, namely those built without
using the constructs await ev and loop. In Rule (COND3), INF' denotes the set
of infinite or nonterminating programs, defined inductively as follows:

— loops € INF; — s€INF = repeatexpdos € INF;

— 51 €INF = s1;80 € INF; —s1 € FIN AN sg € INF = s1;89 € INF
—s1€INF V s € INF = Sl'fSQEINF

— 51 €INF N sg € INF = if expthens; elsesy, € INF

Note that FIN UINF C Programs. Examples of programs that are nei-
ther in FIN nor in INF are: await ev, if exp then nothing else (loop s), and
do (loop s) watching ev.

We now prove that typability implies security via the classical steps:
Lemma 4 (Subject Reduction).
Let ' + s : (1,0). Then (s, E) — (s',E’) implies I' - s’ : (1,0), and (s, E)}
implies I' - [s]g : (1,0).
Definition 10. (Guards and Generated Events)

1) For any s, Guards(s) is the union of the set of events ev such that s contains
an await ev or a do s’ watching ev instruction (for some s'), together with the
set of variables x that occur in s as argument of a function or in the expression
exp of an instruction if exp then s; else sy or repeat expdo s in s.

2) For any s, Gen(s) is the set of events ev such that generate ev occurs in s.

Lemma 5 (Guard Safety and Confinement).

1. IfI' s : (1,0) then I'(g) < o for every g € Guards(s);
2.If '+ s : (1,0) then T < I'(ev) for every ev € Gen(s).
Theorem 5 (Typability = Fine-grained RNI).

Let s € Programs. If s is typable in I' then s is fg-secure in I.

Note that programs s, s’ of Example 1 are not typable (although cg-secure). We
conclude with some examples illustrating the use of the rules for the conditional.

Ezample 2. The following programs s; and s are all typable:

s = if (z" = 0) then await ev] else cooperate type (T,T)
sy = if (z" = 0) then nothing else cooperate type (T, 1)
s3 = if (x| = 0) thennothing else (loop nothing) type (T,T)
s4 = if (z" = 0) then (loop nothing) else (loop cooperate) type (T,1)
s = generate evs- type (L, 1)

Then so; s and s4; s are typable but not s; s nor ss; s.
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I'z)=71 I'texp:o, o<o
(VvaL) I'kowo:l (VAR) ——— (SuBExP)
I'tax:71 Il exp:o
'ktexp:7, I'f)=7—71, Vi.u <71
(Fun)
'k flexp) : 7
Typing rules for expressions
(NoTHING) I' F nothing: (T,1) (COOPERATE) I’ - cooperate: (T,.1)
'k s1:(m,01), I'F sa:(m2,02), o1<7
(SeQ)
I'F s1582: (i Mme,01Uo2)
I+ 81:(’7’1,0'1), I+ 52:(7'2,0'2)
(PAR)
I+ SlJ[SQ : (TlﬂT2,0'1 UO'Q)
I'(ev) =7 I'(ev) =0
(GENERATE) (AwarT)
I' + generateev: (71,1) I' + awaitev: (T,0)
I'lev)=9, 'k s:(r,0), 97
(WATCHING)
I'  do swatchingev : (1,9 U 0)
't s:(r,o), o<t I'ktexp:9 I'bs:(r,0), dUc<T
(Loop) (REPEAT)
I' + loops: (7,0) I' - repeat expdos: (1,9 U o)
I'texp:9, 't s:(1,0), 1=1,2, 9<71
(Conp1)
I' - if exp then s; else s2: (1,9 U 0)
I'texp:9, (I'F si:(r,0) AN s;€FIN, i=1,2), 9<r7
(ConD2)
I' - if exp then s1 else s2: (7,0)
I'texp:9, (I'Fsi:(r,o) AN s;€INF, i=1,2), 9<r7
(ConD3)
I' - if exp then s1 else sz : (T,0)
I'ks:(ro), <7, o<o
(SUBPROG)
'k s:(rd)

Typing rules for programs

Fig. 2. Security type system



8 Conclusion

We have studied a core reactive language C' RL and proposed two RNI properties
for it, together with a security type system ensuring them. We have established
a reactivity result similar to those of [8,3], but based on different design choices.
Our RNI properties rely on two bisimulation equivalences of different granu-
larity. One of them, coarse-grained bisimilarity, is reminiscent of the semantic
equivalence studied by Amadio in [3], which however was based on trace seman-
tics. Our RNI properties bear some analogy with the reactive noninterference
notions proposed in [5], although the underlying assumptions of the model are
quite different (neither reactivity nor determinacy are assumed in [5], and there
is no internal parallelism). The model of cooperative threads of [1] is close in
spirit to the model of C'RL, but it is not concerned with synchronous parallelism.

We plan to extend our results to a fully-fledged distributed reactive language.
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