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Abstract. Parallel database systems attempt to exploit recent multiprocessor computer architectures 
in order to build high-performance and high-availability database servers at a much lower price than 
equivalent mainframe computers. Although there are commercial SQL-based products, a number of 
open problems hamper the full exploitation of the capabilities of parallel systems. These problems 
touch on issues ranging from those of parallel processing to distributed database management. 
Furthermore, it is still an open issue to decide which of the various architectures among shared- 
memory, shared-disk, and shared-nothing, is best for database management under various conditions. 
Finally, there are new issues raised by the introduction of higher functionality such as knowledge-based 
or object-oriented capabilities within a parallel database system. 
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1. Introduction 

Database management and parallel processing technologies have evolved to a 
point that they can now be successfully combined to better support data-intensive 
applications. They are poised to take a central position in mainstream commercial 
information systems of the 1990s [78]. 

Commercial database technology has moved from the earlier hierarchical and 
network models to the relational model. The main advantages of relational 
database systems (RDBMSs) over their predecessors are data independence and 
high-level query languages (e.g., SQL). These advantages increase programmer 
productivity and favor automatic optimization. Furthermore, the set-oriented 
nature of the relational model facilitates distributed database management [56, 
57]. Today, after a decade of optimization and tuning, RDBMSs can provide a 
performance level reaching that of earlier systems. Therefore, they are being 
extensively used in commercial data processing for decision-support or on-line 
transaction processing (OLTP) applications. 

Parallel processing exploits multiprocessor computers to run application pro- 
grams by using several processors cooperatively, in order to improve performance. 
Its prominent use is in scientific computing by improving the response time of 
numerical applications [47, 65]. The recent developments in both general- 
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purpose MIMD parallel computers using standard microprocessors and parallel 
programming techniques [55] will allow parallel processing to break into the data 
processing field. 

The combination of database management and parallel processing is exemplified 
by the advances in parallel database systems [26]. These systems exploit recent 
multiprocessor computer architectures in order to build high-performance and 
high-availability database servers at a much lower price than equivalent mainframe 
computers. Note that performance was also the objective of the database machines 
(DBMs) in the 1970s and 1980s [42], The problem faced by conventional database 
management has long been known as "I/O bottleneck" [13], induced by high 
disk access time with respect to main memory access time (typically hundreds 
thousands times faster). Initially, DBM designers tackled this problem through 
special-purpose hardware (e.g., by introducing data filtering devices within the 
disk). However, they failed because of a poor price/performance when compared 
to the software solution which can easily benefit from hardware progress in silicon 
technology [32]. A notable exception to these failures is the CAFS-ISP filter [7] 
which is bundled within ICL disk controllers for fast associative search and can 
be used by INGRES (when the optimizer decides to do so). 

An important result of DBM research, however, is in the general solution 
to the I/O bottleneck. We can summarize this solution as increasing the I/O 
bandwidth through parallelism. For instance, if we store a database of size D on a 
single disk with throughput T, the system throughtput is bounded by T. On the 
contrary, if we partition the database across n disks, each with capacity D/n and 
throughput T' (hopefully equivalent to T), we get an ideal throughput of n*T' 
which can be better consumed by multiple processors (ideally n). Note that the 
main memory database system solution [30] which tries to maintain the (active) 
database in stable main memory is complementary rather than alternative. In 
particular, the "memory access bottleneck" can also be tackled using parallelism 
in a similar way. 

Therefore, parallel database system designers strive to develop software- 
oriented solutions in order to exploit multiprocessor hardware. The objectives 
of parallel database systems can be achieved by extending distributed database 
technology, for example, by partitioning the database across multiple (small) disks 
so that much inter- and intraquery parallelism can be obtained. This can lead 
to significant improvements in both response time and throughput (number of 
transactions per second). Motivated by set-oriented processing and application 
portability, most of the work in this area has focused on supporting SQL. There 
are already some relational database products that implement this approach, 
e.g., Teradata's DBC [54] and Tandem's NonStopSQL [72] and the number of 
such products will increase as the market for general-purpose parallel computers 
expands. In fact, there are already implementations of existing RDBMSs such 
as INGRES and ORACLE on parallel computers. 

At first glance, the fact that there are successful commercial products may in- 
dicate that the important technical problems have been solved. On the contrary, 
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if one analyzes these systems carefully, it will be found that they typically rely 
on simple solutions (e.g., partitioning each relation across all nodes) and strong 
assumptions regarding the workload (e.g., debit-credit transactions of the TPC-B 
benchmark [38]). Open problems concern parallel system architectures, operat- 
ing system support, data placement, parallel database programming languages, 
parallel algorithms, parallelizing compilation, and transaction management. They 
have been partially addressed in the context of distributed database systems [56] 
but are much more difficult because of the need to scale up to large numbers 
of components. Furthermore, it is still an open issue to decide which of the 
various architectures among shared-memory, shared-disk, and shared-nothing, is 
best for database management under various factors such as type of workload, 
application complexity and database size. 

When applied to more complex application domains such as CAD/CAM, CASE, 
OIS, expert systems, etc., RDBMs show important limitations in terms of rule 
management, complex object support, and type system. To address these issues, 
two important next-generation DBMS technologies, namely knowledge bases and 
object-oriented databases, have emerged. Knowledge base systems (KBMSs) [33] 
should enable us to move from data management to more general knowledge 
management whereby knowledge can be captured within rules. Object-oriented 
database systems (OODBMSs) [86] try to combine object-oriented programming 
and database technologies in order to provide higher modelling power and 
flexibility to the application programmers. The higher functionality of KBMSs and 
OODBMSs make the performance issue far more sensitive than with RDBMSs 
and therefore raises new issues for implementing them on parallel computers. 

In this paper, I critically review the parallel database system approach as 
the solution to high-performance and high-availability database management. 
The objectives are to exhibit the advantages and disadvantages of the various 
architectures and to present the open problems and new issues to be addressed 
by the research community in the near future. 

The paper is organized as follows. Section 2 introduces the architectural 
aspects of parallel database systems and discusses the respective advantages 
and limitations of the three multiprocessor architectures along several important 
dimensions including the perspective of both end-users, database administrators 
and system developers. Section 3 discusses the open research problems. Section 4 
concentrates on the new issues raised by next-generation parallel database systems. 

2. Architectural considerations 

A parallel database system can be loosely defined as a DBMS implemented on 
a tightly coupled multiprocessor. This definition excludes (distributed) DBMSs 
implemented on computer networks for they face specific problems such as 
geographical distribution, local autonomy, and heterogeneity [57] and do not 
face other problems due to large numbers of elements. However, this definition 
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does include many alternatives ranging from the straightforward porting of an 
existing RDBMS, which may require only rewriting the operating system interface 
routines, to a sophisticated combination of parallel processing and database system 
functions into a new hardware/software architecture. As always, we have the 
traditional trade-off between portability (to several platforms) and efficiency. I 
believe the sophisticated approach is better able to fully exploit the opportunities 
offered by a multiprocessor at the expense of portability. Interestingly, this 
gives different advantages to computer manufacturers and software vendors. It 
is therefore important to characterize the main points in the space of alternative 
parallel system architectures. In order to do so, I will make precise the parallel 
database system solution and the necessary functions. This will be useful in 
comparing the three basic parallel database system architectures. 

2.1. Parallel database system solution 

Before reading about the solution, a fair question the reader may ask is: "What 
is the problem? Is that problem important? and to whom?" Answering 
these questions requires looking at a global picture of our computerized society. 
Today, in a competitive world, enterprises of all kinds use and depend on timely 
available, up-to-date information. Information volumes are growing 25-35% per 
year and the traditional transaction rate has been forecast to grow by a factor 
of 10 over the next five years- twice the current trend in mainframe growth 
[29]. In addition, there is already an increasing number of transactions arising 
from computer systems in business-to-business interworking and by intelligent 
terminals in the home, office or factory. 

The profile of the transaction load is also changing as decision-support queries, 
typically complex, are added to the existing simpler, largely clerical workloads. 
Thus, complex queries such as those macro-generated by decision support systems 
or system-generated as in production control will increase to demand significant 
throughput with acceptable response times. In addition, very complex queries on 
very large databases, generated by skilled staff workers or expert systems, may 
hurt throughput while demanding good response times. 

From a database point of view, the problem is to come up with database 
servers that support all these types of queries efficiently on possibly very large 
on-line databases. However, the impressive silicon technology improvements 
alone cannot keep pace with these increasing requirements. Microprocessor 
performance is now increasing 50% per year, and memory chips are increasing 
in capacity by a factor of 16 every six years. RISC processors today can deliver 
between 50 and 100 MIPS (the new 64 bit DEC Alpha processor is predicted to 
deliver 200 M!PS at cruise speed!) at a much lower price/MIPS than mainframe 
processors. This is in contrast to much slower progress in disk technology which 
has been improving by a factor of 2 in response time and throughput over the 
last 10 years. With such progress, the I/O bottleneck worsens with time. 
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The solution is therefore to use large-scale parallelism to magnify the raw power 
of individual components by integrating these in a complete system along with the 
appropriate parallel database software. Using standard hardware components is 
essential to exploit the continuing technology improvements with minimal delay. 
Then, the database software can exploit the three forms of parallelism inherent 
in data-intensive application workloads. Interquery parallelism enables the parallel 
execution of multiple queries generated by concurrent transactions. Intraquery 
parallelism makes the parallel execution of multiple, independent operations (e.g., 
select operations) possible within the same query. Both interquery and intraquery 
parallelism can be obtained by using data partitioning. Finally, with intraoperation 
parallelism, the same operation can be executed as many suboperations using 
function partitioning in addition to data partitioning. The set-oriented mode of 
database languages (e.g., SQL) provides many opportunities for intraoperation 
parallelism. For example, the performance of the join operation can be increased 
significantly by parallelism [25, 80]. 

2.2. Functional architecture 

A parallel database system acts as a server for multiple client computers in the now 
common client-server organization in computer networks. The client typically 
embeds application-specific software such as graphical interfaces, DBMS front-end 
tools such as 4GLs, and client-server interface software. It can run on virtually 
anything from a personal computer or workstation to a mainframe. The parallel 
database system supports the database functions and the client-server interface, 
and possibly general-purpose functions. The latter capability distinguishes a 
parallel database system from a database machine which is fully dedicated to 
database management and cannot, for instance, run a C program written by a 
user. To limit the potential communication overhead between client and server, 
a high-level powerful interface (set-at-a-time rather than record-at-a-time) that 
encourages data-intensive processing by the server is necessary. 

This approach naturally extends to the more general distributed database 
approach with multiple servers, each acting as a local site in the network. 
What is needed then is an additional software layer at each server to provide 
distribution transparency. Because this layer can be clearly separated from the 
parallel database management functions, I will ignore it for simplicity in the rest 
of the paper. 

Ideally. a parallel database system should provide the following advantages 
with a much better price/performance than its mainframe counterparts. 

High performance. This can be obtained through several complementary solutions: 
database-oriented operating system support, parallelism, optimization, and load 
balancing. Having the operating system constrained and "aware" of the specific 
database requirements (e.g., buffer management) simplifies the implementation of 
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low-level database functions and therefore decreases their cost. For instance, the 
cost of a message can be significantly reduced to a few hundred of instructions by 
specializing the communication protocol. This solution has been exploited in the 
early database machines like the IDM [76]. Parallelism can increase throughput 
(using interquery parallelism) and decrease transaction response times (using 
intraquery and intraoperation parallelism). However, decreasing the response 
time of a complex query through large-scale parallelism may well increase its 
total time (by additional communication) and hurt throughput as a side effect. 
Therefore, it is crucial to optimize and parallelize queries in order to minimize 
the overhead of parallelism, e.g., by constraining the degree of parallelism for 
the query. Load balancing is the ability of the system to divide a given workload 
equally among all processors. Depending on the multiprocessor architecture, it 
can be achieved by static physical database design or dynamically at run-time. 

High-availability. Because a parallel database system consists of many similar 
components, it can exploit data replication to increase database availability. Thus, 
in the event of a disk failure, the copy of the data may still be available on 
one or more disks at no additional cost (unlike log-based recovery). However, 
replica support requires the implementation of control protocols that enforce 
copy consistency. The most used protocol is ROWA (read one, write all) which 
converts a logical read operation to a physical read operation on any one of 
the copies, but a logical write operation is translated into physical writes on all 
copies. In a highly parallel system with many small disks, the probability of a disk 
failure at anytime can be higher (than in an equivalent mainframe). Therefore, 
it is essential that a disk failure does not imbalance the load, e.g., by doubling 
the load on the available copy. Solutions to this problem require partitioning 
copies in such a way that they can also be accessed in parallel [43]. 

Extensibility. In a parallel environment, accommodating increasing database 
sizes or increasing performance demands (e.g., throughput) should be easier. 
Extensibility is the ability of smooth expansion of the system by adding processing 
and storage power to the system. Ideally, the parallel database system should 
demonstrate two advantages [26]: linear scaleup and linear speedup. Linear scaleup 
refers to a sustained performance for a linear increase in both database size 
and processing and storage power. Linear speedup refers to a linear increase 
in performance for a constant database size and linear increase in processing 
and storage power. Furthermore, extending the system should require minimal 
reorganization of the existing database. 

Assuming a client-server architecture, the functions supported by a parallel 
database system can be divided into three subsystems much like in a typical 
RDBMS. The differences, though, have to do with implementation of these 
functions which must now deal with parallelism, data partitioning and replication, 
and distributed transactions. Depending on the architecture, a processor can 
support all (or a subset) of these subsystems. Figure 1 shows the architecture using 



OPEN PROBLEMS AND NEW ISSUES 143 

Database Server 

Figure 1. General architecture of a parallel database system. 

these subsystems named after [9]. Solid double arrows indicate communication, 
bold double arrows indicate data access, and dotted arrows indicate task creation. 

Session manager. The session manager plays the role of a transaction monitor 
(like TUXEDO [3]), providing support for client interactions with the server. 
In particular, it performs the connections and disconnections between the client 
processes and the two other subsystems. Therefore, it initiates and closes user 
sessions (which may contain multiple transactions). In case of OLTP sessions, 
the session manager is able to trigger the execution of pre-loaded transaction 
code within data manager modules. 

Request manager. The request manager receives client requests related to query 
compilation and execution. It can access the catalog which holds all meta- 
information about data and programs. The catalog itself should be managed 
as a database in the server. Depending on the request, it activates the various 
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Figure 2. Shared-memory architecture. 

compilation phases, triggers query execution and returns the results as well as 
error codes to the client application. Because it supervises transaction execution 
and commit, it may trigger the recovery procedure in case of transaction failure. 
To speed up query execution, it may optimize and parallelize the query at 
compile-time. 

Data manager. The data manager provides all the low-level functions needed 
to run compiled queries in parallel, i.e., database operation execution, parallel 
transaction support, cache management, etc. If the request manager is able to 
compile dataflow control, then synchronization and communication among data 
manager modules is possible. Otherwise, transaction control and synchronization 
must be done by a request manager module. 

2.3. Parallel system architectures 

A parallel system represents a compromise in design choices in order to provide 
the aforementioned advantages with a better cost/performance. One guiding 
design decision is the way hardware components, i.e., processors, memories, and 
disks, are interconnected through some fast communication medium. Parallel 
system architectures range between two extremes, the shared-memory and the 
shared-nothing architectures, and a useful intermediate point is the shared-disk 
architecture [61]. 

2.3.1. Shared-memory. In the shared-memory approach (see Figure 2), any pro- 
cessor has access to any memory module or disk unit through a fast interconnect 
(e.g., a high-speed bus or a crossbar switch). Several new mainframe designs 
such as the IBM3090 or Bull's DPS8, and symmetric multiprocessors such as 
Sequent and Encore follow this approach. 

Examples of shared-memory parallel database systems include XPRS [69], 
DBS3 [9], and Volcano [36], as well as portings of major RDBMSs on shared- 
memory multiprocessors. In a sense, the implementation of DB2 on an IBM3090 
with six processors [20] was the first example. All the shared-memory commercial 
products today exploit interquery parallelism only (i.e., no intraquery parallelism). 
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Figure 3. Shared-disk architecture. 

Shared-memory has two strong advantages: simplicity and load balancing. 
Since meta-information (catalog) and control information (e.g., lock table) can 
be shared by all processors, writing database software is not very different than 
for single-processor computers. In particular, interquery parallelism comes for 
free. Intraquery parallelism requires some parallelization but remains rather 
simple. Load balancing is excellent since the system assigns tasks to processors 
at run-time based on the actual load. 

Shared-memory has three problems: cost, limited extensibility, and low avail- 
ability. High cost is incurred by the interconnect which is fairly complex because 
of the need to link each processor to each memory module or disk. With faster 
and faster processors (even with larger caches), conflicting accesses to the shared- 
memory increase rapidly and degrade performance [74]. Therefore, extensibility 
is limited to tens of processors (20 on a Sequent on Encore). Finally, since 
the memory space is shared by all processors, a memory fault may effect most 
processors thereby hurting database availability. A solution is to duplex memory 
as in Sequoia systems. 

2.3.2. Shared-disk. In the shared-disk approach (see Figure 3), any processor 
has access to any disk unit through the interconnect but exclusive (nonshared) 
access to its main memory. Then, each processor can access database pages on 
the shared disk and copy them into its own cache. To avoid conflicting accesses 
to the same pages, global locking and protocols for the maintenance of cache 
coherency are needed [52]. 

Examples of shared-disk parallel database systems include IBM's IMS/VS Data 
Sharing product and DEC's VAX DBMS and Rdb products. The implementation 
of ORACLE on DEC's VAX cluster and NCUBE computers is also using the 
shared-disk approach since it requires minimal extensions of the RDBMS kernel. 
Note that all these systems exploit interquery parallelism only. 

Shared-disk has a number of advantages: cost, extensibility, load balancing, 
availability, and easy migration from uniprocessor systems. The cost of the 
interconnect is significantly less than with shared-memory since standard bus 
technology may be used. Given that each processor has enough cache memory, 
interference on the shared disk can be minimized. Thus, extensibility can be 
better (hundreds of processors). Load balancing can be as good as with shared- 
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memory for the same reasons. Since memory faults can be isolated from other 
processor-memory nodes, availability can be higher. Finally, migrating from a 
centralized system to shared disk is relatively straightforward since the data on 
disk need not be reorganized. 

Shared-disk suffers from higher complexity and potential performance problems. 
It requires distributed database system protocols, such as distributed locking and 
two-phase commit which can be complex [52]. Furthermore, maintaining the 
coherency of the copies can incur high communication overhead among the 
nodes. Finally, access to the shared disk is a potential bottleneck. 

2.3.3. Shared-nothing. In the shared-nothing approach (see Figure 4), each 
processor has exclusive access to its main memory and disk unit(s). Then, each 
node can be viewed as a local site (with its own database and software) in a 
distributed database system. Therefore, most solutions designed for distributed 
databases such as database fragmentation, distributed transaction management 
and distributed query processing may be reused. 

Examples of shared-nothing parallel database systems include the Teradata's 
DBC and Tandem's NonStopSQL products as well as a number of prototypes 
such as Bubba [12], Eds [29], Gamma [28], Grace [31], Prisma [5], and Arbre 
[50]. All these systems exploit both inter- and intraquery parallelism. 

As demonstrated by the existing products, e.g., [73], shared nothing has three 
main virtues: cost, extensibility, and availability. The cost advantage is the same 
as for shared disk. By implementing a distributed database design which favors 
the smooth incremental growth of the system by the addition of new nodes, 
extensibility can be better (thousands of nodes). For instance, Teradata's DBC 
can accommodate 1024 processors. With careful partitioning of the data on 
multiple disks, linear speedup and linear scaleup could be achieved for simple 
workloads. By replicating data on multiple nodes, high availability can be also 
achieved. 

Shared-nothing suffers also from higher complexity, in addition to load bal- 
ancing problems. Higher complexity is due to the necessary implementation of 
distributed database functions assuming large numbers of nodes. Load balancing 
is more difficult to achieve because it relies on the effectiveness of database 
partitioning for the query workloads. Unlike shared-memory and shared-disk, 
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load balancing is decided based on data location and not the actual load of 
the system. Furthermore, the addition of new nodes in the system presumably 
requires reorganizing the database to deal with the load balancing issues. 

2.3.4. Comparisons. Let us briefly compare these alternative design approaches 
based on their potential advantages (high-performance, high-availability, and 
extensibility). It is fair to say that, for a small configuration (e.g., less than 
20 processors), shared-memory can provide the highest performance because of 
better load balancing. Shared-disk and shared-nothing, however, outperform 
shared memory in terms of availability and extensibility. Finally, shared-nothing 
can scale up to higher numbers of processors than shared memory and shared 
disk. 

Thus, it appears that shared-nothing is the only choice for high-end systems 
(e.g., requiring more than thousands of TPS of the TPC-B benchmark). However 
for small-to-medium systems (e.g., requiring less than 1000 TPS), shared-memory 
and shared-disk are interesting alternatives [10]. 

3. Open research problems 

As we have seen in the previous section, there are representative products for each 
parallel system architecture. One aspect common to the most recent products 
is the single focus on SQL and relational databases for business data processing 
applications. Although technology transfer from research into products has been 
impressive, there are still research problems which hamper to fully exploit the 
range of possibilities offered by multiprocessor computers. In this section, I 
discuss the major open problems which have to do with architectures, data 
placement, parallel database languages, and parallel query processing. 

3.1. Architectural aspects 

Although the respective advantages and limitations of each architectural model for 
data management are now well understood, this is not so for hybrid architectures. 
An example of hybrid architecture is one where some disk or memory modules 
are shared and some others are not. Furthermore, there are important problems 
with respect to the use of disk arrays [60], operating system support, and 
internetworking of database servers. A final related consideration which we 
discuss below is the need for comprehensive benchmarks. 

Most of the research problems have been investigated assuming a given archi- 
tectural paradigm, typically shared-memory or shared-nothing. This assumption 
is generally motivated by a strong faith of the designers in the chosen architec- 
ture and their will to concentrate on software solutions (possibly as a reaction to 
the failure of hardware-oriented DBMs). Furthermore, this approach simplifies 
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implementation somewhat. A shared-memory design can simply extend a single- 
processor DBMS design with run-time parallelization [69] while a shared-nothing 
design can reuse and extend distributed database techniques. 

However, some hybrid parallel system architectures may be better. Given 
the limited extensibility of shared-memory and the load balancing problem of 
shared-nothing, an interesting compromise is to have a shared-nothing system in 
which each node is itself a shared-memory multiprocessor. Having a few powerful 
nodes in a shared-nothing architecture also simplifies the data placement problem. 
Then the question is whether to be extensible and scalable to a limited number 
of very powerful shared-memory nodes or to a higher number of less powerful 
nodes. The Encore 93 series follows the first approach by allowing several 
shared-memory nodes with up to 32 processors to be connected through a high- 
speed network. Teradata's P90 [17] (potential successor of the DBC) follows 
the second approach by targeting the interconnection of up to 512 nodes, each 
being a shared-memory four-processor board, using a fast tree-structured bus 
(the BYnet). 

In addition, considering the trends in supercomputer architectures, we can 
imagine parallel database systems with processors of different speeds (and prices). 
One advantage of such architectures is that the inherently sequential tasks (which 
hurt throughput) could be sent to the faster processors. For instance, the 
request manager component which essentially does multipass compilation and 
optimization is a good candidate for the faster processors. More experimental 
study is needed to decide the best architecture and configuration for different 
workloads. The work pioneered in [10, 74] is a good starting point. 

Disk arrays are being considered as a promising approach to high-performance 
I/O architectures. A disk array consists of a large number of small, inexpensive 
disks and a high-bandwidth interconnect (of hundreds of megabytes per second) 
for disk-memory transfers. Therefore, it can provide very high throughput by 
exploiting I/O parallelism and thus reduce the I/O bottleneck. It can also provide 
high availability through replication. Data placement techniques designed for 
shared-nothing systems (partitioning) can be reused for disk arrays [84]. If disk 
arrays are successful (which is yet to be proven), an interesting issue is their 
integration in a parallel database system. From the outside, a disk array is a black 
box with its own complex software (some disk array controllers consist of 1 million 
lines of C code). While it may be easy to use disk arrays with shared memory 
or shared disk, it is a hard, if not hopeless, problem for shared nothing. A 
shared-nothing design can be viewed as a disk array with memory and processing 
power attached to each disk. Therefore, there is a potential design mismatch 
between the two. However, Teradata's P90 intends to use a number of disk 
arrays, each attached to two four-processor nodes. More research is definitely 
needed to understand the potential advantages of disk arrays in shared-nothing 
systems. 

As for any dedicated system, specific operating system support for parallel data 
management can be very cost-effective. Two approaches can be applied. The 
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first one creates a brand new dedicated operating system almost from scratch, 
e.g., the Bubba operating system, which implements a single-level store where 
all data are uniformly represented in a virtual address space [22]. Although 
this approach can lead to the best performance, it restricts the use of the 
parallel system to database operations and cannot, for instance, run C or Cobol 
programs. The second approach tries to capitalize on modern, operating system 
microkernels such as Chorus [62] or Mach [44], and extends it in a way that 
can provide efficient support for database-oriented functions. In this case, the 
database-oriented operating system is just a subsystem as UNIX can be. Thus, 
it is more open to support non database applications as well. 

If parallel data servers become prevalent, it is not difficult to see an environment 
where many of them are placed on a backbone network. This gives rise to 
distributed systems consisting of clusters of processors [37]. An interesting 
concern in such an environment is internetworking. Specifically, the execution 
of database queries which span multiple, and possibly heterogeneous, clusters 
creates at least the problems of distributed multidatabase systems. However, 
there are the additional problems that the queries have to be optimized not only 
for execution in parallel on a cluster of servers, but also for execution across a 
network. 

Ultimately, the comparison of alternative parallel database system architectures 
will require specific benchmarks. Benchmarking is the only impartial way of 
assessing the performance/price of a system for a given workload. There are 
now standard benchmarks for DBMS and transaction processing systems [38] 
which stem from major research efforts, e.g., the TPC [4], Wisconsin [11], or 
Engineering database benchmarks [18]. However, most benchmarks measure an 
isolated aspect of a system. TPC measures the throughput of a workload of 
simple (debit-credit) transactions whereas the Wisconsin benchmark measures 
the response time of complex (decision-support) queries. ASaAP [75], however, 
does include mixed workloads including simple and complex transactions as well 
as utilities (e.g., database load). For parallel database systems, more work is 
needed to come up with benchmarks which can stress linear speedup and linear 
scaleup under mixed workloads including simple and complex transactions as 
well as batch programs. 

3.2. Data placement 

In a parallel database system, proper data placement is essential for load balanc- 
ing. Ideally, interference between concurrent, parallel operations can be avoided 
by having each operation to work on an independent dataset. These independent 
datasets can be obtained by declustering (horizontal partitioning) of the relations 
based on a function (hash function or range index) applied to some placement at- 
tribute(s), and allocating each partition on a different disk. Similar to horizontal 
fragmentation in distributed databases, declustering is useful to obtain interquery 
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parallelism, by having independent queries working on different partitions, and 
intraquery parallelism, by having a query's operations working on different parti- 
tions. As for clustering, declustering can be single-attribute or multiattribute. In 
the latter case [35], an exact match query requiring the equality of multiattributes 
can be processed by a single node without communication. The choice between 
hashing or range index for partitioning is a design issue: hashing incurs less 
storage overhead but provides direct support for exact-match queries only, while 
range index can also support range queries. Initially proposed for shared-nothing 
systems, declustering has been shown to be useful for shared-memory designs as 
well, by reducing memory access conflicts [9]. 

Full declustering, whereby each relation is partitioned across all the nodes, 
causes problems for small relations or systems with large numbers of nodes. A 
better solution is variable declustering where each relation is stored on a certain 
number of nodes as a function of the relation size and access frequency [21]. 
This can be combined with multirelation clustering to avoid the communication 
overhead of binary operations. 

When the criteria used for data placement change to the extent that load 
balancing degrades significantly, dynamic reorganization should be performed. 
An important issue is to perform such dynamic reorganization on-line (without 
stopping the incoming of transactions) and efficiently (through parallelism). By 
contrast, existing database systems perform static reorganization for database 
tuning [66]. Furthermore, reorganization should remain transparent to compiled 
programs that run on the parallel system. In particular, programs should not be 
recompiled because of reorganization. Therefore, the compiled programs should 
remain independent of data location. This implies that the optimizer does not 
know the actual disk nodes where a relation is stored or where an operation will 
actually take place. The set of nodes where a relation is stored, when a certain 
operation is to be executed, is called its home. Similarly, the set of nodes where 
the operation will be executed is called the home of the operation. However, 
the optimizer needs abstract knowledge of the homes (e.g., relation R is hashed 
on A over 20 nodes) and the run-time system makes the association between the 
home and the actual nodes. 

A serious problem in data placement is dealing with skewed data distributions 
which may lead to nonuniform partitioning and hurt load balancing. Hybrid 
architectures with nodes of different memory and processing power can be 
exploited usefully here. Another solution is to treat nonuniform partitions 
appropriately, e.g., by further declustering large partitions. The separation 
between logical and physical nodes is also useful since a logical node may 
correspond to several physical nodes. 

A final complicating factor is data replication for high availability. The naive 
solution is to maintain two copies of the same data, a primary and a backup 
copy, on two separate nodes. However, in case of a node failure, the load of the 
node having the copy may double, thereby hurting load balancing. To avoid this 
problem, several high-availability data replication strategies have been proposed 
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and recently compared [43]. An interesting solution is Teradata's interleaved 
declustering which declusters the backup copy on a number of nodes. In failure 
mode, the load of the primary copy gets balanced among the backup copy nodes. 
However, reconstructing the primary copy from its separate backup copies may 
be costly. In normal mode, maintaining copy consistency may also be costly. A 
better solution is Gamma's chained declustering which stores the primary and 
backup copy on two adjacent nodes. In failure mode, the load of the failed node 
and the backup nodes are balanced among all remaining nodes by using both 
primary and backup copy nodes. In addition, maintaining copy consistency is 
cheaper. An open issue remains to perform data placement taking into account 
data replication. Similar to the fragment allocation in distributed databases, this 
should be considered an optimization problem. 

3.3. Parallel database languages 

There are various forms of parallelism. Figure 5 shows four simple kinds of 
parallelism graphically. 

A few key ideas can be derived from applying these parallelism structures to 
problems in intensive data processing: 

• Dividing problems is the essence of parallelism. Division into independent 
subproblems gives independent parallelism, while dividing into incremental 
computations gives pipeline parallelism. Set mappings naturally adapt to 
independent parallelism (the same instruction is independently applied to 
each element of a set) while stream mappings adapt to pipeline parallelism 
(some instructions are successively applied to each element of a stream). 
Thus, sets and streams suggest a divide-and-conquer format for specifying 
mappings which is implicitly also a format for specifying parallelism. 

• Divide-and-conquer computations can be represented by combining these 
types of parallelism. "Dividing" a problem is represented by fan-out nodes 
in the graph, while conquering gathers results into a set (with indepen- 
dent parallelism), a stream (with pipeline parallelism), and/or an aggregate 
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(with fan-in parallelism). Thus, divide-and-conquer solutions of problems 
naturally capture these kinds of parallelism. 

• Relational algebra operators can often be naturally expressed as divide-and- 
conquer computations. 

These ideas raise hope for a parallel data processing system that rests upon 
divide-and-conquer techniques. However, such a system must deal with several 
technical issues to be viable. 

A first problem is that the relational model offers no way to talk about order 
among data (e.g., sorted relations, or ordered tuples). Relational languages 
are therefore inadequate for specifying "stream processing," in which ordered 
sequences of data are processed sequentially [58]. Hence, streams cannot be 
exploited to specify pipeline parallelism following a data-parallelism paradigm. 
Pipeline parallelism is generally used, transparently to the user, in lower-level 
languages implementing relational algebra (e.g., PLERA [19] or PFAD [40]). 

A second problem is that parallel data processing requires effective data par- 
titioning capabilities. Typically, a relational query (select-project-join expression) 
is translated into a low-level form of relational algebra with explicit (low-level) 
parallel constructs. Data partitioning is used to spread the computation of rela- 
tional algebra operators among parallel processors. This partitioning is typically 
defined during the physical database design and then exploited by a compiler. 
Most of the time, a partitioned computation requires that processors exchange 
intermediate results in order to compute the final result. 

Ideally, data partitioning must be expressible by the programmer or the compiler 
within a parallel database language. This is essential to automatically extract 
parallelism and lead to efficient implementations on parallel database systems. 
Specifying parallel computations over relations often requires specifying how data 
partitioning (fan-out parallelism) will be done and how distributed results will 
be collected (fan-in parallelism). Database models have been developed before 
that permit expression of both ordering among tuples and data partitioning. For 
example, the FAD language of Bubba has operators that express various forms 
of fan-out and fan-in parallelism [23]. FAD is a strongly typed set-oriented 
database language based on functional programming and relational algebra. It 
provides a fixed set of higher-order functions to aggregate functions, like the pump 
parametrized aggregate operator and the grouping operator. The pump operator 
applies a unary function to each element of a set, producing an intermediate set 
which is then "reduced" to a single datum using a binary function that combines 
the intermediate set elements. Indeed, pump naturally expresses a special case 
of fan-out and fan-in parallelism. At the same time, the group operator permits 
set partitioning. 

The SVP model [59] goes one step further in allowing sets, streams and 
parallelism to be captured in a unified framework formalizing divide-and-conquer 
mappings. SVP models collections, whose specialization leads to sets or streams, 
as series-parallel graphs which ease expressing parallel data processing. An 



OPEN PROBLEMS AND NEW ISSUES 153 

important class of queries called transducers generalizes aggregate operations and 
set or stream operations. They lead to high-level specification of independent 
and pipeline parallelism. Thus, SVP is a possible formal foundation for further 
research in parallel data programming languages. 

3.4. Parallel query processing 

Parallel query processing refers to the automatic translation of a query, expressed 
with a centralized execution model in mind, into an efficient execution plan, and 
its parallel execution. Such translation has two important aspects. First, the 
translation must be a correct transformation of the input query so that the 
execution plan actually produces the expected result. The formal basis for this 
task is transformation rules associated with relational algebra operators. Second, 
the execution plan must be optimal in that it minimizes a cost function that 
captures resource consumption. This requires investigating equivalent alternative 
processing trees in order to select the best one. These tasks are more or less 
difficult depending on whether they are performed at compile-time or run-time. 
Finally, the execution plan must be loaded for execution in the parallel system 
and run with concurrent transactions. We can divide the processing of a query in 
three steps: optimization, parallelization and execution. Each step faces specific 
issues that I address below. 

Declustered data placement is the basis for the parallel execution of database 
queries. Therefore, much work has been devoted to the design of parallel 
algorithms which exploit such placement. However, more work is still needed 
to handle skewed data [85]. By dividing each set-oriented operation in a SIMD 
fashion, much intraoperation parallelism can be exploited. The basic principle 
is "to execute where the data is," that is, exploit data placement as much as 
possible by sending operations to their data. However, it is sometimes better 
to dynamically rearrange a relation to increase parallelism if the overhead of 
reorganization is less than its benefit. This is more likely to apply to intermediate 
relations than possibly large base relations. 

The parallelization of an operation is based on a global and a local algorithm. 
The global algorithm decomposes the operation into local ones, to which another 
algorithm is applied. For instance, given a relation declustered across n nodes, 
the operation Select(R) is equivalent to the union of n operations Select(Ri), with 
i = 1 , . . . ,n ,  where each individual operation can be done in parallel. However, 
if the select predicate involves the placement attributes, fewer nodes than n 
(ideally one) need be involved. 

Parallelizing binary operations is more involved since, for optimal parallelism, 
it requires each operand relation to be declustered the same way. For example, 
if R and S are both declustered across n nodes using the same function on 
the join attribute, the operation Join(R,S) is equivalent to the union of n 
parallel operations Join(Ri, Si), with i = 1, . . . ,  n. Parallel join algorithms in [25, 
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67, 80] attempt to make such condition available by reorganizing the relations 
if necessary. Hashing has became the major technique for parallelizing binary 
operations such as join, union, and difference. Order-preserving hashing can 
also be used for parallel sorting. However, determining uniform ranges of 
attribute values to be handled by each processor is critical for load balancing 
[46]. Sampling looks like a promising solution for parallel sorting and, more 
generally, to deal with skewed data [27]. 

Given the existence of parallel algorithms, the importance of run-time pa- 
rameters, such as processors load, raises the issue of static versus dynamic 
parallelization. In centralized DBMS, query optimization is performed prior to 
the execution of the query, hence called static, for two reasons. First, it can be 
done within a compiler, thereby reducing run-time optimization cost. Second, 
it can better exploit knowledge regarding physical schema and data placement. 
In parallel database systems, static optimization can still be beneficial but is 
made difficult by a larger search space, a more complex cost model and possibly 
high optimization cost. The search space is larger because of the wide range 
of parallel execution strategies. For instance, bushy processing trees should be 
considered for they can provide a higher degree of parallelism than linear trees. 

The cost model provides the necessary abstraction of the parallel execution 
system in terms of access method cost functions, and an abstraction of the 
database in terms of physical schema information and related statistics. A number 
of important restrictions are often associated with the cost model, limiting the 
effectiveness of optimization. It is a weighted combination of cost components 
such as I/O, CPU, and communication and can capture either response time 
(RT) or total time (TT). Although TT optimization may increase throughput 
by minimizing resource consumption, RT optimization may well hurt throughput 
because of the overhead of parallelism. A potentially beneficial direction of 
research is to apply multiple query optimization [63] whereby a set of important 
queries from the same workload are optimized together. This would provide 
opportunities for load balancing and for exploiting common intermediate results. 
Other problems are the accuracy of the cost functions for parallel algorithms 
and the impact of update queries on throughput. Careful analysis of the cost 
functions should provide insights for determining useful heuristics to cut down 
the number of alternative execution plans. 

There is a necessary trade-off between optimization cost and quality of the 
generated execution plans. High optimization costs are unacceptable for ad 
hoc queries which are executed only once. Therefore, it is critical to study 
the application of efficient search strategies that avoid the exhaustive search 
approach. More important, a different search strategy should be used depending 
on the kind of query (simple versus complex) and the application requirements 
(ad hoc versus repetitive). This requires support for controllable search strategies 
[48]. An interesting other solution is to perform optimization itself in parallel. 

Static optimization can be followed by static parallelization, which translates 
the optimal execution plan into a parallel program. This approach is used in 
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Bubba and DBS3, and relies on a parallel database programming language. For 
instance, DBS3's PLERA [19] supports operators for local execution, data transfer 
and execution control. This approach allows decentralized control of the parallel 
program and offers control optimization opportunities. However, to achieve load 
balancing, there are some decisions which should be made at run-time, e.g., 
allocation of physical processors. Generating code to make such decisions is not 
easy. Furthermore, as database languages get increasingly powerful, we need 
more complex rules for performing correct transformations from centralized to 
parallel programs. 

Dynamic parallelization is used in XPRS to select the optimal degree of 
parallelism for the operations based on the actual run-time load of the system. 
This approach is fairly simple. Optimization is done by a centralized query 
optimizer and the sequential execution plan is parallelized at run-time. Thus, 
excellent load balancing can be achieved. However, potentially better execution 
plans, e.g., bushy trees, are de facto ignored by the centralized optimizer. 
More work is needed to better combine the advantages of static and dynamic 
parallelization. 

Parallel execution of (compiled) queries has to deal with the problems of 
transaction, initiation and transaction scheduling. Transaction termination faces 
the issues of distributed transactions, i.e., the cost of the commit and replica 
protocols. Transaction initiation involves loading code and starting-up processes. 
This function is trickier in shared nothing since it requires code to be shipped 
across nodes. In [2, 39], several activation mechanisms are proposed and 
compared. For ad hoc queries, piggybacking code fragments with the data 
shipped or callback for the code are useful. For precompiled queries, dynamic 
activation of preloaded code is generally superior. 

Transaction scheduling is difficult in the case of mixed workloads comprising 
short on-line transactions and decision-support queries. The latter ones tend 
to acquire large numbers of locks at the expense of short transactions, and 
therefore hurt throughput. The practical solution duplicates the database so the 
on-line database is accessed by the short transactions and a snapshot database 
by the decision-support queries. To support such mixed workloads on the same 
database, solutions such as versioning [61, 69] need further investigation. 

4. Next-generation parallel database systems 

The penetration of database technology into new application areas with different 
requirements than traditional business data processing has motivated the notion 
of next-generation database systems [16, 68, 71]. One major objective is that 
the data model to be supported must be more powerful than the relational 
model, without compromising its advantages (data independence and high-level 
query languages). When applied to more complex application domains such as 
engineering, office information systems, and expert systems, the relational data 
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model exhibits limitations in terms of rule management, type system and complex 
object support. To address these issues, two important technologies, KBMSs and 
OODBMSs, are currently being investigated. Initially considered antagonistic, 
many believe today that a combination of their capabilities into deductive and 
object-oriented database (DOOD) systems will shape next-generation, universal 
database systems. For the same reasons which led to parallel relational database 
systems, implementing KBMSs and OODBMSs on parallel computers can be 
cost-effective. Obviously, this presents new, challenging research problems in 
addition to the current issues of KBMSs and OODBMSs. 

4.1. Parallel KBMS 

KBMSs should enable us to move from data management to more general knowl- 
edge management by abstracting the reasoning mechanism from the application 
programs and encapsulating it within the DBMS. RDBMSs typically provide a 
limited form of knowledge support through assertions and views. KBMSs (also 
called deductive database systems) manage and process possibly complex rules 
against large amounts of data (also called facts) within the DBMS rather than 
within a separate subsystem. Rules can be declarative (assertions) or imper- 
ative (triggers). By isolating the application knowledge and behavior within 
rules, KBMSs provide control over knowledge which can be better shared among 
users. Furthermore, the high expressive power of rule programs aids applica- 
tion development. These advantages imply increased programmer productivity 
and application performance. Because it is based on first-order logic, deductive 
database technology subsumes relational database technology. 

We can isolate two alternative approaches to KBMS design. The first one 
extends a relational DBMS with a more powerful rule-based language (e.g., RDL 
[45] and ESQL [34]), while the second approach extends first-order logic into a 
declarative programming language such as Datalog [77] or LDL [53]. The two 
approaches raise similar issues, some of which have been partially addressed by 
the logic programming community, typically with strong assumptions such as a 
small, single-user database. 

Rule management, as investigated in deductive databases, is essential since 
it provides a uniform paradigm to deal with semantic integrity control, views, 
protection, deduction and triggers. Much of the work in deductive databases 
has concentrated on the semantics of rule programs and on processing deduc- 
tive queries, particularly in the presence of recursive and negated predicates [8]. 
However, there are a number of open issues related to the enforcement of the se- 
mantic consistency of the knowledge base, optimization of rule programs involving 
large amounts of facts and rules, integration of rule-based languages with other 
tools (e.g., application generators), and providing appropriate debugging tools. 
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Implementing a KBMS on a parallel system can capitalize on relational database 
technology, e.g., by storing facts within relations. Therefore, the new issues have 
more to do with the processing of parallel deductive queries than with parallel 
data management. The major technique for deductive query processing is bottom- 
up evaluation which starts from the facts and applies the rules necessary to derive 
the answer to the query. The bottom-up processing of a deductive query has 
two major steps. First, the query is merged with the relevant rules, the ones 
which use the query predicates. The parameter bindings given in the query are 
propagated in the rule bodies. This step produces a rule program with bindings. 
Second, the rule program is translated into an optimized program in the internal 
database language, e.g., an extension of relational algebra with control constructs 
such as "while do" and parallel constructs, which can be subsequently executed 
by the parallel system. 

The rapid access to the relevant rules in the first step can be achieved using 
some form of index, typically a predicate connection graph [51]. If the rule base 
is large, then an interesting solution is to use declustering to favor parallel rule 
access. Then the problem is to find partitioning functions which can cluster the 
connected subgraphs. Another problem is with triggers which are rules fired as 
results of updates or other events. Including potential firing of triggers within 
compiled queries may be practically infeasible since triggers can recursively call 
other triggers. A possibility is to implement run-time rule firing based on updates 
as an extension of the transaction management mechanism [70]. One difficulty 
is to be able to access trigger information from the updated data. In a shared- 
nothing architecture, this may well increase communication overhead if triggers 
refer to nonlocal data. This suggests that data placement and preloading of 
trigger code be addressed together. 

Parallel deductive query processing is made difficult by the presence of ad- 
ditional capabilities, such as recursive rules, and the larger range of parallel 
execution strategies for such capabilities. As pioneered in [82], most of the work 
in this area has focused on extending query processing to support the transitive 
closure of declustered relations in parallel. The transitive closure operator is 
essential to solve data-intensive problems, such as the bill-of-material (finding 
the number of elements connected to a given part). Parallel algorithms can be 
very effective in exploiting the regularity of the data to be processed. Promising 
techniques include hash-based partitioning [82], extensions of direct techniques 
[1] and semantic-based data partitioning [15]. The latter technique partitions 
the relation graph into disconnected sets but is essentially static, i.e., updates to 
the graph may imply repartitioning. More general Datalog programs have also 
been recently considered for parallel execution [15] using data partitioning. Much 
more work is still needed to improve the existing algorithms and provide a general 
framework to process parallel deductive queries. Such a framework will be also 
of interest for analyzing and comparing the performance of various techniques. 
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4.2. Parallel OODBMS 

Object-oriented databases combine object-oriented programming (OOP) and 
database technologies in order to provide higher modeling power and reduce the 
chronic mismatch between databases and programming languages. I see three 
important classes of OODBMS (see representative systems in [16]). The first one 
extends the relational model and SQL with OO capabilities, e.g., Postgres and 
Starbust. The second class is persistent OOP which extends an OOP language, 
e.g., C + +  or Smalltalk, with database capabilities, e.g., Ontos and ObjectStore. 
The last class relies on a new, semantic data model, e.g., 02, which combines OO 
and database features. Each OODBMS seems to have its respective advantages 
and weaknesses as well as its niche market (such a discussion is beyond the scope 
of this paper). However, OODBMSs, and more generally DOOD systems, are 
a first step toward ubiquitous systems for the construction of multiparadigmal 
applications with persistent objects which capture all the enterprise's data [6]. In 
addition to traditional database functions, the;primary functions to be supported 
are abstract data types (with method code), type inheritance, type safety, and 
complex objects. 

Over the last years, OODBs have been the subject of intensive research 
and experimentation. However, the theory and practice of developing parallel 
OODBMSs have yet to be fully developed. Even though some of the solutions 
developed for relational systems are applicable, the high degree of generality 
introduced by the OODB data models creates significant difficulties. In this 
section, I review the more important issues related to the overall system archi- 
tecture, object management, operating system support, transaction processing, 
and query models and processing. 

OODB applications typically arise in workstation-server environments. To bet- 
ter exploit the increasing MIPS and memory power of the workstations, it then 
makes sense to shift some of the functionality from the server to the client 
workstations. In [24], several alternative architectures are proposed and com- 
pared: object-server, page-server and file-server. In the object-server architecture 
(smart server), the server services requests for objects access and update, with 
centralized locking and logging of objects. Most RDBMSs and OODBMSs (e.g., 
Ontos) follow this approach. In the page-server architecture (dumb server), the 
server services page demands and page updates, with centralized locking and 
logging of pages. 02  and ObjectStore follow this approach. For simplicity, I 
ignore the file-server approach which, for the sake of this paper, is comparable 
to page-server. The bottom line is that page-server outperforms object-server 
when the workstation has a large buffer pool and data accesses show good local- 
ity of reference and the opposite is true otherwise. An additional point is that 
page-server forces page-level locking and may not be appropriate for applications 
with much multiuser concurrency (for which object-level locking is better). In 
their conclusion, the authors suggest that a hybrid architecture where pages (or 
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files) are read but objects are written back may be best, although more difficult. 
More work is definitely needed to study alternative hybrid architectures. 

These results are very influential when looking at the viability and research 
issues of implementing an OODBMS server on a parallel system. Clearly, the 
pure page-server approach does not seem to raise new issues, except perhaps 
for the declustering of sets of pages containing complex objects. Fortunately (or 
unfortunately depending on your perspective), this approach is hardly compatible 
with the support of deductive capabilities as required by DOOD systems. For 
instance, complex rules for semantic integrity, e.g., triggers, can be more efficiently 
enforced close to the data, i.e., by the server [66]. In the case of object-server 
or hybrid architectures, we have all the issues at the cross-roads of OODBMSs 
and parallel database systems that I discuss below. 

Object management in a parallel system is most difficult in the case of shared- 
nothing architectures since we have the issues of distributed object management 
[57]. With shared-disk or shared-memory architectures, one could use the 
traditional OODBMS solutions for object clustering. Efficient management of 
objects with complex connections is difficult. When objects can be hierarchical 
and contain possibly shared subobjects, object clustering and indexing is a major 
issue. With object identity and object sharing (the ability of an object to be 
referenced by multiple parents), garbage collection of objects is problematic. 
Furthermore, large-size, multimedia objects such as graphics and images with 
their associated methods need special attention. 

Distributed object management should rely on a storage model which can 
capture the clustering and declustering of complex objects. Solutions developed 
for relational systems can be applied to collections of objects, i.e., top-level objects. 
However, the main problems remain the support of global object identity and 
object sharing. An interesting avenue of research is uniform object management 
[22] which provides a uniform treatment of objects regardless of whether they 
are transient versus persistent, local versus nonlocal, or memory resident versus 
disk resident. This can be achieved efficiently using a single-level store where all 
objects are represented in a virtual address space. Bubba implements a single- 
level store per node. With 64-bit processors, it should be easier to implement 
distributed single-level stores where the entire database is mapped in distributed 
virtual memory space. However, distributed garbage collection is a difficult 
problem [64]. 

The development of parallel (or distributed) OODBMSs bring to the forefront 
the issues related to proper operating system support. The issues are more 
interesting in this case since the development of object-oriented distributed op- 
erating systems has also been studied independently. Object-oriented technology 
can serve as the common platform to eliminate the impedance mismatch be- 
tween the programming languages, database management systems, and operating 
systems. The integration of the first two have been addressed by OODBMS 
designers. However, the integration of OODBMSs and object-oriented oper- 
ating systems .have not yet been studied and remains an interesting research 
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issue. One problem in using object-orientation to bring these systems together is 
their differing understandings of what an object is and their quite different type 
systems. Nevertheless, if the next-generation database systems are to exhibit an 
easier cooperation with the operating systems than today's RDBMSs do, these 
issues need to be addressed. 

Difficulties are introduced in transaction management for three reasons. First, 
objects can be complex thereby making variable-granularity locking essential. 
Second, support for dynamic schema evolution requires efficient solutions for up- 
dating schema data. Third, to address the different requirements of the targeted 
application domains, several concurrency control algorithms need be supported 
(e.g., pessimistic and optimistic concurrency control). Furthermore, engineering 
applications typically require specific support for cooperative transactions or long- 
duration nested transactions. In object-oriented systems, full generality is typically 
required such that complex transactions operate on complex object structures. 
Furthermore, the object model may treat transactions as first-class objects, both 
adding complexity and more opportunities to support multiple transaction types 
in one system [14]. Thus, in a parallel OODBMS, the issue of mixing various 
workloads is even more difficult than in parallel relational database systems. 

In order not to compromise the obvious advantages of relational systems, an 
OODBMS ought to provide a high-level query language for object manipulation. 
While there has been some proposals for calculus and algebras for OODBs, query 
optimization remains an open issue. OODB queries are more complicated and 
can include path traversals and ADT operations as part of their predicates. The 
initial work on OODB query processing does not consider object distribution and 
parallelism. The efficient parallel processing of OODB queries can borrow from 
distributed relational query processing to exploit the declustering of collection 
objects. However, achieving correct program transformations is more involved 
due to the higher expressive power of the query languages. To reuse most of 
the technology developed for parallel database systems, a promising approach is 
to clearly separate the search space, the search strategies and the parallel cost 
model of the optimizer. In [49], path expressions are viewed as implicit joins, 
presumably more efficient than explicit value-based joins, e.g., by a combination 
of object identifiers and join indices [79]. This makes it possible to include them 
with ADT operations in complex (recursive) queries. 

5. Conclusion 

Parallel database systems strive to exploit modern multiprocessor architectures 
using software-oriented solutions for data management. Their promises are high- 
performance, high-availability and extensibility with a much lower price/perform- 
ance ratio than their mainframe counterparts. Furthermore, parallelism is the 
only viable solution for supporting very large (terabyte) databases within a single 
system. 
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Although there are successful commercial SQL-based products, a number of 
open problems hamper the full exploitation of the capabilities for parallel systems. 
These problems touch on issues ranging from those of parallel processing to 
distributed database management. The first open issue is to decide which of the 
various architectures among shared-memory, shared-disk, and shared-nothing, is 
best for database management. For a small configuration (tens of processors), 
shared-memory can provide the highest performance because of better load 
balancing. Shared-disk and shared-nothing, however, outperform shared-memory 
in terms of availability and extensibility. On the other hand, shared-nothing can 
scale up to higher numbers of processors. Thus, it appears that shared-nothing 
is the only choice for high-end systems. But for small-to-medium systems, 
shared-memory and shared-disk are interesting, simpler alternatives. 

Interesting compromises can be obtained from hybrid architectures, e.g., a 
shared-nothing system in which each node is itself a shared-memory multipro- 
cessor. Then the question is whether to be extensible and scalable to a limited 
number of very powerful shared-memory nodes or to a higher number of less 
powerful nodes. The possibility of using disk arrays makes the question more 
difficult. Besides these architectural considerations, the following issues require 
more work: 

1. Operating system support for efficient parallel data management with open- 
ness to nondatabase applications as well, e.g., using microkernel operating 
system technology. 

2. Benchmarks to stress linear speedup and linear scaleup under mixed work- 
loads including simple and complex transactions as well as batch programs. 

3. Declustered data placement techniques to deal with skewed data distri- 
butions and data replication so as to achieve load balancing, including in 
failure mode. 

4. Parallel data processing languages that rest upon divide-and-conquer tech- 
niques to specify independent and pipeline parallelism in a high-level way. 

5. Parallel query processing with cost-based optimization and automatic par- 
allelization to deal with mixed workloads of precompiled transactions and 
complex ad hoc queries. 

The introduction of higher functionality, such as knowledge-based or object- 
oriented capabilities, within a parallel database system also raises new issues. To 
support knowledge-based capabilities, data placement and parallel query process- 
ing must be significantly revised to deal with possibly large rule bases and complex 
deductive queries. The introduction of object-oriented capabilities also creates 
significant difficulties related to complex object declustering, transaction manage- 
ment, proper object-oriented operating system support and parallel processing 
of object-oriented queries. Finally, the integration of the two capabilities into 
more powerful DOOD systems for the support of multi-paradigmal applications 
poses other challenging problems. 
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